Информатика как написать алгоритм

Алгоритм это в информатике

Особенности понятия

Алгоритмы появились вместе с математикой, а первые упоминания о них встречаются в книге математика Мухаммеда бен Мусы аль-Хорезми из города Хорезма. Он описал методы выполнения различных действий с многозначными числами еще в 825 году. Само слово «алгоритм» появилось после того, как книгу ученого перевели на латинский язык в Египте.

Современное определение алгоритма в информатике — это описание действий, последовательное выполнение которых позволяет решить поставленную задачу за конкретное количество шагов.

С этим человек сталкивается каждый день, когда читает рецепты в кулинарных книгах, инструкции к различной технике, правила решения заданий. Но обычно все эти действия выполняются автоматически, без их анализа. Родители сталкиваются с этим понятием, когда объясняют детям, как открыть двери ключом или почистить зубы. Алгоритмов в окружающем мире множество, но есть общие признаки для всех их видов.

Свойства и виды

Для изучения понятия нужно разобраться в свойствах алгоритма в информатике. Их существует несколько:

Свойства алгоритма в информатике.

  • дискретность;
  • детерминированность или определенность;
  • понятность;
  • завершаемость или конечность;
  • массовость или универсальность;
  • результативность.

Согласно свойству дискретности, алгоритмы должны описывать весь процесс решения задания в виде выполнения простых шагов. При этом на пункты отводится определенное количество времени. Каждый шаг должен определяться состоянием системы, то есть при одних и тех же исходных данных результат не меняется. Но есть и вероятностные алгоритмы, где пункты зависят от системы и случайно генерируемых чисел. В этой ситуации понятие становится подвидом обычного.

Понятность заключается в том, что команды алгоритма должны быть доступны конкретному исполнителю и входить в его личную систему. В ходе работы математическая функция при правильно заданных исходных данных выдает результат за определенное количество шагов. Иногда процедура может не завершиться, но вероятность таких случаев стремится к нулю.

Универсальность или массовость позволяет использовать алгоритм с разными наборами начальных данных. Последнее свойство обеспечивает его завершение в виде определенного числа — результата.

У каждого алгоритма есть свои начальные условия, цели и пути решения задачи. Существует большая разница между вычислительными и интерактивными видами. Происхождение первых связано с опытами ученого Тьюринга, они могут преобразовать входные данные в выходные. Вторые предназначены для связи с объектом управления, они работают только под внешним воздействием. Ученые выделяют несколько видов алгоритмов в информатике:

  • детерминированные или жесткие;
  • гибкие;
  • линейные;
  • разветвляющиеся;
  • циклические;
  • вспомогательные;
  • структурные блок-схемы.

Виды алгоритмов

Жесткие еще называются механическими, так как чаще всего они используются для работы двигателя или машины. Они задают действия в единственно верной последовательности, что приводит к искомому или требуемому результату при условии выполнения процессов, для которых они и разработаны.

Гибкие алгоритмы делятся на эвристические и вероятностные. Первые используются при различных умственных выводах без строгих аргументов, а вторые дают возможность получить один результат несколькими способами.

Линейный тип — это набор команд, которые выполняются в строгой последовательности. Разветвляющийся включает хотя бы одно условие и при проверке дает разделение на несколько блоков. Появляются альтернативные ветвления программы.

В циклических видах несколько раз повторяются одни и те же действия, при этом меняются исходные данные. Сюда относятся переборы вариантов и бо́льшая часть способов расчета. Циклом в этом случае называют последовательность команд, которые нужно выполнить множество раз для достижения требуемого результата.

Алгоритм для быстрого решения задачи.

Подчиненный или вспомогательный вид является ранее разработанным алгоритмом для быстрого решения задачи. Он необходим для сокращения записи, если в структуре есть одинаковые команды. Схемами называются графические изображения с помощью блоков и соединяющих их прямых линий. Их используют перед программированием в качестве наглядных примеров, поскольку зрительное восприятие позволяет быстрее осмыслить процесс обработки информации и выявить возможные ошибки. В блоках отображаются исходные данные, которые вносятся в компьютер для вычислений.

Способы записи

Алгоритмы записываются несколькими методами. В информатике используется всего три:

  • словесно-формульный;
  • графический;
  • программный.

В первом случае алгоритм записывается простым языком — словами и математическими формулами, что необходимо для понимания его теории. Здесь учитываются исходные данные, действия с ними и условия получения результата. Второй тип записи — компьютерное описание. Для этого применяются языки программирования и сами программы — форсы представления расчетов для их выполнения машиной.

Графическое описание состоит из связанных между собой географических фигур. Основные элементы блок-схем:

  • прямоугольники;
  • эллипсы;
  • ромбы;
  • шестиугольники;
  • стрелки;
  • пунктирные линии;
  • соединительные фигуры.

Графическое описание

В прямоугольниках записывают процессы, они указывают на выполнение операций, которые изменяют форму или значение данных. Ромбы содержат способы решения, здесь выбирается следующее направление в зависимости от поставленных условий. Модификации могут передаваться в шестиугольниках, где записываются операции, меняющие команды.

В блок-схемах можно выделить ручной ввод и предопределенные процессы. Первая фигура позволяет исполнителю ввести данные во время работы алгоритма через устройства, подключенные к компьютеру. Второе понятие заключается в использовании заранее записанных алгоритмов.

Графическое изображение содержит блоки документов и дисплеев. Оператор может вводить данные с бумаги и выводить их на нее, а также с помощью устройств, которые воспроизводят информацию на экране (проекторы для интерактивных досок, подключенные к компьютерам планшеты и ноутбуки).

Линии и соединительные фигуры указывают на связи между разными блоками и их последовательность. В схеме есть блоки начала и конца алгоритма, его прерывания, которое может произойти из-за сбоев в программе. Можно также указывать комментарии и пояснения исполнителя, для этого есть отдельные фигуры.

Правила создания

Правила создания алгоритмов

Существует несколько правил создания алгоритмов. Если их соблюдать, то в ходе работы всегда будет верный результат. Форма должна быть настолько простой, чтобы ее понял тот, кто занимается ее разработкой. Также не должно возникнуть проблем с чтением у того, кто будет выполнять описанные действия.

Объект, который проводит расчеты в алгоритме, называется исполнителем. Идеальными считаются роботы, компьютеры и другие машины. Они работают с программами, то есть схемами, написанными определенным языком программирования.

Разобраться с действиями помогут простые примеры алгоритмов по информатике. Когда есть ряд чисел от 1 до 100 и необходимо найти из них простые, то выбираются те, что делятся на единицу и себя. В этом случае используется циклическая структура:

  • сначала нужно взять число 1;
  • проверить, меньше ли оно, чем 100;
  • если да, то узнать, простое ли оно;
  • при выполнении условия записать;
  • перейти к числу 2;
  • повторить операцию.

Такие действия проводят со всеми числами. При этом первые четыре шага будут постоянно повторяться. Если попадается число, не являющееся простым (4, 6, 8 и т. д. ), то его нужно просто пропустить. Алгоритм в этом случае обладает предусловиями, то есть проверки происходят в начале цикла.

Анализ работы

Распространение информационных технологий привело к увеличению риска сбоев в работе программ. Предотвратить появление ошибок в алгоритмах можно с помощью доказательства их корректности математическими средствами. Такой анализ называется формальным методом, он предусматривает использование специального набора инструментов.

Анализ работы алгоритма

Гипотеза Ричарда Мейса утверждает, что избежать ошибок легче, чем их устранить. Благодаря доказательству корректности программ можно выявить их свойства, применяемые ко всем видам входных данных. Само понятие делится на две разновидности — частичную и полную. При первом типе корректности алгоритм дает правильный результат только для тех случаев, когда он завершается. Во втором случае программа завершает работу корректно для всего диапазона данных.

