Азот как химический элемент как пишется

Азот
при н. у. — газ без цвета, вкуса и запаха
Азот

Жидкий азот

Название, символ, номер Азот / Nitrogenium (N), 7
Атомная масса
(молярная масса)
[14,00643; 14,00728] а. е. м. (г/моль)
Электронная конфигурация [He] 2s2 2p3
Радиус атома 92 пм
Ковалентный радиус 75 пм
Радиус иона 13 (+5e) 171 (−3e) пм
Электроотрицательность 3,04 (шкала Полинга)
Степени окисления 5, 4, 3, 2, 1, 0, −1, −2, −3
Энергия ионизации
(первый электрон)
 1401,5 (14,53) кДж/моль (эВ)
Плотность (при н. у.) 0,808 г/см³ (-195,8 °C); 1,1649 кг/м³ в стандартных условиях по ГОСТ 2939-63; при н. у. 0,001251 г/см³
Температура плавления 63,29 K (−209,86 °C)
Температура кипения 77,4 K (−195,75 °C)
Уд. теплота плавления (N2) 0,720 кДж/моль
Уд. теплота испарения (N2) 5,57 кДж/моль
Молярная теплоёмкость 29,125 (газ N2) Дж/(K·моль)
Молярный объём 17,3 см³/моль
Структура решётки кубическая
Параметры решётки 5,661 Å
Теплопроводность (300 K) 0,026 Вт/(м·К)
Номер CAS 7727-37-9

Азот (N, лат. nitrogenium) — химический элемент 15-й группы (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе V группы, или к группе VA), второго периода периодической системы с атомным номером 7.

Относится к пниктогенам.

Как простое вещество представляет собой двухатомный газ без цвета, вкуса и запаха.

Один из самых распространённых элементов на Земле.

Химически весьма инертен, однако реагирует с комплексными соединениями переходных металлов.

Основной компонент воздуха (78,09 % объёма), разделением которого получают промышленный азот (более ¾ идёт на синтез аммиака).

Применяется как инертная среда для множества технологических процессов; жидкий азот — хладагент.

Азот — один из основных биогенных элементов, входящих в состав белков и нуклеиновых кислот.

Содержание

  • 1 История открытия
  • 2 Происхождение названия
  • 3 Азот в природе
    • 3.1 Изотопы
    • 3.2 Распространённость
    • 3.3 Биологическая роль
    • 3.4 Круговорот азота в природе
    • 3.5 Токсикология азота и его соединений
  • 4 Получение
    • 4.1 Разложение нитрита аммония
    • 4.2 Нагревание дихромата калия с сульфатом аммония
    • 4.3 Разложение азидов
    • 4.4 Реакция воздуха с раскалённым коксом
    • 4.5 Перегонка воздуха
    • 4.6 Пропускание аммиака над оксидом меди (II)
  • 5 Свойства
    • 5.1 Физические свойства
    • 5.2 Фазовая диаграмма
    • 5.3 Химические свойства, строение молекулы
      • 5.3.1 Промышленное связывание атмосферного азота
  • 6 Соединения азота
  • 7 Применение
    • 7.1 Газообразный азот
    • 7.2 Жидкий азот
  • 8 Маркировка баллонов
  • 9 Опасность для здоровья

История открытия

В 1772 году Генри Кавендиш провёл опыт: он многократно пропускал воздух над раскалённым углём, затем обрабатывал его щёлочью, в результате получался остаток, который Кавендиш назвал удушливым (или мефитическим) воздухом. С позиций современной химии ясно, что в реакции с раскалённым углём кислород воздуха связывался в углекислый газ, который затем поглощался щёлочью. При этом остаток газа представлял собой по большей части азот. Таким образом, Кавендиш выделил азот, но не сумел понять, что это новое простое вещество (химический элемент), и описал его как мефитический воздух (от английского mephitic — ‘вредный’). В том же году Кавендиш сообщил об этом опыте Джозефу Пристли.

Интересен тот факт, что он сумел связать азот с кислородом при помощи разрядов электрического тока, а после поглощения оксидов азота в остатке получил небольшое количество газа, абсолютно инертного, хотя, как и в случае с азотом, не смог понять, что выделил новый химический элемент — инертный газ аргон.

Джозеф Пристли в это время проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот, однако, будучи сторонником господствующей в те времена теории флогистона, также неверно истолковал полученные результаты — он решил, что выделил флогистированный воздух (т. е. насыщенный флогистоном).

В сентябре 1772 года шотландский химик Даниэль Резерфорд опубликовал магистерскую диссертацию «О так называемом фиксируемом и мефитическом воздухе», в которой описал азот как вредный, ядовитый воздух и предположил, что это новый химический элемент, а также описал основные свойства азота (не реагирует со щелочами, не поддерживает горения, непригоден для дыхания). Резерфорд также был сторонником флогистонной теории, поэтому также не смог понять, что же он выделил. Таким образом, чётко определить первооткрывателя азота невозможно.

В то же время азот выделил Карл Шееле: летом 1772 года он получил азот по методу Кавендиша и исследовал его в течение пяти лет, затем опубликовал результаты своих исследований. В этой публикации Шееле первым описал воздух как смесь отдельных газов: «огненного воздуха» (кислорода) и «грязного воздуха» (азота). Из-за того, что Шееле задержался с публикацией своих исследований, до сих пор идут споры о первооткрывателе азота.

Происхождение названия

Название «азо́т» (фр. azote, по наиболее распространённой версии, от др.-греч. ἄζωτος — безжизненный), вместо предыдущих названий («флогистированный», «мефитический» и «испорченный» воздух) предложил в 1787 году Антуан Лавуазье, который в то время в составе группы других французских учёных разрабатывал принципы химической номенклатуры, в том же году это предложение опубликовано в труде «Метод химической номенклатуры. Как показано выше, в то время уже было известно, что азот не поддерживает ни горения, ни дыхания. Это свойство и сочли наиболее важным. Хотя впоследствии выяснилось, что азот, наоборот, крайне необходим для всех живых существ, название сохранилось во французском и русском языках. Окончательно в русском языке этот вариант названия закрепился после выхода в свет книги Германа Гесса «Основания чистой химии» в 1831 году.

Само слово «азот» (без связи с газом) известно с древности и употреблялось философами и алхимиками средневековья для обозначения «первичной материи металлов», так называемого «меркурия» у философов, «двойного меркурия» у алхимиков. «Первичную материю металлов» алхимики считали «альфой и омегой» всего сущего. И слово для её обозначения составили из начальных и конечных букв алфавитов трёх языков, считавшихся священными, — латинского, греческого и древнееврейского: а, альфа, алеф и зет, омега, тов — AAAZOT. Инициатор создания новой химической номенклатуры Гитон де Морво отмечал в своей «Методической энциклопедии» (1786 год) алхимическое значение термина.

Многие современники Лавуазье считали название элемента неудачным, в частности, Жан-Антуан Шапталь предложил название фр. nitrogène — «рождающий селитру» (и использовал это название в своей книге «Элементы химии»). Поныне соединения азота называют «нитраты», «нитриты» и «нитриды».

Во французском языке название «нитроген» не прижилось, зато в английском, испанском, венгерском и норвежском используется производное от этого слова. В немецком языке используется название нем. Stickstoff, что означает «удушающее вещество», аналогично в нидерландском; схожие по значению названия используются в некоторых славянских языках, например, хорватское и словенское dušik (пр. «душик»).

Название «азот», помимо французского и русского, принято в итальянском, турецком и ряде славянских языков, а также во многих языках народов бывшего СССР.

До принятия символа N в России, Франции и других странах использовался символ Az, который можно видеть, например, в статье А. М. Бутлерова об аминах 1864 года.

Азот в природе

Изотопы

Основная статья: Изотопы азота

Природный азот состоит из двух стабильных изотопов 14N — 99,635 % и 15N — 0,365 %.

Искусственно получены четырнадцать радиоактивных изотопов азота с массовыми числами от 10 до 13 и от 16 до 25. Все они являются очень короткоживущими изотопами. Самый стабильный из них 13N имеет период полураспада 10 мин.

Спин ядер стабильных изотопов азота: 14N — 1; 15N — 1/2.

Распространённость

Азот — один из самых распространённых элементов на Земле. Вне пределов Земли азот обнаружен в газовых туманностях, солнечной атмосфере, на Уране, Нептуне, в межзвёздном пространстве и др. Атмосферы таких планет-спутников как Титан, Тритон, а также карликовой планеты Плутон в основном состоят из азота. Азот — четвёртый по распространённости элемент Солнечной системы (после водорода, гелия и кислорода).

Азот в форме двухатомных молекул N2 составляет большую часть атмосферы Земли, где его содержание составляет 75,6 % (по массе) или 78,084 % (по объёму), то есть около 3,87⋅1015 т.

Содержание азота в земной коре, по данным разных авторов, составляет (0,7—1,5)⋅1015 т (причём в гумусе — порядка 6⋅1010 т), а в мантии Земли — 1,3⋅1016 т. Такое соотношение масс заставляет предположить, что главным источником азота служит верхняя часть мантии, откуда он поступает в другие оболочки Земли с извержениями вулканов.

Масса растворённого в гидросфере азота, учитывая, что одновременно происходят процессы растворения азота атмосферы в воде и выделения его в атмосферу, составляет около 2⋅1013 т, кроме того, примерно 7⋅1011 т азота содержатся в гидросфере в виде соединений.

Биологическая роль

Азот является химическим элементом, необходимым для существования животных и растений, он входит в состав белков (16—18 % по массе), аминокислот, нуклеиновых кислот, нуклеопротеидов, хлорофилла, гемоглобина и др. В составе живых клеток по числу атомов азота около 2 %, по массовой доле — около 2,5 % (четвёртое место после водорода, углерода и кислорода). В связи с этим значительное количество связанного азота содержится в живых организмах, «мёртвой органике» и дисперсном веществе морей и океанов. Это количество оценивается примерно в 1,9⋅1011 т. В результате процессов гниения и разложения азотсодержащей органики, при условии благоприятных факторов окружающей среды, могут образоваться природные залежи полезных ископаемых, содержащие азот, например, «чилийская селитра» (нитрат натрия с примесями других соединений), норвежская, индийская селитры.

Химия гидридов азота при давлениях порядка 800 ГПа (около 8 миллионов атмосфер) более разнообразна, чем химия углеводородов при нормальных условиях. Отсюда появилась гипотеза, что азот может быть основой пока неоткрытой жизни на таких планетах, как Уран и Нептун.

Круговорот азота в природе

Основная статья: Круговорот азота

Фиксация атмосферного азота в природе происходит по двум основным направлениям — абиогенному и биогенному. Первый путь включает главным образом реакции азота с кислородом. Так как азот химически весьма инертен, для окисления требуются большие количества энергии (высокие температуры). Эти условия достигаются при разрядах молний, когда температура достигает 25000 °C и более. При этом происходит образование различных оксидов азота. Существует также вероятность, что абиотическая фиксация происходит в результате фотокаталитических реакций на поверхности полупроводников или широкополосных диэлектриков (песок пустынь).

Однако основная часть молекулярного азота (около 1,4⋅108 т/год) фиксируется биотическим путём. Долгое время считалось, что связывать молекулярный азот могут только небольшое количество видов микроорганизмов (хотя и широко распространённых на поверхности Земли): бактерии Azotobacter и Clostridium, клубеньковые бактерии бобовых растений Rhizobium, цианобактерии Anabaena, Nostoc и др. Сейчас известно, что этой способностью обладают многие другие организмы в воде и почве, например, актиномицеты в клубеньках ольхи и других деревьев (всего 160 видов). Все они превращают молекулярный азот в соединения аммония (NH4+). Этот процесс требует значительных затрат энергии (для фиксации 1 г атмосферного азота бактерии в клубеньках бобовых расходуют порядка 167,5 кДж, то есть окисляют примерно 10 г глюкозы). Таким образом, видна взаимная польза от симбиоза растений и азотфиксирующих бактерий — первые предоставляют вторым «место для проживания» и снабжают полученным в результате фотосинтеза «топливом» — глюкозой, вторые обеспечивают необходимый растениям азот в усваиваемой ими форме.

Азот в форме аммиака и соединений аммония, получающийся в процессах биогенной азотфиксации, быстро окисляется до нитратов и нитритов (этот процесс носит название нитрификации). Последние, не связанные тканями растений (и далее по пищевой цепи травоядными и хищниками), недолго остаются в почве. Большинство нитратов и нитритов хорошо растворимы, поэтому они смываются водой и, в конце концов, попадают в мировой океан (этот поток оценивается в 2,5—8⋅107 т/год).

Азот, включённый в ткани растений и животных, после их гибели подвергается аммонификации (разложению содержащих азот сложных соединений с выделением аммиака и ионов аммония) и денитрификации, то есть выделению атомарного азота, а также его оксидов. Эти процессы целиком происходят благодаря деятельности микроорганизмов в аэробных и анаэробных условиях.

В отсутствие деятельности человека процессы связывания азота и нитрификации практически полностью уравновешены противоположными реакциями денитрификации. Часть азота поступает в атмосферу из мантии с извержениями вулканов, часть прочно фиксируется в почвах и глинистых минералах, кроме того, постоянно идёт утечка азота из верхних слоёв атмосферы в межпланетное пространство.

Токсикология азота и его соединений

Сам по себе атмосферный азот достаточно инертен, чтобы оказывать непосредственное влияние на организм человека и млекопитающих. Тем не менее, при повышенном давлении он вызывает наркоз, опьянение или удушье (при недостатке кислорода); при быстром снижении давления азот вызывает кессонную болезнь.

Многие соединения азота очень активны и нередко токсичны.

Получение

Разложение нитрита аммония

В лабораториях его можно получать по реакции разложения нитрита аммония:

 NH4NO2 ⟶ N2↑ + 2H2O

Реакция экзотермическая, идёт с выделением 80 ккал (335 кДж), поэтому требуется охлаждение сосуда при её протекании (хотя для начала реакции требуется нагревание нитрита аммония).

Практически эту реакцию выполняют, добавляя по каплям насыщенный раствор нитрита натрия в нагретый насыщенный раствор сульфата аммония, при этом образующийся в результате обменной реакции нитрит аммония мгновенно разлагается.

Выделяющийся при этом газ загрязнён аммиаком, оксидом азота (I) и кислородом, от которых его очищают, последовательно пропуская через растворы серной кислоты, сульфата железа (II) и над раскалённой медью. Затем азот осушают.

Нагревание дихромата калия с сульфатом аммония

Ещё один лабораторный способ получения азота — нагревание смеси дихромата калия и сульфата аммония (в соотношении 2:1 по массе). Реакция идёт по уравнениям:

 K2Cr2O7 + (NH4)2SO4 ⟶ (NH4)2Cr2O7 + K2SO4
 (NH4)2Cr2O7 ⟶ N2↑ + Cr2O3 + 4H2O

Разложение азидов

Наиболее чистый азот можно получить разложением азидов металлов:

 2NaN3∘t 2Na + 3N2

Реакция воздуха с раскалённым коксом

Так называемый «воздушный», или «атмосферный» азот, то есть смесь азота с благородными газами, получают путём реакции воздуха с раскалённым коксом, при этом образуется так называемый «генераторный», или «воздушный», газ — сырьё для химических синтезов и топливо. При необходимости из него можно выделить азот, поглотив монооксид углерода.

Перегонка воздуха

Молекулярный азот в промышленности получают фракционной перегонкой жидкого воздуха. Этим методом можно получить и «атмосферный азот». Также широко применяются азотные установки и станции, в которых используется метод адсорбционного и мембранного газоразделения.