Исполнители во время проверки сравнивают выдаваемые данные со спецификой требуемого результата. Для доказательства корректности используются предусловия и постусловия. Первые должны выполняться перед включением программы, вторые — после завершения ее работы. Формальные методы успешно применяются для многих задач: верификации программ и микропроцессоров, разработки искусственного интеллекта, электронных схем и автоматических систем для железной дороги, спецификации стандартов.

Для выполнения алгоритма нужно только конкретное количество шагов, но на практике для этого потребуется много времени. В связи с этим введено понятие сложности. Она бывает временной, вычислительной и связанной с размерами алгоритма. Для увеличения эффективности используются быстрые программы, которые появились еще в 50-х годах прошлого века.

Основные понятия алгоритмизации

Работа по решению любой задачи с использованием компьютера делится на следующие этапы:

  1. Постановка задачи.
  2. Формализация задачи.
  3. Построение алгоритма.
  4. Составление программы на языке программирования.
  5. Отладка и тестирование программы.
  6. Использование программы.

Часто эту последовательность называют технологической цепочкой решения задачи. Непосредственно к программированию в этом списке относятся пункты 3, 4, 5.

На этапе постановки задачи должно быть четко сформулировано, что дано и что требуется найти. Здесь очень важно определить полный набор исходных данных, необходимых для получения решения.

Второй этап — формализация задачи. Здесь чаще всего задача переводится на язык математических формул, уравнений, отношений. Если решение требует математического описания какого-то реального объекта, явления или процесса, то формализация равносильна получению соответствующей математической модели.

Третий этап — построение алгоритма. Опытные программисты часто сразу пишут программы на языках, не прибегая к каким-либо специальным способам описания алгоритмов (блок-схемам, псевдокодам). Однако в учебных целях полезно использовать эти средства, а затем переводить полученный алгоритм на язык программирования.

Первые три этапа предусматривают работу без компьютера. Дальше следует собственно программирование на определенном языке, в определенной системе программирования. Последний (шестой) этап — это использование уже разработанной программы в практических целях.

Таким образом, программист должен обладать следующими знаниями и навыками:

  • уметь строить алгоритмы;
  • знать языки программирования;
  • уметь работать в соответствующей системе программирования.

Понятие алгоритма

Одним из фундаментальных понятий в информатике является понятие алгоритма. Происхождение самого термина «алгоритм» связано с математикой. Это слово происходит от Algorithmi — латинского написания имени Мухаммеда альХорезми (787 — 850), выдающегося математика средневекового Востока. В XII в. был выполнен латинский перевод его математического трактата, из которого европейцы узнали о десятичной позиционной системе счисления и правилах арифметики многозначных чисел. Именно эти правила в то время называли алгоритмами. Сложение, вычитание, умножение столбиком, деление уголком многозначных чисел — вот первые алгоритмы в математике.

В наше время понятие алгоритма трактуется шире. Алгоритм — это последовательность команд управления каким-либо исполнителем.

Алгоритм может быть предназначен для выполнения его человеком или автоматическим устройством — формальным исполнителем. Задача исполнителя — точная реализация уже имеющегося алгоритма. Формальный исполнитель не обязан вникать в сущность алгоритма, а возможно, и неспособен его понять.

Примером формального исполнителя может служить автоматическая стиральная машина, которая неукоснительно исполняет предписанные ей действия, даже если вы забыли положить в нее порошок. Человек тоже может выступать в роли формального исполнителя, но в первую очередь формальными исполнителями являются различные автоматические устройства, и компьютер в том числе.

В разделе информатики под названием Программирование изучаются методы программного управления работой ЭВМ. Следовательно, в качестве исполнителя выступает компьютер.

Компьютер работает с величинами — различными информационными объектами: числами, символами, кодами и т.п. Поэтому алгоритмы, предназначенные для управления компьютером, принято называть алгоритмами работы с величинами.

Данные и величины. Совокупность величин, с которыми работает компьютер, принято называть данными. По отношению к программе данные делятся на исходные, результаты (окончательные данные) и промежуточные, которые получаются в процессе вычислений.

Например, при решении квадратного уравнения ах2 + Ьх + с = 0
исходными данными являются коэффициенты а, Ь, с; результатами — корни уравнения х1, х2; промежуточным данным — дискриминант уравнения D = b2 — 4ас.

Для успешного освоения программирования необходимо усвоить следующее правило: всякая величина занимает свое определенное место в памяти ЭВМ (иногда говорят — ячейку памяти). Хотя термин «ячейка» с точки зрения архитектуры современных ЭВМ несколько устарел, однако в учебных целях его удобно использовать.

У всякой величины имеются три основных свойства: имя, значение и тип (на самом деле многие современные языки, такие как PHP или JS, обходятся без явного указания типа, интерпретируя тип переменной в зависимости от контекста операции). На уровне команд процессора величина идентифицируется при помощи адреса ячейки памяти, в которой она хранится. В алгоритмах и языках программирования величины делятся на константы и переменные. Константа — неизменная величина, и в алгоритме она представляется собственным значением, например: 15, 34.7, k, true и т.д. Переменные величины могут изменять свои значения в ходе выполнения программы и представляются символическими именами — идентификаторами, например: X, S2, cod15. Любая константа, как и переменная, занимает ячейку памяти, а значение этих величин определяется двоичным кодом в этой ячейке.

Теперь о типах величин — типах данных. С понятием типа данных вы уже, возможно, встречались, изучая в курсе информатики базы данных и электронные таблицы. Это понятие является фундаментальным для программирования.

В каждом языке программирования существует своя концепция типов данных, своя система типов. Тем не менее в любой язык входит минимально необходимый набор основных типов данных, к которому относятся: целый, вещественный, логический и символьный типы. С типом величины связаны три ее характеристики: множество допустимых значений, множество допустимых операций, форма внутреннего представления. Ниже представлены эти характеристики для основных типов данных.

Тип Значения Операции Внутреннее представление
Целый Целые положительные и отрицательные числа в некотором диапазоне.
Примеры: 23, —12, 387
Арифметические операции с целыми числами: +, —, *, целое деление и остаток от деления.
Операции отношений (<, >, = и др.)
Формат с фиксированной точкой
Вещественный Любые (целые и дробные) числа в некотором диапазоне.
Примеры: 2.5, -0.01, 45.0, 3.6-109
Арифметические операции: +, —, *, /.
Операции отношений
Формат с плавающей точкой
Логический True (истина),
False (ложь)
Логические операции: И (&), ИЛИ (|), HE (~). Операции отношений 1 бит:
1 — true;
0 — false
Символьный Любые символы компьютерного алфавита.
Примеры: ‘а’, ‘5’, ‘+’, ‘$’
Операции отношений Коды таблицы символьной кодировки. 1 символ — 1 байт (Сейчас используются многобайтные кодировки: UTF-8, UTF-16…)

Типы констант определяются по контексту (т.е. по форме записи в тексте), а типы переменных устанавливаются в описаниях переменных (не во всех языках; Python, например, не имеет явного определения типа, тип переменной определяетя при первом присваивании).

Есть еще один вариант классификации данных — классификация по структуре. Данные делятся на простые и структурированные. Для простых величин (их еще называют скалярными) справедливо утверждение: одна величина — одно значение, для структурированных: одна величина — множество значений. К структурированным величинам относятся массивы, строки, множества и т.д.

Свойства алгоритма

Массовость — алгоритм решения задачи разрабатывается в общем виде, то есть он должен быть применим для некоторого класса задач, различающихся только исходными данными. При этом исходные данные могут выбираться из некоторой области, которая называется областью применимости алгоритма.

Понятность — команды, используемые в алгоритме, должны быть понятны исполнителю.