Пропускание аммиака над оксидом меди (II)

Один из лабораторных способов — пропускание аммиака над оксидом меди (II) при температуре ~700 °C:

 3CuO + 2NH3 ⟶ N2↑ + 3Cu + 3H2O

Аммиак берут из его насыщенного раствора при нагревании. Количество CuO в 2 раза больше расчётного. Непосредственно перед применением азот очищают от примеси кислорода и аммиака пропусканием над медью и её оксидом (II) (тоже ~700 °C), затем сушат концентрированной серной кислотой и сухой щёлочью. Процесс происходит довольно медленно, но он того стоит: газ получается весьма чистый.

Свойства

Физические свойства

Азот

Оптический эмиссионный спектр азота

При нормальных условиях азот — это бесцветный газ, не имеет запаха, мало растворим в воде (2,3 мл/100 г при 0 °C, 1,5 мл/100 г при 20 °C, 1,1 мл/100 г при 40 °C, 0,5 мл/100 г при 80 °C), плотность 1,2506 кг/м³ (при н. у.).

В жидком состоянии (темп. кипения -195,8 °C) — бесцветная, подвижная, как вода, жидкость. Плотность жидкого азота 808 кг/м³. При контакте с воздухом поглощает из него кислород.

При -209,86 °C азот переходит в твёрдое состояние в виде снегоподобной массы или больших белоснежных кристаллов. При контакте с воздухом поглощает из него кислород, при этом плавится, образуя раствор кислорода в азоте.

Известны три кристаллические модификации твёрдого азота. В интервале 36,61 — 63,29 К существует фаза β-N2 с гексагональной плотной упаковкой, пространственная группа P63/mmc, параметры решётки a=3,93 Å и c=6,50 Å. При температуре ниже 36,61 К устойчива фаза α-N2 с кубической решёткой, имеющая пространственную группу Pa3 или P213 и период a=5,660 Å. Под давлением более 3500 атмосфер и температуре ниже 83 K образуется гексагональная фаза γ-N2.

Фазовая диаграмма

Азот

Фазовая диаграмма азота показана на рисунке.

Химические свойства, строение молекулы

Азот в свободном состоянии существует в форме двухатомных молекул N2, электронная конфигурация которых описывается формулой σs²σs*2πx, y4σz², что соответствует тройной связи между атомами азота N≡N (длина связи dN≡N = 0,1095 нм). Вследствие этого молекула азота крайне прочна, для реакции диссоциации N2 ↔ 2 N изменение энтальпии в реакции ΔH°298 = 945 кДж/моль, константа скорости реакции К298 = 10−120, то есть диссоциация молекул азота при нормальных условиях практически не происходит (равновесие практически полностью сдвинуто влево). Молекула азота неполярна и слабо поляризуется, силы взаимодействия между молекулами очень слабые, поэтому в обычных условиях азот газообразен.

Даже при 3000 °C степень термической диссоциации N2 составляет всего 0,1 %, и лишь при температуре около 5000 °C достигает нескольких процентов (при нормальном давлении). В высоких слоях атмосферы происходит фотохимическая диссоциация молекул N2. В лабораторных условиях можно получить атомарный азот, пропуская газообразный N2 при сильном разрежении через поле высокочастотного электрического разряда. Атомарный азот намного активнее молекулярного: в частности, при обычной температуре он реагирует с серой, фосфором, мышьяком и с рядом металлов, например, со ртутью.

Вследствие большой прочности молекулы азота некоторые его соединения эндотермичны (многие галогениды, азиды, оксиды), то есть энтальпия их образования положительна, а соединения азота термически малоустойчивы и довольно легко разлагаются при нагревании. Именно поэтому азот на Земле находится по большей части в свободном состоянии.

Ввиду своей значительной инертности азот при обычных условиях реагирует только с литием:

 6Li + N2 ⟶ 2Li3N

при нагревании он реагирует с некоторыми другими металлами и неметаллами, также образуя нитриды:

 3Mg + N2 ⟶ Mg3N2  
 2B + N2 ⟶ 2BN

Наибольшее практическое значение имеет нитрид водорода (аммиак) NH3, получаемый взаимодействием водорода с азотом (см. ниже).

В электрическом разряде реагирует с кислородом, образуя оксид азота (II) NO.

Описано несколько десятков комплексов с молекулярным азотом.

Промышленное связывание атмосферного азота

Соединения азота чрезвычайно широко используются в химии, невозможно даже перечислить все области, где находят применение вещества, содержащие азот: это индустрия удобрений, взрывчатых веществ, красителей, медикаментов и проч. Хотя колоссальные количества азота доступны в прямом смысле слова «из воздуха», из-за описанной выше прочности молекулы азота N2 долгое время оставалась нерешённой задача получения соединений, содержащих азот, из воздуха; большая часть соединений азота добывалась из его минералов, таких, как чилийская селитра. Однако сокращение запасов этих полезных ископаемых, а также рост потребности в соединениях азота заставил форсировать работы по промышленному связыванию атмосферного азота.

Наиболее распространён аммиачный способ связывания атмосферного азота. Обратимая реакция синтеза аммиака:

 N2 + 3H2 ⟷ 2NH3

экзотермическая (тепловой эффект 92 кДж) и идёт с уменьшением объёма, поэтому для сдвига равновесия вправо в соответствии с принципом Ле Шателье — Брауна необходимо охлаждение смеси и высокие давления. Однако с кинетической точки зрения снижение температуры невыгодно, так как при этом сильно снижается скорость реакции — уже при 700 °C скорость реакции слишком мала для её практического использования.

В таких случаях используется катализ, так как подходящий катализатор позволяет увеличить скорость реакции без сдвига равновесия. В процессе поиска подходящего катализатора было испробовано около двадцати тысяч различных соединений. По совокупности свойств (каталитическая активность, стойкость к отравлению, дешевизна) наибольшее применение получил катализатор на основе металлического железа с примесями оксидов алюминия и калия. Процесс ведут при температуре 400—600 °C и давлениях 10—1000 атмосфер.

Следует отметить, что при давлениях выше 2000 атмосфер синтез аммиака из смеси водорода и азота идёт с высокой скоростью и без катализатора. Например, при 850 °C и 4500 атмосфер выход продукта составляет 97 %.

Существует и ещё один, менее распространённый способ промышленного связывания атмосферного азота — цианамидный метод, основанный на реакции карбида кальция с азотом при 1000 °C. Реакция происходит по уравнению:

 CaC2 + N⟶ CaCN2 + C

Реакция экзотермична, её тепловой эффект 293 кДж.

Ежегодно из атмосферы Земли промышленным путём отбирается примерно 1⋅106 т азота.

Соединения азота

Степени окисления азота в соединениях −3, −2, −1, 0, +1, +2, +3, +4, +5.

  • Соединения азота в степени окисления −3 представлены нитридами, из которых практически наиболее важен аммиак;
  • Соединения азота в степени окисления −2 менее характерны, представлены пернитридами, из которых самый важный пернитрид водорода N2H4, или гидразин (существует также крайне неустойчивый пернитрид водорода N2H2, диимид);
  • Соединения азота в степени окисления −1: NH2OH (гидроксиламин) — неустойчивое основание, применяющееся, наряду с солями гидроксиламмония, в органическом синтезе;
  • Соединения азота в степени окисления +1: оксид азота (I) N2O (закись азота, веселящий газ), азотноватистая кислота;
  • Соединения азота в степени окисления +2: оксид азота (II) NO (монооксид азота), азотноватая кислота;
  • Соединения азота в степени окисления +3: оксид азота (III) N2O3 (сесквиоксид азота, триоксид диазота), азотистая кислота, производные аниона NO2, трифторид азота (NF3);
  • Соединения азота в степени окисления +4: оксид азота (IV) NO2 (диоксид азота, бурый газ);
  • Соединения азота в степени окисления +5: оксид азота (V) N2O5 (пентаоксид диазота), азотная кислота, её соли — нитраты и другие производные, а также тетрафтораммоний NF4+ и его соли.

Применение

Газообразный азот

Промышленное применение газообразного азота обусловлено его инертными свойствами. Газообразный азот пожаро- и взрывобезопасен, препятствует окислению, гниению. В нефтедобывающей промышленности газообразный азот применяется для обеспечения безопасного бурения, используется в процессе капитального и текущего ремонта скважин. Кроме того, газообразный азот высокого давления используют в газовых методах повышения нефтеотдачи пласта. В нефтехимии азот применяется для продувки резервуаров и трубопроводов, проверки работы трубопроводов под давлением, увеличения выработки месторождений. В горнодобывающем деле азот может использоваться для создания в шахтах взрывобезопасной среды, для распирания пластов породы, тушения эндогенных пожаров. В производстве электроники азот применяется для продувки областей, не допускающих наличия окисляющего кислорода. Если в процессе, традиционно проходящем с использованием воздуха, окисление или гниение являются негативными факторами — азот может успешно заместить воздух.

Газообразным азотом заполняют камеры шин шасси летательных аппаратов. Кроме того, в последнее время заполнение шин азотом стало популярно и среди автолюбителей, хотя однозначных доказательств эффективности использования азота вместо воздуха для наполнения автомобильных шин нет.

Жидкий азот

Азот

Слабокипящий жидкий азот в металлическом стакане

Жидкий азот применяется как хладагент и для криотерапии.

Важной областью применения азота является его использование для дальнейшего синтеза самых разнообразных соединений, содержащих азот, таких, как аммиак, азотные удобрения, взрывчатые вещества, красители и т. п. Более 3/4 промышленного азота идёт на синтез аммиака.

Большие количества азота используются в коксовом производстве («сухое тушение кокса») при выгрузке кокса из коксовых батарей, а также для «передавливания» топлива в ракетах из баков в насосы или двигатели.

В пищевой промышленности азот зарегистрирован в качестве пищевой добавки E941, как газовая среда для упаковки и хранения, хладагент, а жидкий азот применяется при разливе масел и негазированных напитков для создания избыточного давления и инертной среды в мягкой таре.

Жидкий азот нередко демонстрируется в кинофильмах в качестве вещества, способного мгновенно заморозить достаточно крупные объекты. Это широко распространённое заблуждение. Даже для замораживания цветка необходимо достаточно продолжительное время. Это связано отчасти с весьма низкой теплоёмкостью азота. По этой же причине весьма затруднительно охлаждать, скажем, замки до −196 °C и раскалывать их одним ударом.

Литр жидкого азота, испаряясь и нагреваясь до 20 °C, образует примерно 700 литров газа. По этой причине жидкий азот хранят в специальных сосудах Дьюара с вакуумной изоляцией открытого типа или криогенных ёмкостях под давлением. На этом же факте основан принцип тушения пожаров жидким азотом. Испаряясь, азот вытесняет кислород, необходимый для горения, и пожар прекращается. Так как азот, в отличие от воды, пены или порошка, просто испаряется и выветривается, азотное пожаротушение — самый эффективный с точки зрения сохранности ценностей механизм тушения пожаров.

Заморозка жидким азотом живых существ с возможностью последующей их разморозки проблематична. Проблема заключается в невозможности заморозить (и разморозить) существо достаточно быстро, чтобы неоднородность заморозки не сказалась на его жизненных функциях. Станислав Лем, фантазируя на эту тему в книге «Фиаско», придумал экстренную систему заморозки азотом, в которой шланг с азотом, выбивая зубы, вонзался в рот астронавта и внутрь его подавался обильный поток азота.

В качестве легирующей добавки к кремнию, образует высокопрочное соединение (керамику) нитрид кремния, обладающее высокой вязкостью и прочностью.

Маркировка баллонов

Основная статья: Окраска и маркировка баллонов с газами

Выпущенные в России баллоны с азотом, согласно требованиям ПБ 03-576-03, должны быть окрашены в чёрный цвет с коричневой полосой и надписью жёлтого цвета. ГОСТ 26460-85 не требует полосы, но надпись должна содержать сведения о чистоте азота (особой чистоты, высокой чистоты, повышенной чистоты).

Опасность для здоровья

В обычных условиях азот не токсичен, однако при повышенном атмосферном давлении способен вызывать азотное отравление. Большинство соединений азота представляют сильную опасность для здоровья.

Азот относится ко 2-му классу опасности. Рейтинг NFPA 704: Опасность для здоровья: 3, огнеопасность: 0, реакционная способность: 0.

Периодическая система химических элементов Д. И. Менделеева

  1 2                             3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H   He
2 Li Be   B C N O F Ne
3 Na Mg   Al Si P S Cl Ar
4 K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
8 Uue Ubn Ubu Ubb Ubt Ubq Ubp Ubh Ubs  

Азот


Азот

4.4

Средняя оценка: 4.4

Всего получено оценок: 711.

4.4

Средняя оценка: 4.4

Всего получено оценок: 711.

Азот экспериментальным путем был обнаружен шотландским химиком Д. Резерфордом в 1772 году. В природе азот находится в основном в свободном состоянии и является одной из главных составляющих воздуха. Каковы же физические и химические свойства азота?

Общая характеристика

Азот – химический элемент V группы периодической системы Менделеева, атомный номер 7, атомная масса 14, формула азота – N2. Перевод названия элемента – «безжизненный» – может относится к азоту как к простому веществу. Однако азот в связанном состоянии является одним из главных элементов жизни, входит в состав белков, нуклеиновых кислот, витаминов и т.д.

Электронная конфигурация азота

Рис. 1. Электронная конфигурация азота.

Азот – элемент второго периода, не имеет возбужденных состояний, так как атом не имеет свободных орбиталей. Но этот химический элемент может проявлять в основном состоянии валентность не только III, но и IV за счет образования ковалентной связи по донорно-акцепторному механизму с участием неподеленной электронной пары азота. Степень окисления, которую может проявлять азот, изменяется в широких пределах от -3 до +5.

при изучении строения молекулы азота необходимо помнить, что химическая связь осуществляется за счет трех общих пар p-электронов, орбитали которых направлены по осям x, y, z.

Химические свойства азота

В природе азот встречается в виде простого вещества – газа N2 (объемная доля в воздухе 78%) и в связанном состоянии. В молекуле азота атомы связаны прочной тройной связью. Энергия этой связи составляет 940 кДж/моль. При обычной температуре азот может взаимодействовать только с литием (Li3 N). После предварительной активизации молекул путем нагревания, облучения или действием катализаторов азот вступает в реакции с металлами и неметаллами. Азот может вступать в реакции с магнием, кальцием или, например, алюминием:

3Mg+N2=Mg3N2

3Ca+N2=Ca3N2

2Al+N2=2AlN

Особенно важен синтез аммиака из простых веществ – азота и водорода в присутствии катализатора (губчатое железо):N2+3H2=2NH3+Q. Аммиак – бесцветный газ с резким запахом. Он хорошо растворим в воде, что в значительной степени обусловлено образованием водородных связей между молекулами аммиака и воды, а также реакцией присоединения к воде по донорно-акцепторному механизму. Слабощелочная реакция раствора обусловлена наличием в растворе ионов OH- (в небольшой концентрации, так как степень диссоциации гидроксида аммония очень мала – это слабое растворимое основание).

Аммиак

Рис. 2. Аммиак.

Из шести оксидов азота – N2O, NO, N2O3, NO2, N2O4, N2O5, где азот проявляет степень окисления от +1 до +5, два первых – N2O и NO – несолеобразующие, остальные вступают в реакцию с образованием солей.

Азотную кислоту, самое важное соединение азота, в промышленности получают из аммиака в 3 стадии:

  • окисление аммиака на платиновом катализаторе:

4NH3 +5O2=4NO+6H2O

  • окисление NO до NO2 кислородом воздуха:

2NO+O2=2NO2

  • поглощение NO2 водой в избытке кислорода:

4NO2 +2H2O+O2=4HNO3

Азот также может реагировать при высоких температурах и давлении (в присутствии катализатора) с водородом:

N2+3H2=2NH3

Азотная кислота

Рис. 3. Азотная кислота.

Применение азота

Основное применение азот находит в качестве исходного продукта для синтеза аммиака, а также для производства азотной кислоты, минеральных удобрений, красителей, взрывчатых веществ и других азотосодержащих соединений. Жидкий азот используют в охладительных системах. Для придания стали большей твердости, увеличения износостойкости, коррозионной стойкости и теплостойкости ее поверхность насыщают азотом при высоких температурах. Такая сталь выдерживает нагревание до 500 градусов без потери своей твердости.

Заключение

Что мы узнали?

Азот – бесцветный газ без запаха, цвета и вкуса. В школьном курсе химии изучаются его основные свойства, а также способность вступать в реакцию с металлами и неметаллами при нормальных условиях, а также под действием катализаторов.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Фарида Гаскарова

    10/10

  • Александр’ Шишиков

    8/10

  • Сергей Ефремов

    8/10

  • Андрей Борисов

    9/10

Оценка доклада

4.4

Средняя оценка: 4.4

Всего получено оценок: 711.


А какая ваша оценка?

Азот — химический элемент № (7). Он расположен в группе втором периоде Периодической системы химических элементов.

N7+7)2e)5e

На внешнем слое атома азота содержатся пять валентных электронов, до его завершения не хватает трёх электронов. Поэтому в соединениях с металлами и водородом азоту характерна степень окисления (–3), а при взаимодействии с более электроотрицательными кислородом и фтором он проявляет положительные степени окисления от (+1) до (+5).

Азот в виде простого вещества содержится в воздухе. Его объёмная доля составляет (78) %. В земной коре соединения азота встречаются редко. Известно месторождение нитрата натрия 

NaNO3

 (чилийская селитра).

Азот относится к жизненно важным элементам, так как входит в состав молекул белков и нуклеиновых кислот.

Молекулы простого вещества состоят из двух атомов, связанных прочной тройной связью:

При обычных условиях азот — бесцветный газ без запаха и вкуса, малорастворимый в воде.

Не ядовит.

Азот химически малоактивен из-за прочной тройной связи и в химические реакции вступает только при высоких температурах.

При комнатной температуре он реагирует только с литием с образованием нитрида лития:

При нагревании образует нитриды и с некоторыми другими металлами:

С водородом азот реагирует только при высоком давлении, повышенной температуре и в присутствии катализатора. В реакции образуется аммиак:

В реакциях с металлами и водородом азот проявляет окислительные свойства.

Восстановительные свойства азота проявляются в реакции с кислородом:

Реакция возможна только при очень высокой температуре ((3000) °С) и частично протекает в атмосфере во время грозы. Образуется оксид азота((II)).

Большое количество азота используется для получения аммиака и азотных удобрений.

Применяется он для создания инертной среды при проведении химических реакций. Жидкий азот находит применение в медицине, используется для охлаждения в химических и физических исследованиях.

Чистый азот получают из воздуха.

1. Положение азота в периодической системе химических элементов
2. Строение атома азота 
3. Физические свойства и нахождение в природе
4. Строение молекулы
5. Соединения азота
6. Способы получения
7. Химические свойства
7.1. Взаимодействие с простыми веществами
7.1.1. Взаимодействие с галогенами
7.1.2. Взаимодействие с серой и кремнием
7.1.3. Взаимодействие с водородом и фосфором 
7.1.4. Взаимодействие с азотом
7.1.5. Взаимодействие с активными металлами

Аммиак 
1. Строение молекулы и физические свойства 
2. Способы получения
3. Химические свойства
3.1. Взаимодействие с серной кислотой
3.2. Взаимодействие с азотной кислотой
3.3. Взаимодействие с солями

Соли аммония
Способы получения солей аммония
Химические свойства солей аммония

Оксиды азота 
 1. Оксид азота (I) 
 2. Оксид азота (II) 
3. Оксид азота (III)
4. Оксид азота (IV)
5. Оксид азота (V)

Азотная кислота 
 1. Строение молекулы и физические свойства 
 2. Способы получения 
3. Химические свойства 
3.1. Диссоциация азотной кислоты 
2.3. Взаимодействие с основными и амфотерными оксидами и гидроксидами
2.4. Вытеснение более слабых кислот из солей
2.5. Взаимодействие с металлами
2.6. Взаимодействие с неметаллами
2.7. Окисление сложных веществ
2.8. Взаимодействие с белками

Азотистая кислота 

Соли азотной кислоты — нитраты

Соли азотистой кислоты — нитриты

Азот

Положение в периодической системе химических элементов

Азот расположен в главной подгруппе V группы  (или в 15 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение азота

Электронная конфигурация  азота в основном состоянии:

Атом азота содержит на внешнем энергетическом уровне 3 неспаренных электрона и одну неподеленную электронную пару в основном энергетическом состоянии. Следовательно, атом азота может образовать 3 связи по обменному механизму и 1 связь по донорно-акцепторному механизму. Таким образом, максимальная валентность азота в соединениях равна IV. Также характерная валентность азота в соединениях — III.

Степени окисления атома азота – от -3 до +5. Характерные степени окисления азота -3, 0, +1, +2, +3, +4, +5.

Физические свойства и нахождение в природе

Азот в природе существует в виде простого вещества газа N2.  Нет цвета, запаха и вкуса. Молекула N2 неполярная, следовательно, в воде азот практически нерастворим.

Азот – это основной компонент воздуха (79% по массе). В земной коре азот встречается в основном в виде нитратов. Входит в состав белков, аминокислот и нуклеиновых кислот в живых организмах.

Строение молекулы

Связь между атомами в молекуле азота – тройная, т.к. у каждого атома в молекуле по 3 неспаренных электрона. Одна σ-связь (сигма-связь) и две — π-связи.

Структурная формула молекулы азота:

Структурно-графическая формула молекулы азота: N≡N.

Схема перекрывания электронных облаков при образовании молекулы азота:

Соединения азота

Типичные соединения азота:

Степень окисления Типичные соединения
+5 оксид азота (V) N2O5

азотная кислота HNO3

нитраты MeNO3

+4 оксид азота (IV) NO2
+3 оксид азота (III)

азотистая кислота

нитриты MeNO2

+2 оксид азота (II) NO
+1 оксид азота (I)
-3 аммиак NH3

нитриды металлов MeN

бинарные соединения азота с неметаллами

Способы получения азота

1. Азот в лаборатории получают при взаимодействии насыщенных растворов хлорида аммония и нитрита натрия. Образующийся в результате реакции обмена нитрит аммония легко разлагается с образованием азота и воды. В колбу наливают раствор хлорида аммония, а капельную воронку раствор нитрита натрия. При приливании нитрита натрия в колбу начинается выделение азота. Собирают выделяющийся азот в цилиндр. Горящая лучинка в атмосфере азота гаснет.

NaNO2   +   NH4Cl   →   NH4NO2   +  NaCl

NH4NO2  →   N2   +   2H2O

Суммарное уравнение процесса:

NaNO2   +   NH4Cl   →   N2   +  NaCl   +  2H2O

Видеоопыт взаимодействия нитрита натрия с хлоридом аммония можно посмотреть здесь.

Азот также образуется при горении аммиака:

4NH3   +  3O  →   2N2   +  6H2O

2. Наиболее чистый азот получают разложением азидов щелочных металлов.

Например, разложением азида натрия:

2NaN3   →   2Na    +    3N2

3. Еще один лабораторный способ получения азота — восстановление  оксида меди (II)  аммиаком при температуре ~700 °C:

3CuO  +  2NH3  →   3Cu   + N2    +  3H2O

В промышленности азот получают, буквально, из воздуха. При промышленном производстве очень важно, чтобы сырье было дешевым и доступным. Воздуха много и он пока бесплатный.

Используются различные способы выделения азота из воздуха — адсорбционная технология, мембранная и криогенная технологии.

Адсорбционные методы разделения воздуха на компоненты основаны на  разделения газовых сред в азотных установках лежит явление связывания твёрдым веществом, называемым адсорбентом, отдельных компонентов газовой смеси.

Основным принципом работы мембранных систем является разница в скорости проникновения компонентов газа через вещество мембраны. Движущей силой разделения газов является разница парциальных давлений на различных сторонах мембраны.

В основе работы криогенных установок разделения воздуха лежит метод разделения газовых смеси, основанный на разности температур кипения компонентов воздуха и различии составов находящихся в равновесии жидких и паровых смесей.

Химические свойства азота

При нормальных условиях азот химически малоактивен.

1. Азот проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому азот реагирует с металлами и неметаллами.

1.1. Молекулярный азот при обычных условиях с кислородом не реагирует. Реагирует с кислородом только при высокой температуре (2000оС),  на электрической дуге  (в природе – во время грозы):

N +  O ⇄   2NO –  Q

Процесс эндотермический, т.е. протекает с поглощением теплоты.

1.2. При сильном нагревании (3000оС-5000оС или действие электрического разряда) образуется атомарный азот, который реагирует с серой, фосфором, мышьяком, углеродом с образованием бинарных соединений:

2С  + N→  N≡C–C≡N

Молекулярный азот, таким образом, не реагирует с серой, фосфором, мышьяком, углеродом.

1.3. Азот взаимодействует с водородом при высоком давлении и высокой температуре, в присутствии катализатора. При этом образуется аммиак:

N2   +   ЗН2   ⇄    2NH3

Этот процесс экзотермический, т.е. протекает с выделением теплоты.

1.4. Азот реагирует с активными металлами: с литием при комнатной температуре, кальцием, натрием и магнием при нагревании. При этом образуются бинарные соединения-нитриды.

Например, литий реагирует с азотом с образованием нитрида лития:

N2   +   6Li   →   2Li3N

2. Со сложными веществами азот практически не реагирует из-за крайне низкой реакционной способности.

Взаимодействие возможно только в жестких условиях с активными веществами, например, сильными восстановителями.

Например, азот окисляет гидрид лития:

N2    +  3LiH  →   Li3N   +   NH3

Аммиак

Строение молекулы и физические свойства

В молекуле аммиака NH3 атом азота соединен тремя одинарными ковалентными полярными связями с атомами водорода:

Геометрическая форма молекулы аммиака — правильная треугольная пирамида. Валентный угол H-N-H составляет 107,3о:

 У атома азота в аммиаке на внешнем энергетическом уровне остается одна неподеленная электронная пара. Эта электронная пара оказывает значительное влиение на свойства аммиака, а также на его структуру. Электронная структура аммиака — тетраэдр , с атомом азота в центре:

Аммиак – бесцветный газ с резким характерным запахом. Ядовит. Весит меньше воздуха. Связь N-H — сильно полярная, поэтому между молекулами аммиака в жидкой фазе возникают водородные связи. При этом аммиак очень хорошо растворим в воде, т.к. молекулы аммиака образуют водородные связи с молекулами воды.

Способы получения аммиака

В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поск

ольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.

Например, аммиак можно получить нагреванием смеси хлорида аммония и гидроксида кальция. При нагревании смеси происходит образование соли, аммиака и воды:

2NH4Cl    +  Са(OH)2   →   CaCl2  + 2NH3  +   2Н2O

Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.

Видеоопыт получения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.

Еще один лабораторный способ получения аммиака – гидролиз нитридов.

Например, гидролиз нитрида кальция:

Ca3N2    +   6H2O  →  ЗСа(OH)2    +    2NH3

В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.

N2    +   3Н2    ⇄    2NH3

Процесс проводят при температуре 500-550оС и в присутствии катализатора.  Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непровзаимодействовавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.

Более подробно про технологию производства аммиака можно прочитать здесь.

Химические свойства аммиака

1. В водном растворе аммиак проявляет основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H+), он превращается в ион аммония. Реакция может протекать и в водном растворе, и в газовой фазе:

:NH3   +   H2O    ⇄    NH4+   +   OH

Таким образом, среда водного раствора аммиака – щелочная. Однако аммиак – слабое основание. При 20 градусах один объем воды поглощает до 700 объемов аммиака.

Видеоопыт растворения аммиака в воде можно посмотреть здесь.

2. Как основание, аммиак взаимодействует с кислотами в растворе и в газовой фазе с образованием солей аммония.

Например, аммиак реагирует с серной кислотой с образованием либо кислой соли – гидросульфата аммония (при избытке кислоты), либо средней соли – сульфата аммония (при избытке аммиака):

NH3    +    H2SO4    →    NH4HSO4

2NH3   +   H2SO4    →   (NH4)2SO4

Еще один пример: аммиак взаимодействует с водным раствором углекислого газа с образованием карбонатов или гидрокарбонатов аммония:

NH3    +    H2O   + CO2  →    NH4HCO3

2NH3   +   H2O   + CO2    →   (NH4)2CO3

Видеоопыт взаимодействия аммиака с концентрированными кислотами – азотной, серной и и соляной можно посмотреть  здесь.

В газовой фазе аммиак реагирует с летучим хлороводородом. При этом образуется густой белый дым – это выделяется хлорид аммония. 

NH3   +   HCl  →   NH4Cl

Видеоопыт взаимодействия аммиака с хлороводородом в газовой фазе (дым без огня) можно посмотреть здесь.

3. В качестве основания, водный раствор аммиака реагирует с растворами солей тяжелых металлов, образуя нерастворимые гидроксиды.

Например, водный раствор аммиака реагирует с сульфатом железа (II) с образованием сульфата аммония и гидроксида железа (II):

FeSO4  + 2NH3  + 2H2O  →  Fe(OH)2  + (NH4)2SO4

4. Соли и гидроксиды меди, никеля, серебра растворяются в избытке аммиака, образуя комплексные соединения – амминокомплексы.

Например, хлорид меди (II) реагирует с избытком аммиака с образованием хлорида тетрамминомеди (II):

4NH3    +  CuCl2  →  [Cu(NH3)4]Cl2

Гидроксид меди (II) растворяется в избытке аммиака:

4NH3    +   Cu(OH)2   → [Cu(NH3)4](OH)2

5. Аммиак горит на воздухе, образуя азот и воду:

4NH3    +   3O2    →  2N2   +   6H2O

Если реакцию проводить в присутствии катализатора (Pt), то азот окисляется до NO:

4NH3    +   5O2    →    4NO  +   6H2O

6. За счет атомов водорода в степени окисления +1 аммиак может выступать в роли окислителя, например в реакциях с щелочными, щелочноземельными металлами, магнием и алюминием. С металлами реагирует только жидкий аммиак.

Например, жидкий аммиак реагирует с натрием с образованием амида натрия:

2NH3   +    2Na   →   2NaNH2   +  H2

 Также возможно образование Na2NHNa3N.

При взаимодействии аммиака с алюминием образуется нитрид алюминия:

2NH3    +   2Al   →   2AlN   +   3H2

7. За счет азота в степени окисления -3 аммиак проявляет восстановительные свойства. Может взаимодействовать с сильными окислителями — хлором, бромом, пероксидом водорода, пероксидами и оксидами некоторых металлов. При этом азот окисляется, как правило, до простого вещества.