Дискретность (прерывность, раздельность) — алгоритм должен представлять процесс решения задачи как последовательное выполнение простых шагов. Каждое действие, предусмотренное алгоритмом, исполняется только после того, как закончилось исполнение предыдущего.

Определенность (детерминнированность) — предполагает получение однозначного результата вычислительного процecca при заданных исходных данных. Благодаря этому свойству процесс выполнения алгоритма носит механический характер.

Результативность (конечность) — алгоритм должен приводить к решению задачи за конечное число шагов.

Формы записи алгоритмов

На практике наиболее распространены следующие формы представления алгоритмов:

  • словесная (запись на естественном языке)
  • графическая (изображения из графических символов)
  • псевдокоды (полуформализованные описания алгоритмов на условном алгоритмическом языке, включающие в себя как элементы языка программирования, так и фразы естественного языка, общепринятые математические обозначения и др.
  • программная (тексты на языках программирования)

Пример: написать алгоритм «Одеться по погоде». Если на улице температура ниже 0, то необходимо надеть шубу, иначе – куртку.

Словесный способ записи алгоритма

Словесный способ записи алгоритмов представляет собой описание последовательных этапов обработки данных. Алгоритм задается в произвольном изложении на естественном языке.

Алгоритм ПОГОДА  
Начало  
определить температуру воздуха  
если температура ниже 0, то надеть шубу, иначе надеть куртку  
Конец.

Словесный способ не имеет широкого распространения, так как такие описания:

  • строго не формализуемы;
  • страдают многословностью записей;
  • допускают неоднозначность толкования отдельных предписаний.

Графический способ записи алгоритмов

Наибольшее распространение благодаря своей наглядности получил графический способ записи алгоритмов. При графическом представлении алгоритм изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий.

Такое графическое представление называется схемой алгоритма или блок-схемой. В блок-схеме каждому типу действий (вводу исходных данных, вычислению значений выражений, проверке условий, управлению повторением действий, окончанию обработки и т.п.) соответствует геометрическая фигура, представленная в виде блочного символа. Блочные символы соединяются линиями переходов, определяющими очередность выполнения действий. В таблице приведены наиболее часто употребляемые символы.

Название символа Обозначение и пример заполнения Пояснение
Процесс Вычислительное действие или последовательность действий
Решение Проверка условий
Модификация Начало цикла
Предопределенный процесс Вычисления по подпрограмме, стандартной подпрограмме
Ввод-вывод Ввод-вывод в общем виде
Пуск-останов Начало, конец алгоритма, вход и выход в подпрограмму
Документ Вывод результатов на печать

Блок процесс применяется для обозначения действия или последовательности действий,изменяющих значение, форму представления или размещения данных. Для улучшения наглядности схемы несколько отдельных блоков обработки можно объединять в один блок. Представление отдельных операций достаточно свободно.

Блок решение используется для обозначения переходов управления по условию. В каждом блоке решение должны быть указаны вопрос, условие или сравнение, которые он определяет.

Блок модификация используется для организации циклических конструкций. (Слово модификация означает видоизменение, преобразование). Внутри блока записывается параметр цикла, для которого указываются его начальное значение, граничное условие и шаг изменения значения параметра для каждого повторения.

Блок предопределенный процесс используется для указания обращений к вспомогательным алгоритмам, существующим автономно в виде некоторых самостоятельных модулей, и для обращений к библиотечным подпрограммам.

Блок Ввод-вывод используется для преобразования данных в фор­му, пригодную для обработки (ввод) или отображения результатов обработки (вывод). Отдельным логическим устройствам компьютера или отдельным функциям об­мена соответствуют определенные блочные символы. В каждом из них указыва­ются тип устройства или файла данных, тип информации, участвующий в обме­не, а также вид операции обмена.

Блок Пуск-останов используется для обозначения начала, конца, прерывания процесса обработки данных или выполнения программы.

Блок Документ предназначен для ввода-вывода данных, носителем которых служит бумага.

Псевдокод

Псевдокод представляет собой систему обозначений и правил, предназначенную для единообразной записи алгоритмов.

Псевдокод занимает промежуточное место между естественным и формальным языками. С одной стороны, он близок к обычному естественному языку, поэтому алгоритмы могут на нем записываться и читаться как обычный текст. С другой стороны, в псевдокоде используются некоторые формальные конструкции и математическая символика, что приближает запись алгоритма к общепринятой математической записи.

В псевдокоде не приняты строгие синтаксические правила для записи команд, присущие формальным языкам, что облегчает запись алгоритма на стадии его проектирования и дает возможность использовать более широкий набор команд, рассчитанный на абстрактного исполнителя.

Однако в псевдокоде обычно имеются некоторые конструкции, присущие формальным языкам, что облегчает переход от записи на псевдокоде к записи алгоритма на формальном языке. В частности, в псевдокоде, так же, как и в формальных языках, есть служебные слова, смысл которых определен раз и навсегда. Они выделяются в печатном тексте жирным шрифтом, а в рукописном тексте подчеркиваются.

Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором служебных слов и основных (базовых) конструкций.

Программный способ записи алгоритмов

При записи алгоритма в словесной форме, в виде блок-схемы или на псевдокоде допускается определенный произвол при изображении команд. Вместе с тем такая запись точна настолько, что позволяет человеку понять суть дела и исполнить алгоритм.

Однако на практике в качестве исполнителей алгоритмов используются специальные автоматы — компьютеры. Поэтому алгоритм, предназначенный для исполнения на компьютере, должен быть записан на понятном ему языке. И здесь на первый план выдвигается необходимость точной записи команд, не оставляющей места для произвольного толкования их исполнителем.

Следовательно, язык для записи алгоритмов должен быть формализован. Такой язык принято называть языком программирования, а запись алгоритма на этом языке — программой для компьютера.

Программа, создаваемая человеком — программистом, представляет собой текст, состоящий из знаков, как правило букв, цифр и специальных знаков. Знаки в тексте программы часто объединены в последовательности — ключевые слова, слова объединены в предложения языка программирования — операторы. Каждый оператор, как правило, записывается в отдельную строку текста программы.

Таким образом текстовое программирование представляет собой иерархическую последовательность знаков, слов, операторов, записываемых и читаемых последовательно, как обычный текст человеческой письменности.

//Пример программы на языке C#
namespace oap
{
  class Program
  {
    static void Main(string[] args)
    {
      Console.WriteLine("введите температуру воздуха t: ");
      var t = int.Parse( Console.ReadLine() );
      if (t < 0)
        Console.WriteLine("одеть шубу");
      else
        Console.WriteLine("одеть куртку");
    }
  }
}

Структурное программирование

Запись алгоритмов решения сложных задач в любой форме, в том числе в виде блок-схемы, может быть слишком объемной и сложной. Поэтому на практике используют некоторые методы, облегчающие построение и реализацию алгоритмов.

Одним из наиболее распространенных является метод структурного программирования, или конструирование алгоритмов методом последовательной детализации. При пошаговой детализации алгоритмы записываются в виде множества вспомогательных алгоритмов, решающих вспомогательные подзадачи, а каждая из них требует получения определенных промежуточных результатов.

Разработав основной алгоритм, можно приступить к разработке алгоритмов «второго уровня», которые, в свою очередь, могут требовать дальнейшей детализации. Процесс детализации продолжается до тех пор, пока не будут написаны все нужные вспомогательные алгоритмы. Таким образом, основной алгоритм представляет собой план действий, которые необходимо выполнить для достижения поставленной цели, а суть каждого действия расшифровывается в соответствующем вспомогательном алгоритме.

Каждый вспомогательный алгоритм описывает способ решения некоторой вспомогательной задачи или даже общий способ решения некоторого класса вспомогательных подзадач.

Для реализации вспомогательных алгоритмов служат подпрограммы, или процедуры. Подпрограмма — часть алгоритма (программы), оформленная в виде, допускающем многократное обращение к ней из разных точек программы. Обращение к подпрограмме — переход к выполнению подпрограммы с заданием информации, необходимой для ее выполнения и возврата.

Общие принципы построения алгоритмов

При разработке алгоритма используют следующие основные принципы.

Принцип поэтапной детализации алгоритма (другое название — «проектирование сверху-вниз»). Этот принцип предполагает первоначальную разработку алгоритма в виде укрупненных блоков (разбиение задачи на подзадачи) и их постепенную детализацию.

Принцип «от главного к второстепенному», предполагающий составление алгоритма, начиная с главной конструкции. При этом, часто, приходится «достраивать» алгоритм в обратную сторону, например, от середины к началу.

Принцип структурирования, т.е. использования только типовых алгоритмических структур при построении алгоритма. Нетиповой структурой считается, например, циклическая конструкция, содержащая в теле цикла дополнительные выходы из цикла. В программировании нетиповые структуры появляются в результате злоупотребления командой безусловного перехода (GoTo). При этом программа хуже читается и труднее отлаживается.

Определение сложности работы алгоритмов

Существует несколько способов измерения сложности алгоритма. Программисты обычно сосредотачивают внимание на скорости алгоритма, но не менее важны и другие показатели – требования к объёму памяти, свободному месте на диске. Использование быстрого алгоритма не приведёт к ожидаемым результатам, если для его работы понадобится больше памяти, чем есть у компьютера.

Память или время

Многие алгоритмы предлагают выбор между объёмом памяти и скоростью. Задачу можно решить быстро, использую большой объём памяти, или медленнее, занимая меньший объём.
Типичным примером в данном случае служит алгоритм поиска кратчайшего пути. Представив карту города в виде сети, можно написать алгоритм для определения кратчайшего расстояния между двумя любыми точками этой сети. Чтобы не вычислять эти расстояния всякий раз, когда они нам нужны, мы можем вывести кратчайшие расстояния между всеми точками и сохранить результаты в таблице. Когда нам понадобится узнать кратчайшее расстояние между двумя заданными точками, мы можем просто взять готовое расстояние из таблицы.

Результат будет получен мгновенно, но это потребует огромного объёма памяти. Карта большого города может содержать десятки тысяч точек. Тогда, описанная выше таблица, должна содержать более 10 млрд. ячеек. Т.е. для того, чтобы повысить быстродействие алгоритма, необходимо использовать дополнительные 10 Гб памяти.

Из этой зависимости проистекает идея объёмно-временной сложности. При таком подходе алгоритм оценивается, как с точки зрении скорости выполнения, так и с точки зрения потреблённой памяти.

Мы будем уделять основное внимание временной сложности, но, тем не менее, обязательно будем оговаривать и объём потребляемой памяти.

Оценка порядка

При сравнении различных алгоритмов важно знать, как их сложность зависит от объёма входных данных. Допустим, при сортировке одним методом обработка тысячи чисел занимает 1 с., а обработка миллиона чисел – 10 с., при использовании другого алгоритма может потребоваться 2 с. и 5 с. соответственно. В таких условиях нельзя однозначно сказать, какой алгоритм лучше.

В общем случае сложность алгоритма можно оценить по порядку величины. Алгоритм имеет сложность O(f(n)), если при увеличении размерности входных данных N, время выполнения алгоритма возрастает с той же скоростью, что и функция f(N). Рассмотрим код, который для матрицы A[NxN] находит максимальный элемент в каждой строке.

for i:=1 to N do
begin
  max:=A[i,1];
  for j:=1 to N do
  begin
    if A[i,j]>max then
      max:=A[i,j]
  end;
  writeln(max);
end;

В этом алгоритме переменная i меняется от 1 до N. При каждом изменении i, переменная j тоже меняется от 1 до N. Во время каждой из N итераций внешнего цикла, внутренний цикл тоже выполняется N раз. Общее количество итераций внутреннего цикла равно N*N. Это определяет сложность алгоритма O(N2).

Оценивая порядок сложности алгоритма, необходимо использовать только ту часть, которая возрастает быстрее всего. Предположим, что рабочий цикл описывается выражением N3+N. В таком случае его сложность будет равна O(N3). Рассмотрение быстро растущей части функции позволяет оценить поведение алгоритма при увеличении N. Например, при N=100, то разница между N3+N=1000100 и N=1000000 равна всего лишь 100, что составляет 0,01%.

При вычислении O можно не учитывать постоянные множители в выражениях. Алгоритм с рабочим шагом 3N3 рассматривается, как O(N3). Это делает зависимость отношения O(N) от изменения размера задачи более очевидной.

Определение сложности

Наиболее сложными частями программы обычно является выполнение циклов и вызов процедур. В предыдущем примере весь алгоритм выполнен с помощью двух циклов.

Если одна процедура вызывает другую, то необходимо более тщательно оценить сложность последней. Если в ней выполняется определённое число инструкций (например, вывод на печать),то на оценку сложности это практически не влияет. Если же в вызываемой процедуре выполняется O(N) шагов, то функция может значительно усложнить алгоритм. Если же процедура вызывается внутри цикла, то влияние может быть намного больше.

В качестве примера рассмотрим две процедуры: Slow со сложностью O(N3) и Fast со сложностью O(N2).

procedure Slow;
var
  i,j,k: integer;
begin
  for i:=1 to N do
    for j:=1 to N do
      for k:=1 to N do
        //какое-то действие
end;

procedure Fast;
var
  i,j: integer;
begin
  for i:=1 to N do
    for j:=1 to N do
      Slow;
end;

procedure Both;
begin
  Fast;
end;

Если во внутренних циклах процедуры Fast происходит вызов процедуры Slow, то сложности процедур перемножаются. В данном случае сложность алгоритма составляет O(N2)*O(N3)=O(N5).

Если же основная программа вызывает процедуры по очереди, то их сложности складываются:

O(N2)+O(N3)=O(N3).

Следующий фрагмент имеет именно такую сложность:

procedure Slow;
var
  i,j,k: integer;
begin
  for i:=1 to N do
    for j:=1 to N do
      for k:=1 to N do
        {какое-то действие}
end;

procedure Fast;
var
  i,j: integer;
begin
  for i:=1 to N do
    for j:=1 to N do
      {какое-то действие}
end;

procedure Both;
begin
  Fast;
  Slow;
end;

Сложность рекурсивных алгоритмов

Простая рекурсия

Рекурсивными процедурами называются процедуры, которые вызывают сами себя. Их сложность определить довольно тяжело. Сложность этих алгоритмов зависит не только от сложности внутренних циклов, но и от количества итераций рекурсии. Рекурсивная процедура может выглядеть достаточно простой, но она может серьёзно усложнить программу, многократно вызывая себя.

Рассмотрим рекурсивную реализацию вычисления факториала:

function Factorial(n: Word): integer;
begin
  if n > 1 then
    Factorial:=n*Factorial(n-1)
  else
    Factorial:=1;
end;

Эта процедура выполняется N раз, таким образом, вычислительная сложность этого алгоритма равна O(N).

Многократная рекурсия

Рекурсивный алгоритм, который вызывает себя несколько раз, называется многократной рекурсией. Такие процедуры гораздо сложнее анализировать, кроме того, они могут сделать алгоритм гораздо сложнее.

Рассмотрим такую процедуру:

procedure DoubleRecursive(N: integer);
begin
  if N>0 then
  begin
    DoubleRecursive(N-1);
    DoubleRecursive(N-1);
  end;
end;

Поскольку процедура вызывается дважды, можно было бы предположить, что её рабочий цикл будет равен O(2N)=O(N). Но на самом деле ситуация гораздо сложнее. Если внимательно исследовать этот алгоритм, то станет очевидно, что его сложность равна O(2(N+1)-1)=O(2N).