Например, аммиак окисляется хлором до молекулярного азота:

2NH3    +   3Cl2    →  N2   +   6HCl

Пероксид водорода также окисляет аммиак до азота:

2NH3    +   3H2O2    →  N2   +   6H2O

Оксиды металлов, которые в электрохимическом ряду напряжений металлов расположены справа — сильные окислители. Поэтому они также окисляют аммиак до азота.

Например, оксид меди (II) окисляет аммиак:

2NH3    +   3CuO   →    3Cu   +   N2   +   3H2O

Соли аммония

Соли аммония  это соли, состоящие из катиона аммония и аниона кислотного остатка.

Способы получения солей аммония

1. Соли аммония можно получить взаимодействием аммиака с кислотами. Реакции подробно описаны выше.

2. Соли аммония также получают в обменных реакциях между солями аммония и другими солями.

Например, хлорид аммония реагирует с нитратом серебра:

NH4Cl + AgNO3 → AgCl + NH4NO3

3. Средние соли аммония можно получить из кислых солей аммония. При добавлении аммиака кислая соль переходит в среднюю.

Например, гидрокарбонат аммония реагирует с аммиаком с образованием карбоната аммония:

NH4НCO3  +   NH3   →   (NH4)2CO3

Химические свойства солей аммония

1. Все соли аммония – сильные электролиты, почти полностью диссоциируют на ионы в водных растворах:

NH4Cl   ⇄   NH4+ + Cl

2. Соли аммония проявляют свойства обычных растворимых солей –вступают в реакции обмена с щелочами, кислотами и растворимыми солями, если в продуктах образуется газ, осадок или образуется слабый электролит.

Например, карбонат аммония  реагирует с соляной кислотой. При этом выделяется углекислый газ:

(NH4)2CO3    +   2НCl →   2NH4Cl + Н2O + CO2

Соли аммония реагируют с щелочами с образованием аммиака.

Например, хлорид аммония реагирует с гидроксидом калия:

NH4Cl     +   KOH   →   KCl    +   NH3   +   H2O

Взаимодействие с щелочами — качественная реакция на ионы аммония. Выделяющийся аммиак можно обнаружить по характерному резкому запаху и посинению лакмусовой бумажки.

3. Соли аммония подвергаются гидролизу по катиону, т.к. гидроксид аммония — слабое основание:

NH4Cl   +    Н2O    ↔   NH3 ∙ H2O   +   HCl

NH4+     +     HOH    ↔   NH3 ∙ H2O      +   H+

4. При нагревании соли аммония разлагаются. При этом если соль не содержит анион-окислителя, то разложение проходит без изменения степени окисления атома азота. Так разлагаются хлорид, карбонат, сульфат, сульфид и фосфат аммония:

NH4Cl   →    NH3   +   HCl

NH4HCO3    →   NH3   +   CO2    +   H2O

  (NH4)2SO4    →   NH4HSO4   +  NH3

NH4HS  →   NH3   +   H2S

Если соль  содержит анион-окислитель, то разложение сопровождается  изменением степени окисления атома азота иона аммония. Так протекает разложение нитрата, нитрита и дихромата аммония:

NH4NO2   →   N2    +    2H2O  

190 – 245° C:

NH4NO3  →   N2O   +   2H2O

При температуре 250 – 300°C:

 2NH4NO3  →   2NO    +   4H2O

При температуре выше 300°C:

2NH4NO3    →   2N2   +   O2   +   4H2O

Разложение бихромата аммония («вулканчик»). Оранжевые кристаллы дихромата аммония под действием горящей лучинки бурно реагируют. Дихромат аммония – особенная соль, в ее составе – окислитель и восстановитель. Поэтому «внутри» этой соли может пройти окислительно-восстановительная реакция (внутримолекулярная ОВР):

(NH4)2Cr2O7  →   Cr2O3    +   N2   +   4H2O

Окислитель –  хром (VI) превращается в хром (III), образуется зеленый оксид хрома. Восстановитель – азот, входящий в состав иона аммония, превращается в газообразный азот. Итак, дихромат аммония превращается в зеленый оксид хрома, газообразный азот и воду. Реакция начинается от горящей лучинки, но не прекращается, если лучинку убрать, а становится еще интенсивней, так как в процессе реакции выделяется теплота, и, начавшись от лучинки, процесс лавинообразно развивается. Оксид хрома (III) – очень твердое, тугоплавкое вещество зеленого цвета, его используют как абразив. Температура плавления – почти 2300 градусов.  Оксид хрома – очень устойчивое вещество, не растворяется даже в кислотах. Благодаря устойчивости и интенсивной окраске окись хрома используется при изготовлении масляных красок.

Видеоопыт разложения дихромата аммония можно посмотреть здесь.

Оксиды азота

Оксиды азота Цвет  Фаза Характер оксида
N2O Оксид азота (I), закись азота, «веселящий газ» бесцветный газ несолеобразующий
NO Оксид азота (II) бесцветный газ несолеобразующий
N2OОксид азота (III), азотистый ангидрид синий жидкость кислотный
NOОксид азота (IV), диоксид азота, «лисий хвост» бурый газ кислотный (соответствуют две кислоты)
N2OОксид азота (V), азотный ангидрид бесцветный твердый кислотный

Оксид азота (I)

Оксид азота (I) –  это несолеобразующий оксид. Малые концентрации закиси азота вызывают лёгкое опьянение (отсюда название — «веселящий газ»). При вдыхании чистого газа быстро развиваются состояние опьянения и сонливость. Закись азота обладает слабой наркотической активностью, в связи с чем в медицине её применяют в больших концентрациях. В смеси с кислородом при правильном дозировании (до 80 % закиси азота) вызывает хирургический наркоз.

Строение молекулы оксида азота (I) нельзя описать методом валентных связей. Так как оксид азота (I) состоит из двух, так называемых резонансных структур, которые переходят одна в другую:

Общую формулу в таком случае можно задать, обозначая изменяющиеся связи в резонансных структурах пунктиром:

Получить оксид азота (I) в лаборатории можно разложением нитрата аммония:

 NH4NO3  →   N2O   +   2H2O

Химические свойства оксида азота (I):

1. При нормальных условиях оксид азота (I) инертен. При нагревании проявляет свойства окислителя. Оксид азота (I) при нагревании окисляет водород, аммиак, металлы, сернистый газ и др. При этом азот восстанавливается в простое вещество.

N2O      +    H2    →  N2   +   H2O

N2O      +    Mg   →  N2   +   MgO

N2O      +   2Cu   →  N2   +   Cu2O

3N2O    +   2NH3  →   4N2   +  3H2O

N2O      +    H2O   +  SO →   N2   +   H2SO4

Еще пример: оксид азота (I) окисляет углерод и фосфор при нагревании:

N2O   +   C   →   N2   +   CO

5N2O   +   2Р   →   5N2   +   Р2O5

2. При взаимодействии с сильными окислителями N2O может проявлять свойства восстановителя.

Например, N2O окисляется раствором перманганата в серной кислоте:

5N2O    +    3H2SO4   +   2KMnO4   →  10NO   +   2MnSO4    +   K2SO4    +  3H2O

Оксид азота (II)

Оксид азота (II) –  это несолеобразующий оксид.  В нормальных условиях это бесцветный ядовитый газ, плохо растворимый в воде. На воздухе коричневеет из-за окисления до диоксида азота. Сжижается с трудом; в жидком и твёрдом виде имеет голубой цвет.

Способы получения.

1. В лаборатории оксид азота (II) получают действием разбавленной азотной кислоты (30%) на неактивные металлы.

Например, при действии 30 %-ной азотной кислоты на медь образуется NO:

3Cu   +   8HNO3(разб.)  →  3Cu(NO3)2   +  2NO  + 4H2O

Также NO можно получить при окислении хлорида железа (II) или иодоводорода азотной кислотой:

3FeCl2    +     NaNO3   +   4HCl   →   3FeCl3   +   NaCl    +  NO   +   2H2O

  2HNO3   +  6HI   →   2NO   +   I2    +   4H2O

2. В природе оксид азота (II) образуется из азота и кислорода под действием электрического разряда, например, во время грозы:

N2   +   O2  →   2NO

3. В промышленности оксид азота (II) получают каталитическим окислением аммиака:

4NH3    +   5O2    →    4NO  +   6H2O

Химические свойства.

1. Оксид азота (II) легко окисляется под действием окислителей.

Например, горит в атмосфере кислорода:

2NO    +   O2   →   2NO2

Оксид азота (II) легко окисляется под действием хлора или озона:

2NO   +   Cl2  →  2NOCl

NO   +  O3  →   NO2   +   O2

2. В присутствии более сильных восстановителей проявляет свойства окислителя. В атмосфере оксида азота (II) могут гореть водород, углерод и т.п.

Например, оксид азота (II) окисляет водород и сернистый газ:

2NO   +   2H →  N2   +   2H2O

2NO   +  2SO2   →   2SO3   +   N2

Оксид азота (III)

Оксид азота (III), азотистый ангидрид – кислотный оксид. За счет азота со степенью окисления +3 проявляет восстановительные и окислительные свойства. Устойчив только при низких температурах, при более высоких температурах разлагается.

Способы получения: можно получить при низкой температуре из оксидов азота:

NO2     +   NO   ↔   N2O3

Химические свойства:

1. Оксид азота (III) взаимодействует с водой с образованием азотистой кислоты:

N2O3   +   H2O   ↔  2HNO2

2. Оксид азота (III) взаимодействует с основаниями и основными оксидами:

Например, оксид азота (III) реагирует с гидроксидом и оксидом натрия с образованием нитрита натрия и воды:

N2O3   +   2NaOH   →  2NaNO2    +   H2O

N2O3 + Na2O →  2NaNO2

Оксид азота (IV)

Оксид азота (IV) — бурый газ. Очень ядовит!  Для NO2  характерна высокая химическая активность.

Способы получения.

1. Оксид азота (IV) образуется при окислении оксида азота (I) и оксида азота (II) кислородом или озоном:

2NO   +  O2  →   2NO2

2. Оксид азота (IV) образуется при действии концентрированной азотной кислоты на неактивные металлы.

Например, при действии концентрированной азотной кислоты на медь:

4HNO3(конц.)    +    Cu   →    Cu(NO3)2    +    2NO2   +   2H2O

3. Оксид азота (IV) образуется также при разложении нитратов металлов, которые в ряду электрохимической активности расположены правее магния (включая магний) и при разложении нитрата лития.

Например, при разложении нитрата серебра:

2AgNO3    →  2Ag   +   2NO  +   O2

Химические свойства.

1. Оксид азота (IV) реагирует с водой с образованием двух кислот — азотной и азотистой:

2NO2   +   H2O   →  HNO3   +   HNO2

Если растворение NO2 в воде проводить в избытке кислорода, то образуется только азотная кислота:

4NO2   +   2H2O   +  O2   →  4HNO3

Поскольку азотистая кислота неустойчива, то при растворении NO2 в теплой воде образуются HNO3  и   NO:

3NO2   +   H2O   →  2HNO3   +   NO

2. При растворении оксида азота (IV) в щелочах образуются нитраты и нитриты:

 2NO2   +   2NaOH   →  NaNO3   +   NaNO2   +   H2O

4NO2   +   2Ca(OH) →   Ca(NO2)2   +   Ca(NO3)2      +   2H2O

В присутствии кислорода образуются только нитраты:

4NO2   +   4NaOH  +   O2   →   4NaNO3   +   2H2O

3. Оксид азота (IV) – сильный окислитель. В атмосфере оксида азота (IV) горят фосфор, уголь, сера, оксид серы (IV) окисляется до оксида серы (VI):

2NO2   +   2S   →  N2   +   2SO2

2NO2   +   2C   →  N2   +   2CO2

10NO2   +   8P   →  5N2   +   4P2O5

NO2    +   SO2  →   SO3   +   NO

4. Оксид азота (IV) димеризуется:

2NO2  ⇄  N2O4

Оксид азота (V)

N2O5 – оксид азота (V), ангидрид азотной кислоты – кислотный оксид.

Получение оксида азота (V).

1. Получить оксид азота (V) можно окислением диоксида азота:

2NO2 + O3    →    N2O5 + O2

2. Еще один способ получения оксида азота (V) – обезвоживание азотной кислоты сильным водоотнимающим веществом, оксидом фосфора (V):

2HNO3    +   P2O5      →   2HPO3    +    N2O5

Химические свойства оксида азота (V).

1. При растворении в воде оксид азота (V) образует азотную кислоту:

N2O5    +   H2O   →  2HNO3

2. Оксид азота (V), как типичный кислотный оксид, взаимодействует с основаниями и основными оксидами с образованием солей-нитратов.

Например, оксид азота (V) реагирует с гидроксидом натрия:

N2O5    +   2NaOH   →  2NaNO3  +   H2O

Еще пример: оксид азота (V) реагирует с оксидом кальция:

N2O5 + CaO → Ca(NO3)2

3. За счет азота со степенью окисления +5 оксид азота (V) – сильный окислитель.

Например, он окисляет серу:

2N2O5   +   S   →   SO2   +   4NO2

4. Оксид азота (V) легко разлагается при нагревании (со взрывом):

2N2O5     →   4NO2   +   O2

Азотная кислота

Строение молекулы и физические свойства

Азотная кислота HNO3 – это сильная одноосновная кислота-гидроксид. При обычных условиях бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C ( при нормальном атмосферном давлении). Азотная кислота смешивается с водой во всех соотношениях. На свету частично разлагается.

Валентность азота в азотной кислоте равна IV, так как валентность V у азота отсутствует. При этом степень окисления атома азота равна +5. Так происходит потому, что атом азота образует 3 обменные связи и одну донорно-акцепторную, является донором электронной пары.

Поэтому строение молекулы азотной кислоты можно описать резонансными структурами:

Обозначим дополнительные связи между азотом и кислородом пунктиром. Этот пунктир по сути обозначает делокализованные электроны. Получается формула:

Способы получения

В лаборатории азотную кислоту можно получить разными способами:

1. Азотная кислота  образуется при действии концентрированной серной кислоты на твердые нитраты металлов. При этом менее летучая серная кислота вытесняет более летучую азотную.

Например, концентрированная серная кислота вытесняет азотную из кристаллического нитрата калия:

KNO3    +    H2SO4(конц)    →    KHSO4    +    HNO3

2. В промышленности азотную кислоту получают из аммиака. Процесс осуществляется стадийно.

1 стадия. Каталитическое окисление аммиака.

4NH3    +   5O2    →    4NO  +   6H2O

2 стадия. Окисление оксида азота (II)  до оксида азота (IV) кислородом воздуха.

2NO   +    O2   →    2NO2

3 стадия. Поглощение оксида азота (IV) водой в присутствии избытка кислорода.

4NO2   +   2H2O   +  O2   →  4HNO3

Химические свойства

Азотная кислота – это сильная кислота. За счет азота со степенью окисления +5 азотная кислота проявляет сильные окислительные свойства.

1. Азотная кислота практически полностью диссоциирует в водном растворе.

 HNO→ H+ + NO3

2. Азотная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами  и амфотерными гидроксидами

Например, азотная кислота взаимодействует с оксидом меди (II):

CuO   +   2HNO3   →   Cu(NO3)2   +   H2O

Еще пример: азотная кислота реагирует с гидроксидом натрия:

HNO3   +   NaOH   →   NaNO3   +   H2O

3. Азотная кислота вытесняет более слабые кислоты из их солей (карбонатов, сульфидов, сульфитов). 

Например, азотная кислота взаимодействует с карбонатом натрия:

2HNO3   +   Na2CO3   →  2NaNO3   +   H2O   +   CO2

4. Азотная кислота частично разлагается при кипении или под действием света:

4HNO3  →   4NO2   +   O2   +   2H2O

5. Азотная кислота активно взаимодействует с металлами. При этом  никогда не выделяется водород! При взаимодействии азотной кислоты с металлами окислителем всегда выступает азот +5. Азот в степени окисления +5 может восстанавливаться до степеней окисления -3, 0, +1, +2 или +4 в зависимости от концентрации кислоты и активности металла.

металл + HNO3 → нитрат металла + вода + газ (или соль аммония)

С алюминием, хромом и железом на холоду концентрированная HNO3  не реагирует – кислота «пассивирует» металлы, т.к. на их поверхности образуется пленка оксидов, непроницаемая для концентрированной азотной кислоты. При нагревании реакция идет. При этом азот восстанавливается до степени окисления +4:

Fe    +   6HNO3(конц.)  →   Fe(NO3)3   +   3NO2  +   3H2O

 Al   +   6HNO3(конц.)   →  Al(NO3)3   +   3NO2  +   3H2O

Золото и платина не реагируют с азотной кислотой, но растворяются в «царской водке» – смеси концентрированных азотной и соляной кислот в соотношении 1 :  3 (по объему):

HNO3      +   3HCl   +   Au   →   AuCl3   +   NO   +   2H2O

Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (IV), азот восстанавливается минимально:

4HNO3(конц.)    +    Cu   →    Cu(NO3)2    +    2NO2   +   2H2O

С активными металлами (щелочными и щелочноземельными) концентрированная азотная кислота реагирует с образованием оксида азота (I):

10HNO3       +  4Ca   →    4Ca(NO3)2    +    2N2O   +   5H2O

Разбавленная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (II).

8HNO3 (разб.)     +    3Cu   →    3Cu(NO3)2    +    2NO   +   4H2O

С активными металлами (щелочными и щелочноземельными), а также оловом и железом разбавленная азотная кислота реагирует с образованием молекулярного азота:

12HNO3(разб)     +  10Na   →    10NaNO3    +    N2   +   6H2O

При взаимодействии кальция и магния с азотной кислотой любой концентрации (кроме очень разбавленной) образуется оксид азота (I):

10HNO3       +  4Ca    →   4Ca(NO3)2    +    2N2O   +   5H2O

Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:

10HNO3         +  4Zn   →    4Zn(NO3)2    +    NH4NO3   +   3H2O

Таблица. Взаимодействие азотной кислоты с металлами.

Азотная кислота
Концентрированная Разбавленная
с Fe, Al, Cr с неактивными металлами и металлами средней активности (после Al) с щелочными и щелочноземельными металлами  с неактивными металлами и металлами средней активности (после Al) с металлами до Al в ряду активности, Sn, Fe 
пассивация при низкой Т образуется NO2 образуется N2O  образуется NO  образуется N2

6. Азотная кислота окисляет и неметаллы (кроме кислорода, водорода, хлора, фтора и некоторых других). При взаимодействии с неметаллами HNOобычно восстанавливается до NO  или NO2, неметаллы окисляются до соответствующих кислот, либо оксидов (если кислота неустойчива).

Например, азотная кислота окисляет серу, фосфор, углерод, йод:

6HNO3       +   S     →   H2SO4   +   6NO2    +    2H2O

Безводная азотная кислота – сильный окислитель. Поэтому она легко взаимодействует с красным и белым фосфором. Реакция с белым фосфором протекает очень бурно. Иногда она сопровождается взрывом.

5HNO3      +    P   →    H3PO4     +   5NO2    +    H2O

5HNO3      +    3P     +    2H2O   →    3H3PO4     +   5NO

Видеоопыт взаимодействия фосфора с безводной азотной кислотой можно посмотреть здесь.

4HNO3     +    C   →   CO2    +    4NO2    +    2H2O

Видеоопыт взаимодействия угля с безводной азотной кислотой можно посмотреть здесь.

10HNO3   +   I2  →   2HIO3   +   10NO2   +   4H2O

7. Концентрированная азотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной, либо промежуточной степени окисления): сульфиды металлов, сероводород, фосфиды, йодиды, соединения железа (II) и др. При этом азот восстанавливается до NO2, неметаллы окисляются до соответствующих кислот (или оксидов), а металлы окисляются до устойчивых степеней окисления.

Например, азотная кислота окисляет оксид серы (IV):

2HNO3     +   SO2  →   H2SO4     +   2NO2

Еще пример: азотная кислота окисляет йодоводород:

6HNO3   +   HI   →  HIO3   +   6NO2   +   3H2O

Азотная кислота окисляет углерод до углекислого газа, т.к. угольная кислота неустойчива.

3С    +    4HNO3   →    3СО2    +    4NO    +   2H2O

Сера в степени окисления -2 окисляется без нагревания до простого вещества, при нагревании до серной кислоты. 

Например, сероводород окисляется азотной кислотой без нагревания до молекулярной серы:

2HNO3     +   H2S     →  S    +    2NO2   +   2H2O

При нагревании до серной кислоты:

2HNO3     +   H2S     →  H2SO4    +    2NO2   +   2H2O

8HNO3     +    CuS   →   CuSO4    +   8NO2    +   4H2O

Соединения железа (II) азотная кислота окисляет до соединений железа (III):

4HNO3     +    FeS   →   Fe(NO3)3  +   NO    +   S    +   2H2O

8. Азотная кислота окрашивает белки в оранжево-желтый цвет («ксантопротеиновая реакция»).

Ксантопротеиновую реакцию проводят для обнаружения белков, содержащих в своем составе ароматические аминокислоты. К раствору белка прибавляем концентрированную азотную кислоту. Белок свертывается. При нагревании белок желтеет. При добавлении избытка аммиака окраска переходит в оранжевую.

Видеоопыт обнаружения белков с помощью азотной кислоты можно посмотреть здесь.

Азотистая кислота

Азотистая кислота HNO2 — слабая, одноосновная, химически неустойчивая кислота.

Получение азотистой кислоты.

Азотистую кислоту легко получить вытеснением из нитритов более сильной кислотой.

Например, соляная кислота вытесняет азотистую кислоту из нитрита серебра:

AgNO2   +   HCl   →    HNO2    +   AgCl

Химические свойства.

1. Азотистая кислота HNO2  существует только в разбавленных растворах, при нагревании она разлагается:

3HNO2   →  HNO3  +   2NO   +   H2O

без нагревания азотистая кислота также разлагается:

2HNO2    →    NO2    +    NO   +   H2O

2. Азотистая кислота взаимодействует с сильными основаниями.

Например, с гидроксидом натрия:

HNO2   +   NaOH   →   NaNO2   +   H2O

3. За счет азота в степени окисления +3 азотистая кислота проявляет слабые окислительные свойства. Окислительные свойства HNO2 проявляет только при взаимодействии с сильными восстановителями.

Например, HNO2 окисляет иодоводород:

2HNO2   +   2HI   →   2NO   +   I2   +   2H2O

Азотистая кислота также окисляет иодиды в кислой среде:

2НNO2   +   2KI   +   2H2SO4   →   K2SO4   +   I2 +   2NO   +  2H2O

Азотистая кислота окисляет соединения железа (II):

2HNO2   +   3H2SO4   +   6FeSO4  →   3Fe2(SO4)3   +   N2    +    4H2O

4. За счет азота в степени окисления +3 азотистая кислота проявляет сильные восстановительные свойства. Под действием окислителей азотистая кислота переходит в азотную.

Например, хлор окисляет азотистую кислоту до азотной кислоты:

HNO2   +  Cl2    +  H2O   →  HNO3  +   2HCl

Кислород и пероксид водорода также окисляют азотистую кислоту:

2HNO2   +   O2  →  2HNO3

HNO2   +   H2O2  →  HNO3   +   H2O

Соединения марганца (VII) окисляют HNO2:

5HNO +   2HMnO →   2Mn(NO3)2   +   HNO3   +   3H2O

Соли азотной кислоты — нитраты

Нитраты металлов — это твердые кристаллические вещества. Большинство очень хорошо растворимы в воде.

1. Нитраты термически неустойчивы, причем все они разлагаются на кислород и соединение, характер которого зависит от положения металла (входящего в состав соли) в ряду напряжений металлов:

  • Нитраты щелочных и щелочноземельных металлов (до Mg в электрохимическом ряду) разлагаются до нитрита и кислорода.

Например, разложение нитрата натрия:

2KNO3   →  2KNO2   +   O2    

Исключение – литий.

Видеоопыт разложения нитрата калия можно посмотреть здесь.

  • Нитраты тяжелых металлов (от Mg до Cu, включая магний и медь) и литий разлагаются  до оксида металла, оксида азота (IV) и кислорода:

Например, разложение нитрата меди (II):

  2Cu(NO3)2   →   2CuO    +    4NO2   +   O2

  • Нитраты малоактивных металлов (правее Cu) – разлагаются до металла, оксида азота (IV) и кислорода.

Например, нитрат серебра:

2AgNO3   →  2Ag   +   2NO  +   O2

Исключения:

Нитрит железа (II) разлагается до оксида железа (III):

4Fe(NO3)2   →   2Fe2O3   +   8NO2   +   O2

Нитрат марганца (II) разлагается до оксида марганца (IV):

Mn(NO3)2   →   MnO2   +   2NO2 

2. Водные растворы не обладают окислительно-восстановительными свойствами, расплавы – сильные окислители.

Например, смесь 75%    KNO3,  15% C  и  10% S  называют «черным порохом»:

2KNO3   +   3C    +    S   →   N2    +   3CO2    +   K2S

Соли азотистой кислоты — нитриты

Соли азотистой кислоты устойчивее самой кислоты, и все они ядовиты. Поскольку степень окисления азота в нитритах  равна +3, то они проявляют как окислительные свойства, так и восстановительные.

Кислород, галогены и пероксид водорода окисляют нитриты до нитратов:

2KNO +   O2   →  2KNO3

KNO2   +   H2O2  →  KNO3   +   H2O

KNO2   +   H2O   +   Br2   →  KNO +   2HBr

Лабораторные окислители — перманганаты, дихроматы — также окисляют нитриты до нитратов:

5KNO2   +   3H2SO4   +   2KMnO4   →   5KNO3    +    2MnSO4   +   K2SO4  +  3H2

3KNO2   +   4H2SO4   +   K2Cr2O7   →   3KNO3    +    Cr2(SO4)3   +   K2SO4  +  4H2O  

В кислой среде нитриты выступают в качестве окислителей.

При окислении йодидов или соединений железа (II) нитриты восстанавливаются до оксида азота (II):

 2KNO2   +   2H2SO4   +   2KI   →  2NO    +   I2    +   2K2SO4  +  2H2O

  2KNO2  +  2FeSO4   +  2H2SO→ Fe2(SO4)3 + 2NO + K2SO4 + 2H2O

При взаимодействии с очень сильными восстановителями (алюминий или цинк в щелочной среде) нитриты восстанавливаются максимально – до аммиака:

NaNO2 + 2Al + NaOH + 6H2O → 2Na[Al(OH)4] + NH3

Смесь нитратов и нитритов также проявляет окислительные свойства. Например, смесь нитрата и нитрита калия окисляет оксид хрома (III) до хромата калия:

3KNO2   +   Cr2O3   +  KNO3  →   2K2CrO4   +   4NO

Содержание:

Азот — химический элемент и простое вещество:

Неметалл азот N в периодической системе химических элементов открывает VA-группу, в которой также расположены неметаллы фосфор Р и мышьяк As и металлы сурьма Sb и висмут Bi.

Свойства атомов элементов VA-группы, а также свойства их простых веществ закономерно изменяются с ростом их атомного номера: неметаллические свойства ослабевают, а металлические — усиливаются.

Азот в природе

В природе химический элемент азот находится в виде простого вещества Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Строение атомов

В атоме азота 7 электронов, из них 5 располагаются на внешнем электронном слое: Азот в химии - классификация, получение, свойства, формулы и определения с примерами Следовательно, атому азота не хватает трех электронов до завершения внешнего электронного слоя. Поэтому в своих соединениях с металлами и водородом азот обычно проявляет степень окисления, равную –3, как, например, в аммиаке Азот в химии - классификация, получение, свойства, формулы и определения с примерами 

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

В соединениях с кислородом атом азота проявляет максимальную положительную степень окисления, равную +5, как, например, в азотной кислоте Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Строение и физические свойства простого вещества

Простое вещество азот состоит из двухатомных молекул Азот в химии - классификация, получение, свойства, формулы и определения с примерами Атомы азота в молекуле связаны между собой тремя общими электронными парами:

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

При обычных условиях азот — бесцветный газ, без вкуса и запаха, не поддерживает дыхания и горения, не ядовит. Молекулы азота неполярны, поэтому азот мало растворим в воде. Животные в атмосфере чистого азота погибают из-за того, что лишаются необходимого для дыхания кислорода. С этим связано название азота, происходящее от греческого а — отрицательная приставка, зое — жизнь, т. е. непригодный для жизни.

 При повышении давления растворимость азота в тканях организма человека увеличивается. Это приводит к состоянию «азотного наркоза»: водолаз перестает уверенно управлять своими движениями. Поэтому при погружении на большие глубины вместо сжатого воздуха пользуются искусственной дыхательной смесью, в которой азот заменен гелием.

Химические свойства азота

Простое вещество азот Азот в химии - классификация, получение, свойства, формулы и определения с примерамихимически малоактивно и, как правило, вступает в химические реакции только при высоких температурах.

Окислительные свойства азота проявляются в реакциях с водородом и активными металлами. Так, при высокой температуре (t) и большом давлении (p) азот соединяется с водородом в присутствии катализатора, образуя аммиак:

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

При обычных условиях азот реагирует только с литием, образуя нитрид лития:

6Li + 3N2 = 2Li3N.

С другими металлами азот взаимодействует при высоких температурах.

Восстановительные свойства азота проявляются при его взаимодействии с кислородом. Азот реагирует с кислородом при температуре около 3000 °С, образуя оксид азота(II):

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Эта реакция может также протекать при пропускании электрического разряда через смесь газов, например при разряде молнии во время грозы (рис. 66).

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Применение азота

Применение азота обусловлено присущими ему свойствами инертного газа. Он используется для продувки и очистки систем трубопроводов и пожаротушения. В атмосфере азота замедляются процессы окисления и гниения, что позволяет увеличить сроки хранения лекарственных препаратов и пищевой продукции — мясных изделий, орехов, чипсов, масла, кофе, пива и др. Поэтому азот используется при их упаковке, а также для создания определенной атмосферы в овощехранилищах.

Жидкий азот, температура которого равна –196 °С, применяется для глубокого охлаждения и вымораживания, в косметологии.

В химической промышленности азот применяется при производстве минеральных удобрений и для синтеза аммиака.

  • Простое вещество азот состоит из двухатомных молекул Азот в химии - классификация, получение, свойства, формулы и определения с примерами
  • Азот при комнатной температуре химически малоактивное вещество.
  • Азот проявляет восстановительные свойства в реакции с кислородом и окислительные — в реакциях с активными металлами.

Аммиак

Одним из важнейших соединений азота является аммиак Азот в химии - классификация, получение, свойства, формулы и определения с примерами в котором степень окисления азота равна –3. Графическая формула его молекулы представлена на рисунке 67.

Молекула аммиака имеет форму пирамиды (рис. 68).