Всегда надо помнить, что анализ сложности рекурсивных алгоритмов весьма нетривиальная задача.

Объёмная сложность рекурсивных алгоритмов

Для всех рекурсивных алгоритмов очень важно понятие объёмной сложности. При каждом вызове процедура запрашивает небольшой объём памяти, но этот объём может значительно увеличиваться в процессе рекурсивных вызовов. По этой причине всегда необходимо проводить хотя бы поверхностный анализ объёмной сложности рекурсивных процедур.

Средний и наихудший случай

Оценка сложности алгоритма до порядка является верхней границей сложности алгоритмов. Если программа имеет большой порядок сложности, это вовсе не означает, что алгоритм будет выполняться действительно долго. На некоторых наборах данных выполнение алгоритма занимает намного меньше времени, чем можно предположить на основе их сложности. Например, рассмотрим код, который ищет заданный элемент в векторе A.

function Locate(data: integer): integer;
var
  i: integer;
  fl: boolean;
begin
  fl:=false; i:=1;
  while (not fl) and (i<=N) do
  begin
    if A[i]=data then
      fl:=true
    else
      i:=i+1;
  end;
  if not fl then
    i:=0;
  Locate:=i;
end;

Если искомый элемент находится в конце списка, то программе придётся выполнить N шагов. В таком случае сложность алгоритма составит O(N). В этом наихудшем случае время работы алгоритма будем максимальным.

С другой стороны, искомый элемент может находится в списке на первой позиции. Алгоритму придётся сделать всего один шаг. Такой случай называется наилучшим и его сложность можно оценить, как O(1).

Оба эти случая маловероятны. Нас больше всего интересует ожидаемый вариант. Если элемента списка изначально беспорядочно смешаны, то искомый элемент может оказаться в любом месте списка. В среднем потребуется сделать N/2 сравнений, чтобы найти требуемый элемент. Значит сложность этого алгоритма в среднем составляет O(N/2)=O(N).

В данном случае средняя и ожидаемая сложность совпадают, но для многих алгоритмов наихудший случай сильно отличается от ожидаемого. Например, алгоритм быстрой сортировки в наихудшем случае имеет сложность порядка O(N2), в то время как ожидаемое поведение описывается оценкой O(N*log(N)), что много быстрее.

Общие функции оценки сложности

Сейчас мы перечислим некоторые функции, которые чаще всего используются для вычисления сложности. Функции перечислены в порядке возрастания сложности. Чем выше в этом списке находится функция, тем быстрее будет выполняться алгоритм с такой оценкой.

  1. C – константа (время выполнения алгоритма не зависит от входных параметров, линейные алгоритмы)
  2. log(log(N))
  3. log(N) — (поиск в сортированном массиве)
  4. NC, 0<C<1
  5. N — линейная сложность (поиск в не сортированном массиве)
  6. N*log(N)
  7. NC, C>1
  8. CN, C>1
  9. N!

Если мы хотим оценить сложность алгоритма, уравнение сложности которого содержит несколько этих функций, то уравнение можно сократить до функции, расположенной ниже в таблице. Например, O(log(N)+N!)=O(N!).

Если алгоритм вызывается редко и для небольших объёмов данных, то приемлемой можно считать сложность O(N2), если же алгоритм работает в реальном времени, то не всегда достаточно производительности O(N).

Обычно алгоритмы со сложностью N*log(N) работают с хорошей скоростью. Алгоритмы со сложностью NC можно использовать только при небольших значениях C. Вычислительная сложность алгоритмов, порядок которых определяется функциями CN и N! очень велика, поэтому такие алгоритмы могут использоваться только для обработки небольшого объёма данных.

В заключение приведём таблицу, которая показывает, как долго компьютер, осуществляющий миллион операций в секунду, будет выполнять некоторые медленные алгоритмы.

Сложность N=10 N=20 N=30 N=40 N=50
N3 0.001 c 0.008 c 0.027 c 0.064 c 0.125 c
2N 0.001 c 1.05 c 17.9 мин 1.29 дней 35.7 лет
3N 0.059 c 58.1 мин 6.53 лет 3.86*105 лет 2.28*1010 лет
N! 3.63 c 7.71*104 лет 8.41*1018 лет 2.59*1034 лет 9.64*1050 лет

Википедия: Временная сложность алгоритма


КОНТРОЛЬНЫЕ ВОПРОСЫ

  1. Этапы решения задачи на компьютере? Охарактеризуйте их. Проиллюстрируйте этапы постановки и формализации на примере задачи: вычислить время движения моторной лодки между двумя пунктами.

  2. Понятие алгоритма.

  3. Основные типы данных.

  4. Свойства алгоритма.

  5. Формы записи алгоритмов.

  6. Что такое структурное программирование? Каковы основные прнципы структурной методики построения алгоритмов?

Алгоритм. Свойства алгоритмов.
Блок-схемы. Алгоритмические языки

Код ОГЭ: 1.3.1. Алгоритм, свойства алгоритмов, способы записи алгоритмов.
Блок-схемы. Представление о программировании



Понятие алгоритма является одним из основных понятий вычислительной математики и информатики.

■  Алгоритм
строго определенная последовательность действий для некоторого исполнителя, приводящая к поставленной цели или заданному результату за конечное число шагов.

Любой алгоритм составляется в расчете на конкретного исполнителя с учетом его возможностей. Исполнитель — субъект, способный исполнять некоторый набор команд. Совокупность команд, которые исполнитель может понять и выполнить, называется системой команд исполнителя.

Для выполнения алгоритма исполнителю недостаточно только самого алгоритма. Выполнить алгоритм — значит применить его к решению конкретной задачи, т. е. выполнить запланированные действия по отношению к определенным входным данным. Поэтому исполнителю необходимо иметь исходные (входные) данные — те, что задаются до начала алгоритма.

В результате выполнения алгоритма исполнитель должен получить искомый результат — выходные данные, которые исполнитель выдает как результат выполненной работы. В процессе работы исполнитель может создавать и использовать данные, не являющиеся выходными, — промежуточные данные.

Свойства алгоритмов

Алгоритм должен обладать определенными свойствами. Наиболее важные свойства алгоритмов:

  • Дискретность. Процесс решения задачи должен быть разбит на последовательность отдельных шагов — простых действий, которые выполняются одно за другим в определенном порядке. Каждый шаг называется командой (инструкцией). Только после завершения одной команды можно перейти к выполнению следующей.
  • Конечность. Исполнение алгоритма должно завершиться за конечное число шагов; при этом должен быть получен результат.
  • Понятность. Каждая команда алгоритма должна быть понятна исполнителю. Алгоритм должен содержать только те команды, которые входят в систему команд его исполнителя.
  • Определенность (детерминированность). Каждая команда алгоритма должна быть точно и однозначно определена. Также однозначно должно быть определено, какая команда будет выполняться на следующем шаге. Результат выполнения команды не должен зависеть ни от какой дополнительной информации. У исполнителя не должно быть возможности принять самостоятельное решение (т. е. он исполняет алгоритм формально, не вникая в его смысл). Благодаря этому любой исполнитель, имеющий необходимую систему команд, получит один и тот же результат на основании одних и тех же исходных данных, выполняя одну и ту же цепочку команд.
  • Массовость. Алгоритм предназначен для решения не одной конкретной задачи, а целого класса задач, который определяется диапазоном возможных входных данных.