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Химические связи между атомом азота и атомами водорода в молекуле Азот в химии - классификация, получение, свойства, формулы и определения с примерамиявляются ковалентными полярными, общие электронные пары сильно смещены к атому азота. Молекула аммиака полярна и является диполем.

Азот в химии - классификация, получение, свойства, формулы и определения с примерами  Аммиак (в европейских языках его название звучит как «аммониак») своим названием обязан оазису Аммона, расположенному в Северной Африке, на перекрестке караванных путей. Мочевина (NH2)2CO, содержащаяся в моче животных, в жарком климате разлагается особенно быстро. Одним из продуктов разложения и является аммиак.

Физические свойства аммиака

Аммиак — бесцветный газ, с резким характерным запахом, ядовит. Он хорошо растворим в воде. В одном объеме воды при комнатной температуре растворяется около 700 объемов аммиака.

Водный раствор с массовой долей аммиака, равной 3 %, в быту называется нашатырным спиртом, под таким же названием он продается в аптеке. В технике водный раствор с массовой долей аммиака, равной 25 %, называют аммиачной водой.

 Медики используют водные растворы аммиака (нашатырный спирт) в повседневной практике: ватка, смоченная в нашатырном спирте, выводит человека из обморочного состояния, не причиняя вреда.

При увеличении давления или охлаждении аммиак легко сжижается. Жидкий аммиак при испарении поглощает много теплоты, поэтому его применяют в холодильных установках, а также для получения искусственного льда в спортивных сооружениях.

Химические свойства аммиака

Для аммиака характерны реакции окисления и соединения.

Степень окисления атома азота в аммиаке равна –3, поэтому аммиак проявляет восстановительные свойства, окисляясь кислородом и другими окислителями. Реакция горения аммиака в кислороде описывается уравнением:

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

В присутствии катализатора (платины) аммиак реагирует с кислородом с образованием оксида азота(II) NO:

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Эта реакция лежит в основе промышленного способа получения азотной кислоты. Подробнее этот процесс вы изучите в 11-м классе.

Запомните!

Смеси аммиака с кислородом или воздухом могут взрываться при нагревании, поэтому они опасны

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

С водой и кислотами аммиак вступает в реакции соединения. Колбу, заполненную аммиаком и закрытую пробкой со вставленной в нее трубочкой, опустим в воду, к которой добавлено несколько капель фенолфталеина (рис. 69). Внутри колбы начнет бить малиновый «фонтан». 

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

При растворении аммиака в воде происходит химическая реакция с образованием гидрата аммиака Азот в химии - классификация, получение, свойства, формулы и определения с примерами который частично диссоциирует на катионы аммония Азот в химии - классификация, получение, свойства, формулы и определения с примерами и гидроксидионы Азот в химии - классификация, получение, свойства, формулы и определения с примерами (рис. 70):

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Раствор аммиака в воде (аммиачная вода) за счет присутствия в нем гидроксид-ионов обладает свойствами слабого основания, поэтому в опыте, иллюстрирующем растворимость аммиака в воде, «фонтан» окрашивается в малиновый цвет. Если вместо фенолфталеина в воду добавить лакмус, то раствор окрасится в синий цвет.

Поскольку реакция взаимодействия аммиака с водой обратима, в растворе помимо катионов аммония Азот в химии - классификация, получение, свойства, формулы и определения с примерами и гидроксид-ионов Азот в химии - классификация, получение, свойства, формулы и определения с примерами содержатся нейтральные молекулы аммиака и воды. Аммиачная вода пахнет аммиаком, который улетучивается из открытого сосуда или при нагревании.

При взаимодействии аммиака с кислотами образуются соли аммония, например хлорид аммония Азот в химии - классификация, получение, свойства, формулы и определения с примерами сульфат аммония Азот в химии - классификация, получение, свойства, формулы и определения с примерами Смочим одну стеклянную палочку концентрированным раствором аммиака, а другую — концентрированной соляной кислотой и поднесем их друг к другу (рис. 71). Появится белый дым, состоящий из мелких кристалликов образующейся соли хлорида аммония:

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Аммиак способен реагировать и с другими кислотами. Эти реакции протекают без изменения степени окисления атомов азота.

Применение аммиака

По объемам производства в мире аммиак занимает одно из первых мест — ежегодно получают около 100 млн т этого соединения. Аммиак выпускается в жидком виде или в виде водного раствора — аммиачной воды.

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Огромные количества аммиака используются для получения азотной кислоты, которая идет на производство удобрений и множества других продуктов.

Из аммиака получают различные соли аммония и мочевину (карбамид).

Аммиак используется также для получения синтетических волокон, лекарственных препаратов, взрывчатых веществ, красителей (рис. 72).

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

  • Аммиак — бесцветный газ, с резким характерным запахом, хорошо растворим в воде.
  • Аммиак окисляется кислородом, проявляя при этом восстановительные свойства.
  • Аммиак вступает в реакции соединения с водой и кислотами.

Азотная кислота

Азотная кислота Азот в химии - классификация, получение, свойства, формулы и определения с примерамибыла открыта алхимиками в раннее Средневековье. В XVII в. нeмeцкий xимик Иoгaнн Pyдoльф Глayбep получил кoнцeнтpиpoвaнную aзoтную киcлoту при взaимoдeйcтвии cepнoй киcлoты с нитратом калия (кaлиeвoй ceлитpой). Метод Глаубера применялся до начала XX в. В настоящее время в промышленности азотную кислоту в больших масштабах получают, используя в качестве исходного вещества аммиак.

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Модель молекулы азотной кислоты представлена на рисунке 73.

Физические свойства азотной кислоты

Азотная кислота Азот в химии - классификация, получение, свойства, формулы и определения с примерами— бесцветная жидкость с резким удушливым запахом, хорошо растворяется в воде, смешивается с ней в любых соотношениях. Пары азотной кислоты токсичны, поэтому обращаться с ней надо с осторожностью.

Азотная кислота — сильный электролит, в водном растворе практически полностью диссоциирует на ионы:

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Присутствие в разбавленном водном растворе Азот в химии - классификация, получение, свойства, формулы и определения с примерами ионов водорода можно обнаружить по изменению окраски индикатора: лакмус окрашивается в красный цвет (рис. 74).

Химические свойства азотной кислоты

Подобно другим кислотам, азотная кислота вступает в реакции с осно Ђвными оксидами и основаниями. При этом образуются соли азотной кислоты — нитраты:

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Азотная кислота как сильная кислота взаимодействует с солями более слабых кислот. На рисунке 75 показано растворение раковины моллюска, состоящей в основном из карбоната кальция, под действием азотной кислоты с выделением углекислого газа:

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Азотная кислота проявляет окислительные свойства по отношению к металлам, но в отличие от других кислот реагирует с большинством металлов, кроме благородных.

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

При этом водород обычно не выделяется.

Продуктами взаимодействия азотной кислоты с металлами являются нитраты металлов и соединения азота со степенью окисления атомов меньшей, чем в азотной кислоте. Например, если поместить в колбу обрезки медной проволоки и осторожно (в вытяжном шкафу!) прилить к ним концентрированную азотную кислоту, то сразу начнет выделяться «бурый газ» — оксид азота(IV) (рис. 76):

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

 Один объем азотной и три объема соляной кислоты образуют смесь, называемую царской водкой. Она способна растворять даже «царя металлов» — золото.

Азотная кислота способна окислять и другие вещества, как неорганические, так и органические. Поэтому с азотной кислотой надо обращаться крайне осторожно: не проливать, не допускать попадания на кожу (азотная кислота реагирует с белками, вследствие чего на коже образуются желтые пятна), на одежду (разрушаются шерсть и натуральный шелк).

  • Азотная кислота — бесцветная жидкость, с резким удушливым запахом, хорошо растворима в воде.
  • Азотная кислота вступает в реакции с основными оксидами,  основаниями и солями.
  • Азотная кислота проявляет окислительные свойства при взаимодействии с металлами.

Применение азотной кислоты и нитратов

Азотная кислота — одноосновная кислота, образующая соли нитраты.

Нитраты:

Из предыдущего параграфа вы уже знаете, что нитраты образуются при взаимодействии азотной кислоты с различными химическими веществами: металлами, оксидами и гидроксидами металлов, солями слабых кислот.

При обычных условиях нитраты — твердые кристаллические вещества. Все они хорошо растворимы в воде.

Нитраты являются сильными электролитами. При диссоциации этих солей в качестве катионов образуются ионы металлов (или аммония), а в качестве анионов — нитрат-ионы:

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Нитраты щелочных, щёлочноземельных металлов и аммония называют селитрами. Например, Азот в химии - классификация, получение, свойства, формулы и определения с примерамикалийная селитра, Азот в химии - классификация, получение, свойства, формулы и определения с примерами— аммиачная селитра, Азот в химии - классификация, получение, свойства, формулы и определения с примерами— натриевая селитра, Азот в химии - классификация, получение, свойства, формулы и определения с примерами — кальциевая селитра. Это связано с тем, что селитры используются в качестве удобрений.

В больших количествах нитраты ядовиты.

Нитраты участвуют во всех обменных реакциях, характерных для солей. Они взаимодействуют с металлами, при этом более активный металл вытесняет менее активные из растворов их солей:

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Реакции с кислотами, щелочами и солями протекают, если в результате образуются нерастворимые соединения, а нитрат-ионы остаются в растворе, например:

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Все нитраты термически неустойчивы. При нагревании они разлагаются с образованием кислорода. Подробнее с этими реакциями вы познакомитесь в курсе химии 11-го класса.

 В твердом виде все нитраты — сильные окислители, входящие в состав пиротехнических смесей. Самая известная — черный порох — представляет собой смесь калийной селитры, углерода и серы:

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Черный порох появился в Китае в cepeдине XI в. и пpимeнялся для «oгнeнных кoпий» и фейерверков. В Европу попал лишь в XIII в. В 1650 г. белорус Казимир Семенович издал трактат «Великое искусство артиллерии, часть первая», в котором целый раздел посвятил изготовлению черного пороха (см. рис.).

Азот в химии - классификация, получение, свойства, формулы и определения с примерами

Книга была переведена на многие европейские языки, и чуть ли не два столетия оставалась самой популярной научной работой по артиллерии. В свое время по книге Казимира Семеновича учились Ньютон, российский император Петр I и французский император Наполеон I. Основоположник российской космонавтики К. Э. Циолковский ссылался в некоторых своих работах на труды Казимира Семеновича.

Применение азотной кислоты и нитратов:

Азотная кислота широко используется для получения минеральных удобрений, лекарственных препаратов, взрывчатых веществ и ракетного топлива, полимерных материалов, красителей и т. п.

Очень широка и область применения нитратов. Они используются в качестве удобрений, как окислители — в пиротехнических смесях, для производства стекла.

Нитрат серебра(I) Азот в химии - классификация, получение, свойства, формулы и определения с примерами(ляпис) применяют как противомикробное и противовоспалительное средство.

 Нитраты используются для обработки и консервирования пищевых продуктов. Так нитрат натрия NaNO3 в строго определенном количестве добавляют в мясо при изготовлении колбас. Он восстанавливается микроорганизмами до нитрита натрия NaNO2, который препятствует окислению мяса и способствует сохранению розового цвета мясных изделий. Присутствие нитритов в колбасе необходимо еще и по другой причине: они предотвращают развитие микроорганизмов, выделяющих ядовитые вещества.

  • Соли азотной кислоты называются нитратами.
  • Нитраты — твердые кристаллические вещества, хорошо растворимые в воде.
  • Нитраты участвуют во всех обменных реакциях, характерных для солей.
  • Азотная кислота и нитраты находят широкое практическое применение.
  • Фосфор в химии
  • Углерод в химии
  • Кремний в химии
  • Классы неорганических соединений
  • Кислоты в химии
  • Соли в химии
  • Хлор в химии
  • Сера в химии

Азот

Азо́т — элемент главной подгруппы пятой группы второго периода периодической системы химических элементов, с атомным номером 7. Обозначается символом N (лат. Nitrogenium). Простое вещество азот (CAS-номер: 7727-37-9) — достаточно инертный при нормальных условиях двухатомный газ без цвета, вкуса и запаха (формула N2), из которого на три четверти состоит земная атмосфера.

История открытия

В 1772 году Генри Кавендиш провёл следующий опыт: он многократно пропускал воздух над раскалённым углём, затем обрабатывал его щёлочью, в результате получался остаток, который Кавендиш назвал удушливым (или мефитическим) воздухом. С позиций современной химии ясно, что в реакции с раскалённым углём кислород воздуха связывался в углекислый газ, который затем поглощался щёлочью. При этом остаток газа представлял собой по большей части азот. Таким образом, Кавендиш выделил азот, но не сумел понять, что это новое простое вещество (химический элемент). В том же году Кавендиш сообщил об этом опыте Джозефу Пристли.
Пристли в это время проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот, однако, будучи сторонником господствующей в те времена теории флогистона, совершенно неверно истолковал полученные результаты (по его мнению, процесс был противоположным — не кислород удалялся из газовой смеси, а наоборот, в результате обжига воздух насыщался флогистоном; оставшийся воздух (азот) он и назвал насыщенным флогистоном, то есть флогистированным). Очевидно, что и Пристли, хотя и смог выделить азот, не сумел понять сути своего открытия, поэтому и не считается первооткрывателем азота.
Одновременно схожие эксперименты с тем же результатом проводил и Карл Шееле.
В 1772 году азот (под названием «испорченного воздуха») как простое вещество описал Даниэль Резерфорд, он опубликовал магистерскую диссертацию, где указал основные свойства азота (не реагирует со щелочами, не поддерживает горения, непригоден для дыхания). Именно Даниэль Резерфорд и считается первооткрывателем азота. Однако и Резерфорд был сторонником флогистонной теории, поэтому также не смог понять, что же он выделил. Таким образом, чётко определить первооткрывателя азота невозможно.
В дальнейшем азот был изучен Генри Кавендишем (интересен тот факт, что он сумел связать азот с кислородом при помощи разрядов электрического тока, а после поглощения оксидов азота в остатке получил небольшое количество газа, абсолютно инертного, хотя, как и в случае с азотом, не смог понять, что выделил новый химический элемент — инертный газ аргон).

Происхождение названия

Азо́т (от др.-греч. ἄζωτος — безжизненный, лат. nitrogenium), вместо предыдущих названий («флогистированный», «мефитический» и «испорченный» воздух) предложил в 1787 году Антуан Лавуазье, который в то время в составе группы других французских учёных разрабатывал принципы химической номенклатуры. Как показано выше, в то время уже было известно, что азот не поддерживает ни горения, ни дыхания. Это свойство и сочли наиболее важным. Хотя впоследствии выяснилось, что азот, наоборот, крайне необходим для всех живых существ, название сохранилось во французском и русском языках.
Существует и иная версия. Слово «азот» придумано не Лавуазье и не его коллегами по номенклатурной комиссии; оно вошло в алхимическую литературу уже в раннем средневековье и употреблялось для обозначения «первичной материи металлов», которую считали «альфой и омегой» всего сущего. Это выражение заимствовано из Апокалипсиса: «Я есмь Альфа и Омега, начало и конец» (Откр.1:8-10). Слово составлено из начальных и конечных букв алфавитов трёх языков — латинского, греческого и древнееврейского, — считавшихся «священными», поскольку, согласно Евангелиям, надпись на кресте при распятии Христа была сделана на этих языках (а, альфа, алеф и зет, омега, тав — AAAZOTH). Составители новой химической номенклатуры хорошо знали о существовании этого слова; инициатор её создания Гитон де Морво отмечал в своей «Методической энциклопедии» (1786) алхимическое значение термина.
Возможно, слово «азот» произошло от одного из двух арабских слов — либо от слова «аз-зат» («сущность» или «внутреннюю реальность»), либо от слова «зибак» («ртуть»)..
На латыни азот называется «nitrogenium», то есть «рождающий селитру»; английское название производится от латинского. В немецком языке используется название Stickstoff, что означает «удушающее вещество».