Способы представления алгоритмов:

  • словесная запись (на естественном языке). Алгоритм записывается в виде последовательности пронумерованных команд, каждая из которых представляет собой произвольное изложение действия;
  • блок–схема (графическое изображение). Алгоритм представляется с помощью специальных значков (геометрических фигур) — блоков;
  • формальные алгоритмические языки. Для записи алгоритма используется специальная система обозначений (искусственный язык, называемый алгоритмическим);
  • псевдокод. Запись алгоритма на основе синтеза алгоритмического и обычного языков. Базовые структуры алгоритма записываются строго с помощью элементов некоторого базового алгоритмического языка.

Словесная запись алгоритма

Произвольное изложение этапов алгоритма на естественном языке имеет свои недостатки. Словесные описания строго не формализуемы, поэтому может быть нарушено свойство определенности алгоритма: исполнитель может неточно понять описание этапа алгоритма. Словесная запись достаточно многословна. Сложные задачи трудно представить в словесной форме.

■  Пример 1. Записать в словесной форме правило деления обыкновенных дробей.

Решение.
Шаг 1. Числитель первой дроби умножить на знаменатель второй дроби.
Шаг 2. Знаменатель первой дроби умножить на числитель второй дроби.
Шаг 3. Записать дробь, числителем которой являет результат выполнения шага 1, знаменателем — результат выполнения шага 2.

Описанный алгоритм применим к любым двум обыкновенным дробям. В результате его выполнения будут получены выходные данные — результат деления двух дробей (исходных данных).

Формальные исполнители алгоритма

Формальный исполнитель — это исполнитель, который выполняет все команды алгоритма строго в предписанной последовательности, не вникая в его смысл, не внося ничего в алгоритм и ничего не отбрасывая. Обычно под формальным исполнителем понимают технические устройства, автоматы, роботов и т. п. Компьютер можно считать формальным исполнителем.

Программы на языке произвольного формального исполнителя могут состоять только из элементарных команд, которые входят в его систему (которые исполнитель «понимает»).

Исполнитель может иметь свою среду (например, систему координат, клеточное поле и др.). Среда исполнителя — это совокупность объектов, над которыми он может выполнять определенные действия (команды), и связей между этими объектами. Алгоритмы в этой среде выполняются исполнителем по шагам.

■ Пример 2. Исполнитель Крот имеет следующую систему команд:

  1. вперед k — продвижение на указанное число шагов вперед;
  2. поворот s — поворот на s градусов по часовой стрелке;
  3. повторить m [команда1 … командаN] — повторить m раз серию указанных команд.

Какой след оставит за собой исполнитель после выполнения следующей последовательности команд?

Повторить 5 [вперед 10 поворот 72]

Решение. Команда вынуждает исполнителя 5 раз повторить набор действий: пройти 10 шагов вперед и повернуть на 72° по часовой стрелке. Так как поворот происходит на один и тот же угол, то за весь путь исполнитель повернет на 5 х 72° = 360°. Поскольку все отрезки пути одинаковой длины и сумма внешних углов любого многоугольника составляет 360°, то в результате будет оставлен след в форме правильного пятиугольника со стороной в 10 шагов исполнителя.

Заметим, что если увеличить количество повторов серии команд, то исполнитель будет повторно передвигаться по тем же отрезкам (произойдет повторное движение по тому же пятиугольнику).

■ Пример 3.  В системе команд предыдущего исполнителя Крот сформировать алгоритм вычерчивания пятиступенчатой лестницы (длина ступеньки — 10 шагов исполнителя).

Решение. За каждый шаг цикла должно происходить 4 действия: движение вперед на 10 шагов исполнителя, поворот на 90° по часовой стрелке, еще 10 шагов вперед и поворот на 90° против часовой стрелки (= 270° по часовой). В результате за один шаг цикла формируется ломаная из двух отрезков длиной 10 под прямым углом. За пять таких шагов сформируется 5–ступенчатая лестница (ломаная будет содержать 10 звеньев).

Повторить 5 [вперед 10 поворот 90 вперед 10 поворот 270]

Блок–схема

Блок–схема — наглядный способ представления алгоритма. Блок–схема отображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий. Определенному типу действия соответствует определенная геометрическая фигура блока. Линии, соединяющие блоки, определяют очередность выполнения действий. По умолчанию блоки соединяются сверху вниз и слева направо. Если последовательность выполнения блоков должна быть иной, используются направленные линии (стрелки).

Основные элементы блок–схемы алгоритма:

Основные элементы блок–схемы алгоритма:

Общий вид блок–схемы алгоритма:

Общий вид блок–схемы алгоритма:

■ Пример 4.  Алгоритм целочисленных преобразований представлен в виде фрагмента блок–схемы. Знаком := в нем обозначен оператор присваивания некоторого значения указанной переменной. Запись X := 1 означает, что переменная Х принимает значение 1.

Определить результат работы алгоритма для исходных данных Х = 7, Y = 12.

Решение.

  1. Блок ввода данных определит исходные значения переменных Х и Y (7 и 12 соответственно).
  2. В первом условном блоке осуществляется сравнение значений Х и Y. Поскольку условие, записанное в блоке, неверно (7 < 12), происходит переход по линии «нет».
  3. Во втором условном блоке выполняется второе сравнение, которое для исходных данных оказывается верным. Происходит переход по линии «да».
  4. Вычисляется результат выполнения алгоритма: X := 0, Y := 1.

Ответ: X := 0, Y := 1.

Алгоритмические языки

Алгоритмический язык — это искусственный язык (система обозначений), предназначенный для записи алгоритмов. Он позволяет представить алгоритм в виде текста, составленного по определенным правилам с использованием специальных служебных слов. Количество таких слов ограничено. Каждое служебное слово имеет точно определенный смысл, назначение и способ применения. При записи алгоритма служебные слова выделяют полужирным шрифтом или подчеркиванием.

В алгоритмическом языке используются формальные конструкции, но нет строгих синтаксических правил для записи команд. Различные алгоритмические языки различаются набором служебных слов и формой записи основных конструкций.

Алгоритмический язык, конструкции которого однозначно преобразуются в команды для компьютера, называется языком программирования. Текст алгоритма, записанный на языке программирования, называется программой.

Псевдокод

Псевдокод занимает промежуточное положение между естественным языком и языками программирования. Пример псевдокода — учебный алгоритмический язык. Алфавит учебного алгоритмического языка является открытым. Существенным достоинством этого языка является то, что его служебные слова, конструкции и правила записи алгоритма весьма схожи с теми, что применяются в распространенных языках программирования. Благодаря этому учебный алгоритмический язык позволяет легче освоить основы программирования.

Служебные слова учебного алгоритмического языка:

Служебные слова учебного алгоритмического языка:

Стандартная структура алгоритма

Представление алгоритма на алгоритмическом языке (в том числе и языке программирования) состоит из двух частей. Первая часть — заголовок — задает название алгоритма и включает описание переменных, которые используются в нем. Вторая часть — тело алгоритма — содержит последовательность команд алгоритма.

Общий вид записи алгоритма на учебном алгоритмическом языке:

В начале заголовка записывается служебное слово алг, после чего указывается имя алгоритма. Описание переменных, являющихся аргументами алгоритма и его результатами, приводится после названия в круглых скобках.

В следующих строках конкретизируют, какие именно переменные являются аргументами алгоритма (входными данными), а какие — его результатами (выходными данными). Для этого после служебного слова арг приводится список имен переменных–аргументов; в следующей строке после служебного слова рез приводится список имен переменных–результатов.

Между служебными словами нач и кон размещается тело алгоритма — конечная последовательность команд, выполнение которых предписывает алгоритм. Команды алгоритма записывают одну за одной в отдельных строках. В случае необходимости можно записать две или более команд в одной строке, тогда соседние команды разделяют точкой с запятой. Если в алгоритме применяются промежуточные переменные, их описание приводят в начальной строке тела алгоритма рядом со словом нач.