Получение

В лабораториях его можно получать по реакции разложения нитрита аммония:
NH4NO2 → N2↑ + 2H2O

Реакция экзотермическая, идёт с выделением 80 ккал (335 кДж), поэтому требуется охлаждение сосуда при её протекании (хотя для начала реакции требуется нагревание нитрита аммония).
Практически эту реакцию выполняют, добавляя по каплям насыщенный раствор нитрита натрия в нагретый насыщенный раствор сульфата аммония, при этом образующийся в результате обменной реакции нитрит аммония мгновенно разлагается.
Выделяющийся при этом газ загрязнён аммиаком, оксидом азота (I) и кислородом, от которых его очищают, последовательно пропуская через растворы серной кислоты, сульфата железа (II) и над раскалённой медью. Затем азот осушают.
Ещё один лабораторный способ получения азота — нагревание смеси дихромата калия и сульфата аммония (в соотношении 2:1 по массе). Реакция идёт по уравнениям:
K2Cr2O7 + (NH4)2SO4 = (NH4)2Cr2O4 + K2SO4
(NH4)2Cr2O7 →(t) Cr2O3 + N2↑ + 4H2O

Самый чистый азот можно получить разложением азидов металлов:
2NaN3 →(t) 2Na + 3N2

Так называемый «воздушный», или «атмосферный» азот, то есть смесь азота с благородными газами, получают путём реакции воздуха с раскалённым коксом:
O2+ 4N2 + 2C → 2CO + 4N2

При этом получается так называемый «генераторный», или «воздушный», газ — сырьё для химических синтезов и топливо. При необходимости из него можно выделить азот, поглотив монооксид углерода.
Молекулярный азот в промышленности получают фракционной перегонкой жидкого воздуха. Этим методом можно получить и «атмосферный азот». Также широко применяются азотные установки и станции, в которых используется метод адсорбционного и мембранного газоразделения.
Один из лабораторных способов — пропускание аммиака над оксидом меди (II) при температуре ~700 °C:
2NH3 + 3CuO → N2↑ + 3H2O + 3Cu

Аммиак берут из его насыщенного раствора при нагревании. Количество CuO в 2 раза больше расчётного. Непосредственно перед применением азот очищают от примеси кислорода и аммиака пропусканием над медью и её оксидом (II) (тоже ~700 °C), затем сушат концентрированной серной кислотой и сухой щёлочью. Процесс происходит довольно медленно, но он того стоит: газ получается весьма чистый.

Физические свойства

При нормальных условиях азот это бесцветный газ, не имеет запаха, мало растворим в воде (2,3 мл/100г при 0 °C, 0,8 мл/100 г при 80 °C), плотность 1,2506 кг/м³ (при н.у.).
В жидком состоянии (темп. кипения −195,8 °C) — бесцветная, подвижная, как вода, жидкость. Плотность жидкого азота 808 кг/м³. При контакте с воздухом поглощает из него кислород.
При −209,86 °C азот переходит в твердое состояние в виде снегоподобной массы или больших белоснежных кристаллов. При контакте с воздухом поглощает из него кислород, при этом плавится, образуя раствор кислорода в азоте.


Источник: Википедия

Другие заметки по химии

У этого термина существуют и другие значения, см. Азот (значения).

7 УглеродАзотКислород

Периодическая система элементов

7N

Hexagonal.svg

Electron shell 007 Nitrogen.svg

Внешний вид простого вещества

Азот
Жидкий азот. При н.у. — газ без цвета, вкуса и запаха.

Свойства атома
Имя, символ, номер

Азот / Nitrogenium (N), 7

Атомная масса
(молярная масса)

14,00674 а. е. м. (г/моль)

Электронная конфигурация

[He] 2s2 2p3

Радиус атома

92 пм

Химические свойства
Ковалентный радиус

75 пм

Радиус иона

13 (+5e) 171 (-3e) пм

Электроотрицательность

3,04[1] (шкала Полинга)

Степени окисления

5, 4, 3, 2, 1, 0, −1, −3

Энергия ионизации
(первый электрон)

1401,5 (14,53) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)

0,808 г/см³ (−195,8 °C); при н.у. 0,001251 г/см³

Температура плавления

63,29 К (-209,86 °C)

Температура кипения

77,4 К (-195,75 °C)

Теплота плавления

(N2) 0,720 кДж/моль

Теплота испарения

(N2) 5,57 кДж/моль

Молярная теплоёмкость

29,125[2] (газ N2) Дж/(K·моль)

Молярный объём

17,3 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

кубическая

Параметры решётки

5,661 Å

Прочие характеристики
Теплопроводность

(300 K) 0,026 Вт/(м·К)

Азо́т — элемент 15-й группы (по устаревшей классификации — главной подгруппы пятой группы) второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 7. Обозначается символом N (лат. Nitrogenium). Простое вещество азот (CAS-номер: 7727-37-9) — достаточно инертный при нормальных условиях двухатомный газ без цвета, вкуса и запаха (формула N2), из которого на три четверти состоит земная атмосфера.

Содержание

  • 1 История открытия
  • 2 Происхождение названия
  • 3 Азот в природе
    • 3.1 Изотопы
    • 3.2 Распространённость
    • 3.3 Биологическая роль
    • 3.4 Круговорот азота в природе
    • 3.5 Токсикология азота и его соединений
  • 4 Получение
  • 5 Свойства
    • 5.1 Физические свойства
    • 5.2 Химические свойства, строение молекулы
      • 5.2.1 Промышленное связывание атмосферного азота
  • 6 Соединения азота
  • 7 Применение
  • 8 Маркировка баллонов
  • 9 Интересные факты
  • 10 См. также
  • 11 Примечания
  • 12 Литература
  • 13 Ссылки

История открытия

В 1772 году Генри Кавендиш провёл следующий опыт: он многократно пропускал воздух над раскалённым углём, затем обрабатывал его щёлочью, в результате получался остаток, который Кавендиш назвал удушливым (или мефитическим) воздухом. С позиций современной химии ясно, что в реакции с раскалённым углём кислород воздуха связывался в углекислый газ, который затем поглощался щёлочью. При этом остаток газа представлял собой по большей части азот. Таким образом, Кавендиш выделил азот, но не сумел понять, что это новое простое вещество (химический элемент). В том же году Кавендиш сообщил об этом опыте Джозефу Пристли.

Пристли в это время проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот, однако, будучи сторонником господствующей в те времена теории флогистона, совершенно неверно истолковал полученные результаты (по его мнению, процесс был противоположным — не кислород удалялся из газовой смеси, а наоборот, в результате обжига воздух насыщался флогистоном; оставшийся воздух (азот) он и назвал насыщенным флогистоном, то есть флогистированным). Очевидно, что и Пристли, хотя и смог выделить азот, не сумел понять сути своего открытия, поэтому и не считается первооткрывателем азота.

Одновременно схожие эксперименты с тем же результатом проводил и Карл Шееле.

В 1772 году азот (под названием «испорченного воздуха») как простое вещество описал Даниэль Резерфорд, он опубликовал магистерскую диссертацию, где указал основные свойства азота (не реагирует со щелочами, не поддерживает горения, непригоден для дыхания). Именно Даниэль Резерфорд и считается первооткрывателем азота. Однако и Резерфорд был сторонником флогистонной теории, поэтому также не смог понять, что же он выделил. Таким образом, чётко определить первооткрывателя азота невозможно.

В дальнейшем азот был изучен Генри Кавендишем (интересен тот факт, что он сумел связать азот с кислородом при помощи разрядов электрического тока, а после поглощения оксидов азота в остатке получил небольшое количество газа, абсолютно инертного, хотя, как и в случае с азотом, не смог понять, что выделил новый химический элемент — инертный газ аргон).

Происхождение названия

Азо́т (от др.-греч. ἄζωτος — безжизненный, лат. nitrogenium), вместо предыдущих названий («флогистированный», «мефитический» и «испорченный» воздух) предложил в 1787 году Антуан Лавуазье, который в то время в составе группы других французских учёных разрабатывал принципы химической номенклатуры. Как показано выше, в то время уже было известно, что азот не поддерживает ни горения, ни дыхания. Это свойство и сочли наиболее важным. Хотя впоследствии выяснилось, что азот, наоборот, крайне необходим для всех живых существ, название сохранилось во французском и русском языках.

Существует и иная версия[3]. Слово «азот» придумано не Лавуазье и не его коллегами по номенклатурной комиссии; оно вошло в алхимическую литературу уже в раннем средневековье и употреблялось для обозначения «первичной материи металлов», которую считали «альфой и омегой» всего сущего. Это выражение заимствовано из Апокалипсиса: «Я есмь Альфа и Омега, начало и конец» (Откр.1:8-10). Слово составлено из начальных и конечных букв алфавитов трёх языков — латинского, греческого и древнееврейского, — считавшихся «священными», поскольку, согласно Евангелиям, надпись на кресте при распятии Христа была сделана на этих языках (а, альфа, алеф и зет, омега, тав — AAAZOTH). Составители новой химической номенклатуры хорошо знали о существовании этого слова; инициатор её создания Гитон де Морво отмечал в своей «Методической энциклопедии» (1786) алхимическое значение термина.

Возможно, слово «азот» произошло от одного из двух арабских слов — либо от слова «аз-зат» («сущность» или «внутреннюю реальность»), либо от слова «зибак» («ртуть»)..

На латыни азот называется «nitrogenium», то есть «рождающий селитру»; английское название производится от латинского. В немецком языке используется название Stickstoff, что означает «удушающее вещество».

Азот в природе

Изотопы

Природный азот состоит из двух стабильных изотопов 14N — 99,635 % и 15N — 0,365 %.

Искусственно получены четырнадцать радиоактивных изотопов азота с массовыми числами от 10 до 13 и от 16 до 25. Все они являются очень короткоживущими изотопами. Самый стабильный из них 13N имеет период полураспада 10 мин.

Спин ядер стабильных изотопов азота: 14N — 1; 15N — 1/2.

Распространённость

Вне пределов Земли азот обнаружен в газовых туманностях, солнечной атмосфере, на Уране, Нептуне, межзвёздном пространстве и др. Азот — четвёртый по распространённости элемент Солнечной системы (после водорода, гелия и кислорода).

Азот, в форме двухатомных молекул N2 составляет большую часть атмосферы, где его содержание составляет 75,6 % (по массе) или 78,084 % (по объёму), то есть около 3,87·1015 т.

Содержание азота в земной коре, по данным разных авторов, составляет (0,7—1,5)·1015 т (причём в гумусе — порядка 6·1010 т), а в мантии Земли — 1,3·1016 т. Такое соотношение масс заставляет предположить, что главным источником азота служит верхняя часть мантии, откуда он поступает в другие оболочки Земли с извержениями вулканов.

Масса растворённого в гидросфере азота, учитывая, что одновременно происходят процессы растворения азота атмосферы в воде и выделения его в атмосферу, составляет около 2·1013 т, кроме того примерно 7·1011 т азота содержатся в гидросфере в виде соединений.

Биологическая роль

Азот является элементом, необходимым для существования животных и растений, он входит в состав белков (16—18 % по массе), аминокислот, нуклеиновых кислот, нуклеопротеидов, хлорофилла, гемоглобина и др. В составе живых клеток по числу атомов азота около 2 %, по массовой доле — около 2,5 % (четвёртое место после водорода, углерода и кислорода). В связи с этим значительное количество связанного азота содержится в живых организмах, «мёртвой органике» и дисперсном веществе морей и океанов. Это количество оценивается примерно в 1,9·1011 т. В результате процессов гниения и разложения азотсодержащей органики, при условии благоприятных факторов окружающей среды, могут образоваться природные залежи полезных ископаемых, содержащие азот, например, «чилийская селитра» (нитрат натрия с примесями других соединений), норвежская, индийская селитры.

Круговорот азота в природе

Фиксация атмосферного азота в природе происходит по двум основным направлениям — абиогенному и биогенному. Первый путь включает главным образом реакции азота с кислородом. Так как азот химически весьма инертен, для окисления требуются большие количества энергии (высокие температуры). Эти условия достигаются при разрядах молний, когда температура достигает 25000 °C и более. При этом происходит образование различных оксидов азота. Существует также вероятность, что абиотическая фиксация происходит в результате фотокаталитических реакций на поверхности полупроводников или широкополосных диэлектриков (песок пустынь).

Однако основная часть молекулярного азота (около 1,4·108 т/год) фиксируется биотическим путём. Долгое время считалось, что связывать молекулярный азот могут только небольшое количество видов микроорганизмов (хотя и широко распространённых на поверхности Земли): бактерии Azotobacter и Clostridium, клубеньковые бактерии бобовых растений Rhizobium, цианобактерии Anabaena, Nostoc и др. Сейчас известно, что этой способностью обладают многие другие организмы в воде и почве, например, актиномицеты в клубнях ольхи и других деревьев (всего 160 видов). Все они превращают молекулярный азот в соединения аммония (NH4+). Этот процесс требует значительных затрат энергии (для фиксации 1 г атмосферного азота бактерии в клубеньках бобовых расходуют порядка 167,5 кДж, то есть окисляют примерно 10 г глюкозы). Таким образом, видна взаимная польза от симбиоза растений и азотфиксирующих бактерий — первые предоставляют вторым «место для проживания» и снабжают полученным в результате фотосинтеза «топливом» — глюкозой, вторые обеспечивают необходимый растениям азот в усваиваемой ими форме.

Азот в форме аммиака и соединений аммония, получающийся в процессах биогенной азотфиксации, быстро окисляется до нитратов и нитритов (этот процесс носит название нитрификации). Последние, не связанные тканями растений (и далее по пищевой цепи травоядными и хищниками), недолго остаются в почве. Большинство нитратов и нитритов хорошо растворимы, поэтому они смываются водой и в конце концов попадают в мировой океан (этот поток оценивается в 2,5—8·107 т/год).

Азот, включённый в ткани растений и животных, после их гибели подвергается аммонификации (разложению содержащих азот сложных соединений с выделением аммиака и ионов аммония) и денитрификации, то есть выделению атомарного азота, а также его оксидов. Эти процессы целиком происходят благодаря деятельности микроорганизмов в аэробных и анаэробных условиях.

В отсутствие деятельности человека процессы связывания азота и нитрификации практически полностью уравновешены противоположными реакциями денитрификации. Часть азота поступает в атмосферу из мантии с извержениями вулканов, часть прочно фиксируется в почвах и глинистых минералах, кроме того, постоянно идёт утечка азота из верхних слоёв атмосферы в межпланетное пространство.

Токсикология азота и его соединений

Сам по себе атмосферный азот достаточно инертен, чтобы оказывать непосредственное влияние на организм человека и млекопитающих. Тем не менее, при повышенном давлении он вызывает наркоз, опьянение или удушье (при недостатке кислорода); при быстром снижении давления азот вызывает кессонную болезнь.

Многие соединения азота очень активны и нередко токсичны.

Получение

В лабораториях его можно получать по реакции разложения нитрита аммония:

mathsf{NH_4NO_2 rightarrow N_2 uparrow + 2H_2O }

Реакция экзотермическая, идёт с выделением 80 ккал (335 кДж), поэтому требуется охлаждение сосуда при её протекании (хотя для начала реакции требуется нагревание нитрита аммония).

Практически эту реакцию выполняют, добавляя по каплям насыщенный раствор нитрита натрия в нагретый насыщенный раствор сульфата аммония, при этом образующийся в результате обменной реакции нитрит аммония мгновенно разлагается.

Выделяющийся при этом газ загрязнён аммиаком, оксидом азота (I) и кислородом, от которых его очищают, последовательно пропуская через растворы серной кислоты, сульфата железа (II) и над раскалённой медью. Затем азот осушают.

Ещё один лабораторный способ получения азота — нагревание смеси дихромата калия и сульфата аммония (в соотношении 2:1 по массе). Реакция идёт по уравнениям:

mathsf{K_2Cr_2O_7 + (NH_4)_2SO_4 rightarrow (NH_4)_2Cr_2O_7 + K_2SO_4}
mathsf{(NH_4)_2Cr_2O_7 rightarrow N_2 uparrow + Cr_2O_3 + 2H_2O}

Наиболее чистый азот можно получить разложением азидов металлов:

mathsf{2NaN_3  xrightarrow[]{^ot}  2Na + 3N_2 uparrow}

Так называемый «воздушный», или «атмосферный» азот, то есть смесь азота с благородными газами, получают путём реакции воздуха с раскалённым коксом, при этом образуется так называемый «генераторный», или «воздушный», газ — сырьё для химических синтезов и топливо. При необходимости из него можно выделить азот, поглотив монооксид углерода.

Молекулярный азот в промышленности получают фракционной перегонкой жидкого воздуха. Этим методом можно получить и «атмосферный азот». Также широко применяются азотные установки и станции, в которых используется метод адсорбционного и мембранного газоразделения.

Один из лабораторных способов — пропускание аммиака над оксидом меди (II) при температуре ~700 °C:

mathsf{3CuO + 2NH_3 rightarrow N_2 uparrow + 3Cu + 3H_2O}

Аммиак берут из его насыщенного раствора при нагревании. Количество CuO в 2 раза больше расчётного. Непосредственно перед применением азот очищают от примеси кислорода и аммиака пропусканием над медью и её оксидом (II) (тоже ~700 °C), затем сушат концентрированной серной кислотой и сухой щёлочью. Процесс происходит довольно медленно, но он того стоит: газ получается весьма чистый.

Свойства

Физические свойства

Оптический линейчатый эмиссионный спектр азота

При нормальных условиях азот это бесцветный газ, не имеет запаха, мало растворим в воде (2,3 мл/100г при 0 °C, 0,8 мл/100 г при 80 °C), плотность 1,2506 кг/м³ (при н.у.).

В жидком состоянии (темп. кипения −195,8 °C) — бесцветная, подвижная, как вода, жидкость. Плотность жидкого азота 808 кг/м³. При контакте с воздухом поглощает из него кислород.

При −209,86 °C азот переходит в твердое состояние в виде снегоподобной массы или больших белоснежных кристаллов. При контакте с воздухом поглощает из него кислород, при этом плавится, образуя раствор кислорода в азоте.

Известны три кристаллические модификации твёрдого азота. В интервале 36,61 — 63,29 К существует фаза β-N2 с гексагональной плотной упаковкой, пространственная группа P63/mmc, параметры решётки a=3,93 Å и c=6,50 Å. При температуре ниже 36,61 К устойчива фаза α-N2 с кубической решёткой, имеющая пространственную группу Pa3 или P213 и период a=5,660 Å. Под давлением более 3500 атмосфер и температуре ниже 83 K образуется гексагональная фаза γ-N2.

Химические свойства, строение молекулы

Азот в свободном состоянии существует в форме двухатомных молекул N2, электронная конфигурация которых описывается формулой σs²σs*2πx, y4σz², что соответствует тройной связи между молекулами азота N≡N (длина связи dN≡N = 0,1095 нм). Вследствие этого молекула азота крайне прочна, для реакции диссоциации N2 ↔ 2N изменение энтальпии в реакции ΔH°298=945 кДж/моль[4], константа скорости реакции К298=10−120, то есть диссоциация молекул азота при нормальных условиях практически не происходит (равновесие практически полностью сдвинуто влево). Молекула азота неполярна и слабо поляризуется, силы взаимодействия между молекулами очень слабые, поэтому в обычных условиях азот газообразен.

Даже при 3000 °C степень термической диссоциации N2 составляет всего 0,1 %, и лишь при температуре около 5000 °C достигает нескольких процентов (при нормальном давлении). В высоких слоях атмосферы происходит фотохимическая диссоциация молекул N2. В лабораторных условиях можно получить атомарный азот, пропуская газообразный N2 при сильном разряжении через поле высокочастотного электрического разряда. Атомарный азот намного активнее молекулярного: в частности, при обычной температуре он реагирует с серой, фосфором, мышьяком и с рядом металлов, например, со ртутью.

Вследствие большой прочности молекулы азота некоторые его соединения эндотермичны (многие галогениды, азиды, оксиды), то есть энтальпия их образования положительна, а соединения азота термически малоустойчивы и довольно легко разлагаются при нагревании. Именно поэтому азот на Земле находится по большей части в свободном состоянии.

Ввиду своей значительной инертности азот при обычных условиях реагирует только с литием:

mathsf{6Li + N_2 rightarrow 2Li_3N}

при нагревании он реагирует с некоторыми другими металлами и неметаллами, также образуя нитриды:

mathsf{3Mg + N_2 rightarrow Mg_3N_2}
mathsf{2B + N_2 rightarrow 2BN}

Наибольшее практическое значение имеет нитрид водорода (аммиак) NH3, получаемый взаимодействием водорода с азотом (см. ниже).

В электрическом разряде реагирует с кислородом, образуя оксид азота(II) NO.

Описано несколько десятков комплексов с молекулярным азотом.

Промышленное связывание атмосферного азота

Соединения азота чрезвычайно широко используются в химии, невозможно даже перечислить все области, где находят применение вещества, содержащие азот: это индустрия удобрений, взрывчатых веществ, красителей, медикаментов и проч. Хотя колоссальные количества азота доступны в прямом смысле слова «из воздуха», из-за описанной выше прочности молекулы азота N2 долгое время оставалась нерешённой задача получения соединений, содержащих азот, из воздуха; большая часть соединений азота добывалась из его минералов, таких, как чилийская селитра. Однако сокращение запасов этих полезных ископаемых, а также рост потребности в соединениях азота заставил форсировать работы по промышленному связыванию атмосферного азота.

Наиболее распространён аммиачный способ связывания атмосферного азота. Обратимая реакция синтеза аммиака:

mathsf{N_2 + 3H_2 rightleftarrows 2NH_3}

экзотермическая (тепловой эффект 92 кДж) и идёт с уменьшением объёма, поэтому для сдвига равновесия вправо в соответствии с принципом Ле Шателье — Брауна необходимо охлаждение смеси и высокие давления. Однако с кинетической точки зрения снижение температуры невыгодно, так как при этом сильно снижается скорость реакции — уже при 700 °C скорость реакции слишком мала для её практического использования.

В таких случаях используется катализ, так как подходящий катализатор позволяет увеличить скорость реакции без сдвига равновесия. В процессе поиска подходящего катализатора было испробовано около двадцати тысяч различных соединений. По совокупности свойств (каталитическая активность, стойкость к отравлению, дешевизна) наибольшее применение получил катализатор на основе металлического железа с примесями оксидов алюминия и калия. Процесс ведут при температуре 400—600 °C и давлениях 10—1000 атмосфер.

Следует отметить, что при давлениях выше 2000 атмосфер синтез аммиака из смеси водорода и азота идёт с высокой скоростью и без катализатора. Например, при 850 °C и 4500 атмосфер выход продукта составляет 97 %.

Существует и ещё один, менее распространённый способ промышленного связывания атмосферного азота — цианамидный метод, основанный на реакции карбида кальция с азотом при 1000 °C. Реакция происходит по уравнению:

mathsf{CaC_2 + N_2 rightarrow CaCN_2 + C}

Реакция экзотермична, её тепловой эффект 293 кДж.

Ежегодно из атмосферы Земли промышленным путём отбирается примерно 1·106 т азота.

Соединения азота

Степени окисления азота в соединениях −3, −2, −1, 0, +1, +2, +3, +4, +5.

  • Соединения азота в степени окисления −3 представлены нитридами, из которых практически наиболее важен аммиак;
  • Соединения азота в степени окисления −2 менее характерны, представлены пернитридами, из которых самый важный пернитрид водорода N2H4 или гидразин (существует также крайне неустойчивый пернитрид водорода N2H2, диимид);
  • Соединения азота в степени окисления −1 NH2OH (гидроксиламин) — неустойчивое основание, применяющееся, наряду с солями гидроксиламмония, в органическом синтезе;
  • Соединения азота в степени окисления +1 оксид азота(I) N2O (закись азота, веселящий газ);
  • Соединения азота в степени окисления +2 оксид азота(II) NO (монооксид азота);
  • Соединения азота в степени окисления +3 оксид азота(III) N2O3, азотистая кислота, производные аниона NO2, трифторид азота (NF3);
  • Соединения азота в степени окисления +4 оксид азота(IV) NO2 (диоксид азота, бурый газ);
  • Соединения азота в степени окисления +5 оксид азота(V) N2O5, азотная кислота, её соли — нитраты и другие производные, а также тетрафтораммоний NF4+ и его соли.

Применение

Слабокипящий жидкий азот в металлическом стакане.

Жидкий азот применяется как хладагент и для криотерапии.

Промышленные применения газообразного азота обусловлены его инертными свойствами. Газообразный азот пожаро- и взрывобезопасен, препятствует окислению, гниению. В нефтехимии азот применяется для продувки резервуаров и трубопроводов, проверки работы трубопроводов под давлением, увеличения выработки месторождений. В горнодобывающем деле азот может использоваться для создания в шахтах взрывобезопасной среды, для распирания пластов породы. В производстве электроники азот применяется для продувки областей, не допускающих наличия окисляющего кислорода. Если в процессе, традиционно проходящем с использованием воздуха, окисление или гниение являются негативными факторами — азот может успешно заместить воздух.

Важной областью применения азота является его использование для дальнейшего синтеза самых разнообразных соединений, содержащих азот, таких, как аммиак, азотные удобрения, взрывчатые вещества, красители и т. п. Большие количества азота используются в коксовом производстве («сухое тушение кокса») при выгрузке кокса из коксовых батарей, а также для «передавливания» топлива в ракетах из баков в насосы или двигатели.

В пищевой промышленности азот зарегистрирован в качестве пищевой добавки E941, как газовая среда для упаковки и хранения, хладагент, а жидкий азот применяется при разливе масел и негазированных напитков для создания избыточного давления и инертной среды в мягкой таре.

Газообразным азотом заполняют камеры шин шасси летательных аппаратов. Кроме того, в последнее время заполнение шин азотом стало популярно и среди автолюбителей, хотя однозначных доказательств эффективности использования азота вместо воздуха для наполнения автомобильных шин нет.

Жидкий азот нередко демонстрируется в кинофильмах в качестве вещества, способного мгновенно заморозить достаточно крупные объекты. Это широко распространённое заблуждение. Даже для замораживания цветка необходимо достаточно продолжительное время. Это связано отчасти с весьма низкой теплоёмкостью азота. По этой же причине весьма затруднительно охлаждать, скажем, замки до −196 °C и раскалывать их одним ударом.

Литр жидкого азота, испаряясь и нагреваясь до 20 °C, образует примерно 700 литров газа. По этой причине жидкий азот хранят в специальных сосудах Дьюара с вакуумной изоляцией открытого типа или криогенных ёмкостях под давлением. На этом же факте основан принцип тушения пожаров жидким азотом. Испаряясь, азот вытесняет кислород, необходимый для горения, и пожар прекращается. Так как азот, в отличие от воды, пены или порошка, просто испаряется и выветривается, азотное пожаротушение — самый эффективный с точки зрения сохранности ценностей механизм тушения пожаров.

Заморозка жидким азотом живых существ с возможностью последующей их разморозки проблематична. Проблема заключается в невозможности заморозить (и разморозить) существо достаточно быстро, чтобы неоднородность заморозки не сказалась на его жизненных функциях. Станислав Лем, фантазируя на эту тему в книге «Фиаско», придумал экстренную систему заморозки азотом, в которой шланг с азотом, выбивая зубы, вонзался в рот астронавта и внутрь его подавался обильный поток азота.

Маркировка баллонов

Баллоны с азотом окрашены в чёрный цвет, должны иметь надпись жёлтого цвета и коричневую полосу (согласно нормам РФ).

Интересные факты

Цитата из Большой Советской Энциклопедии издания 1952 г. (том 1, стр. 452, статья «Азот»):

Азот в сложении с капитализмом — это война, разрушение, смерть. Азот в сложении с социализмом — это высокий урожай, высокая производительность труда, высокий материальный и культурный уровень трудящихся.

См. также

  • Категория:Соединения азота;
  • Оксиды азота;
  • Аммиак;
  • Азотная кислота;
  • Гидразин;
  • Гидроксид аммония;
  • Селитры;
  • Нитраты.
  • Азотистый обмен почвы
  • Криогенная резка
  • Азотное правило
  • Азотная станция

Примечания

  1. Nitrogen: electronegativities  (англ.). WebElements. Проверено 5 августа 2010.
  2. Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 тт. — Москва: Советская энциклопедия, 1988. — Т. 1. — С. 58. — 623 с. — 100 000 экз.
  3. Фигуровский Н. А. Открытие элементов и происхождение их названий. — М.: Наука, 1970. 207 с.
  4. Nitrogen atom

Литература

  • Некрасов Б. В., Основы общей химии, т. 1, М.: «Химия», 1973;
  • Химия: Справ. изд./В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. 2-е изд., стереотип. — М.: Химия, 2000 ISBN 5-7245-0360-3 (рус.), ISBN 3-343-00208-9 (нем.);
  • Ахметов Н. С., Общая и неорганическая химия. 5-е изд., испр. — М.: Высшая школа, 2003 ISBN 5-06-003363-5;
  • Гусакова Н. В., Химия окружающей среды. Серия «Высшее образование». Ростов-на-Дону: Феникс, 2004 ISBN 5-222-05386-5;
  • Исидоров В. А., Экологическая химия. СПб: Химиздат, 2001 ISBN 5-7245-1068-5;
  • Трифонов Д. Н., Трифонов В. Д., Как были открыты химические элементы — М.: Просвещение, 1980
  • Справочник химика, 2-е изд., т. 1, М.: «Химия», 1966;

Ссылки

commons: Азот на Викискладе?
  • Азот, химический элемент // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.
  • Азот на Webelements
  • Азот в Популярной библиотеке химических элементов
Периодическая система химических элементов Д. И. Менделеева
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H   He
2 Li Be   B C N O F Ne
3 Na Mg   Al Si P S Cl Ar
4 K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
Щелочные металлы  Щёлочноземельные металлы  Лантаноиды Актиноиды Переходные металлы Другие металлы Металлоиды Другие неметаллы Галогены Инертные газы

Понравилась статья? Поделить с друзьями:
  • Акклиматизироваться как пишется правильно
  • Акклиматизация или оклиматизация как пишется правильно
  • Азербайджан на английском языке как пишется
  • Акклимался как пишется
  • Академия наук ссср как пишется