Примеры заголовков алгоритмов:

В первом примере алгоритм имеет название Объем_шара, один вещественный аргумент Радиус и один вещественный результат Объем. Во втором примере алгоритм под названием Choice имеет три аргумента — целые M и N и логический b, а также два результата — вещественные Var1 и Var2.

Пример алгоритма вычисления гипотенузы прямоугольного треугольника:

На вход алгоритму даются два вещественных аргумента a и b (величины катетов), результатом является вещественная переменная с (гипотенуза). Для ее расчета используется функция вычисления квадратного корня sqrt.

Описание величин и действия над ними

При описании алгоритма необходимо указать названия (обозначения) всех величин, которые будут в нем найдены или использованы.

При представлении алгоритма решения в виде блок–схемы выбранные обозначения величин приводятся отдельно от блок–схемы (как объяснение к ней). Если алгоритм представлен на языке программирования, то характеристика обрабатываемых величин включается в программу. Учебный алгоритмический язык также предусматривает описание величин, используемых в алгоритме.

Все величины в алгоритме разделяют на постоянные (константы) и переменные. Константа не может изменять свои значения в процессе работы алгоритма. Переменная может приобретать различные значения, которые сохраняются до тех пор, пока она не получит новое значение. Переменным величинам назначают имена. Таким образом, переменная — это именуемая величина, которая в процессе выполнения алгоритма может приобретать и хранить различные значения.

В алгоритмическом языке не существует специальных правил именования переменных. Однако их названия не должны совпадать со служебными словами алгоритмического языка. Во многих языках программирования для имен можно использовать только латинские буквы, цифры, знак подчеркивания. Имена обязательно должны начинаться с буквы, при этом строчные и прописные буквы в именах не различаются. В одном алгоритме не могут существовать разные объекты с одинаковыми именами. Все имена являются уникальными. Имена переменных и констант стараются выбирать так, чтобы они напоминали их смысл. Например, имена переменных и констант: S, p12, result, итог.

При представлении алгоритма на алгоритмическом языке именуются не только величины, но и сам алгоритм, и другие объекты. Имя алгоритма выбирают так же, как и имена переменных.

Величина — переменная, с которой связывается определенное множество значений. Этой величине присваивается имя (в языках программирования его называют идентификатор).

Значение — то, чему равна переменная в конкретный момент. Значение переменной можно задать двумя способами: присваиванием и с помощью процедуры ввода.

Тип переменной определяет диапазон всех значений, которые может принимать данная переменная, и допустимые для нее операции. Существует несколько предопределенных типов переменных. К стандартным типам относятся числовые, литерные и логические типы.

Числовой тип предназначен для обработки числовых данных. Различают целый и вещественный числовые типы. Целый тип в учебном алгоритмическом языке обозначается служебным словом цел, к нему относятся целые числа некоторого определенного диапазона. Они не могут иметь дробной части, даже нулевой. Число 123,0 является не целым, а вещественным числом. Вещественные величины относятся к вещественному типу данных и обозначаются в учебном алгоритмическом языке служебным словом вещ. Такие величины могут отображаться двумя способами: в форме с фиксированной запятой (например, 0,0511 или –712,3456) и с плавающей запятой (те же примеры: 5,11*10-2 и –7,123456*102).

Над числовыми данными можно выполнять арифметические операции и операции сравнения.

обозначение операций

Над целыми числами можно также выполнять две операции целочисленного деления div и mod. Операция div обозначает деление с точностью до целых чисел (остаток от деления игнорируется). Операция mod позволяет узнать остаток при делении с точностью до целых чисел. Например, результатом операции 100 div 9 будет число 11, а результатом 100 mod 9 — число 1.

Литерный тип представляет собой символы и строки, он дает возможность работать с текстом. Литерные величины — это произвольные последовательности символов. Эти последовательности заключаются в двойные кавычки: «результат», «sum_price». В качестве символов могут быть использованы буквы, цифры, знаки препинания, пробел и некоторые другие специальные знаки (возможными символами могут быть символы таблицы ASCII). В учебном алгоритмическом языке литерные величины обозначаются лит.

Над литерными величинами возможны операции сравнения и слияния. Сравнение литерных величин производится в соответствии с их упорядочением: «a» < «b», «b» < «с» и т. д. Слияние (конкатенация) литерных величин приводит к образованию новой величины: «пол» + «е» образует «поле».

Логический тип определяет логические переменные, которые могут принимать только два значения — истина (True) или ложь (False). Над логическими величинами можно выполнять все стандартные логические операции.

Команды учебного алгоритмического языка

Учебный алгоритмический язык использует следующие команды для реализации алгоритма:

ОПЕРАЦИЯ ПРИСВАИВАНИЯ

Ко всем типам величин может быть применена операция присваивания, которая обозначается знаком «:=» и служит для вычисления выражения, стоящего справа, и присваивания его значения переменной, указанной слева. Например, если переменная H имела значение 12, а переменная М — значение 3, то после выполнения оператора присваивания H := М + 10 значение переменной H изменится и станет равным 13.

Вычисления в операторе присваивания выполняются справа налево: сначала необходимо вычислить значение выражения справа от знака присваивания. Поэтому допустимы конструкции вида H := Н + 10. В этом случае сначала будет вычислено выражение в правой части (12 + 10), а его результат будет присвоен в качестве нового значения переменной Н (значение 22).

Для оператора присваивания обязательно должны быть определены значения всех переменных в его правой части. Кроме того, типы данных в левой и правой части должны соответствовать друг другу.

ВВОД И ВЫВОД ДАННЫХ

В процессе работы алгоритма происходит обработка исходных данных для получения выходных (результирующих) данных. В процессе этого преобразования могут быть найдены некоторые промежуточные результаты. Входные данные должны быть переданы алгоритму («введены»), а по окончании работы алгоритм должен вывести результат.

При записи алгоритма с помощью блок–схемы ввод и вывод данных отображаются с помощью блоков ввода/вывода (параллелограммов). При этом только указывается перечень данных для ввода или вывода, а сам процесс не детализируется.

Описание алгоритма средствами псевдокода может вовсе не предусматривать команды ввода или вывода данных. В заголовке алгоритма указывается, какие данные являются аргументами, какие — результатами работы алгоритма. Считается, что аргументы будут предоставлены до выполнения алгоритма, результаты будут выведены после его выполнения, и описывается лишь процесс превращения аргументов в результаты.

В записи алгоритма с помощью учебного алгоритмического языка для операций ввода/вывода используются команды ввод и вывод. После этих служебных слов указывается список ввода или вывода. Элементы этих списков перечисляются через запятую.

Список ввода может содержать только имена переменных. После выполнения команды ввод алгоритм получит значения перечисленных в списке переменных.

Список вывода может содержать имена переменных, константы и выражения. Если в списке вывода указано имя переменной, будет выведено ее значение. Если список вывода содержит выражение, будет выведен результат его вычисления. Текстовые константы следует записывать в списке вывода в кавычках (выводиться они будут без кавычек).

Если при выполнении алгоритма ввести значения 20 и 10, то переменная v примет значение 20, а переменная t — значение 10. По окончании работы алгоритма будет выведен результат:

Путь 200 м

Тот же результат был бы получен, если бы изменить строку вывода на

вывод «Путь «, v * t, » м»


Конспект по информатике «Алгоритм. Свойства алгоритмов. Блок-схемы. Алгоритмические языки».

Вернуться к Списку конспектов по информатике.


Download Article


Download Article

An algorithm is a set of steps designed to solve a problem or accomplish a task. Algorithms are usually written in pseudocode, or a combination of your speaking language and one or more programming languages, in advance of writing a program. This wikiHow teaches you how to piece together an algorithm that gets you started on your application.

Steps

  1. Image titled Write an Algorithm in Programming Language Step 1

    1

    Determine the outcome of your code. What is the specific problem you want to solve or the task you want it to accomplish? Once you have a solid idea of what you’re aiming to accomplish, you can determine the steps it will take to get there.

  2. Image titled Write an Algorithm in Programming Language Step 2

    2

    Decide on a starting point. Finding your starting and ending point are crucial to listing the steps of the process. To determine a starting point, determine the answers to these questions:[1]

    • What data/inputs are available?
    • Where is that data located?
    • What formulas are applicable to the issue at hand?
    • What are the rules to working with the available data?
    • How do the data values relate to each other?

    Advertisement

  3. Image titled Write an Algorithm in Programming Language Step 3

    3

    Find the ending point of the algorithm. As with the starting point, you can find the end point of your algorithm by focusing on these questions:

    • What facts will we learn from the process?
    • What changes from the start to the end?
    • What will be added or no longer exist?
  4. Image titled Write an Algorithm in Programming Language Step 4

    4

    List the steps from start to finish. Start with broad steps. To use a real-world example, let’s say your goal is to have lasagna for dinner. You’ve determined that the starting point is to find a recipe, and that the end result is that you’ll have a lasagna fully cooked and ready to eat by 7 PM. Your steps may look something like this:

    • Search for a recipe online.
    • Look for the ingredients you already have in the kitchen.
    • Make a list of ingredients you’ll need from the store.
    • Buy the missing ingredients.
    • Return home.
    • Prepare the lasagna.
    • Remove the lasagna from the oven.
  5. Image titled Write an Algorithm in Programming Language Step 5

    5

    Determine how you will accomplish each step. Now that you have a step-by-step outline, it’s time to think about how you might code each step. Which language will you use? What resources are available? What’s the most efficient way to accomplish each step in that language? Incorporate some of that code into your algorithm. Expand each step until you’ve detailed the entire process.

    • For example, the first step in our lasagna algorithm is Search for a recipe online. But what is involved in this search? Be specific. For example:
      • Turn on your computer.
        • Check to make sure you’re connected to the internet. Connect to the internet if you aren’t already.
      • Open a web browser.
      • Enter your search terms.
      • Click a recipe link.
      • Determine whether the recipe meets your needs.
        • Filter out recipes that aren’t vegetarian.
        • Make sure the recipe makes at least 5 servings.
      • Repeat some of these steps until you find the right recipe.
    • Consider the resources at your disposal, such as the capabilities of the system you’re developing a program for. In the case of lasagna, we assume the person making the lasagna knows how to search the internet, operate an oven, etc.
  6. Image titled Write an Algorithm in Programming Language Step 6

    6

    Review the algorithm. Now that you’ve written your algorithm, it’s time to evaluate the process. Your algorithm is designed to accomplish something specific, and you’ll need it to start writing your program. Ask yourself the following questions, and address each as necessary:[2]

    • Does the algorithm solve the problem/accomplish the task?
    • Does it have clearly defined inputs and outputs?
    • Should the end goal be redefined to be more general? More specific?
    • Can any of the steps be simplified?
    • Is the algorithm guaranteed to end with the correct result?
  7. Advertisement

Add New Question

  • Question

    How do I write an algorithm that 7 is greater than 5?

    nicholasz2510 Gaming, Travel, and Music

    nicholasz2510 Gaming, Travel, and Music

    Community Answer

    The syntax can vary over different languages, but to write the conditional 7 is greater than 5 would most likely by simply be this: 7 > 5.

  • Question

    How do I make an algorithm of the sum of two numbers?

    Adam Blalock

    Adam Blalock

    Community Answer

    To add two numbers in a programming language, you just use a «+» between them. In Python (a programming language), it would look like: x = 10, y = 13; print x + y.

  • Question

    Is there any way to understand this easier? I’m 15 and still trying to understand the concepts.

    Community Answer

    I just started programming and my college professors are very vague and make understanding the concepts pretty hard. Your best bet is to keep looking up the terms on Google, that’s what I’ve been doing, and it works to a degree.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

  • Check out existing algorithms for ideas on writing your own.

  • Use fast calculating iterations.

  • Focus on efficiency when coding.

Show More Tips

Thanks for submitting a tip for review!

Advertisement

About This Article

Article SummaryX

1. Determine the problem or task to accomplish.
2. Decide the starting point.
3. Figure out the endpoint.
4. List the steps that occur between the start and finish.
5. Break down the steps as necessary.
6. Review the algorithm and change where necessary.

Did this summary help you?

Thanks to all authors for creating a page that has been read 432,118 times.

Is this article up to date?


Download Article


Download Article

An algorithm is a set of steps designed to solve a problem or accomplish a task. Algorithms are usually written in pseudocode, or a combination of your speaking language and one or more programming languages, in advance of writing a program. This wikiHow teaches you how to piece together an algorithm that gets you started on your application.

Steps

  1. Image titled Write an Algorithm in Programming Language Step 1

    1

    Determine the outcome of your code. What is the specific problem you want to solve or the task you want it to accomplish? Once you have a solid idea of what you’re aiming to accomplish, you can determine the steps it will take to get there.

  2. Image titled Write an Algorithm in Programming Language Step 2

    2

    Decide on a starting point. Finding your starting and ending point are crucial to listing the steps of the process. To determine a starting point, determine the answers to these questions:[1]

    • What data/inputs are available?
    • Where is that data located?
    • What formulas are applicable to the issue at hand?
    • What are the rules to working with the available data?
    • How do the data values relate to each other?

    Advertisement

  3. Image titled Write an Algorithm in Programming Language Step 3

    3

    Find the ending point of the algorithm. As with the starting point, you can find the end point of your algorithm by focusing on these questions:

    • What facts will we learn from the process?
    • What changes from the start to the end?
    • What will be added or no longer exist?
  4. Image titled Write an Algorithm in Programming Language Step 4

    4

    List the steps from start to finish. Start with broad steps. To use a real-world example, let’s say your goal is to have lasagna for dinner. You’ve determined that the starting point is to find a recipe, and that the end result is that you’ll have a lasagna fully cooked and ready to eat by 7 PM. Your steps may look something like this:

    • Search for a recipe online.
    • Look for the ingredients you already have in the kitchen.
    • Make a list of ingredients you’ll need from the store.
    • Buy the missing ingredients.
    • Return home.
    • Prepare the lasagna.
    • Remove the lasagna from the oven.
  5. Image titled Write an Algorithm in Programming Language Step 5

    5

    Determine how you will accomplish each step. Now that you have a step-by-step outline, it’s time to think about how you might code each step. Which language will you use? What resources are available? What’s the most efficient way to accomplish each step in that language? Incorporate some of that code into your algorithm. Expand each step until you’ve detailed the entire process.

    • For example, the first step in our lasagna algorithm is Search for a recipe online. But what is involved in this search? Be specific. For example:
      • Turn on your computer.
        • Check to make sure you’re connected to the internet. Connect to the internet if you aren’t already.
      • Open a web browser.
      • Enter your search terms.
      • Click a recipe link.
      • Determine whether the recipe meets your needs.
        • Filter out recipes that aren’t vegetarian.
        • Make sure the recipe makes at least 5 servings.
      • Repeat some of these steps until you find the right recipe.
    • Consider the resources at your disposal, such as the capabilities of the system you’re developing a program for. In the case of lasagna, we assume the person making the lasagna knows how to search the internet, operate an oven, etc.
  6. Image titled Write an Algorithm in Programming Language Step 6

    6

    Review the algorithm. Now that you’ve written your algorithm, it’s time to evaluate the process. Your algorithm is designed to accomplish something specific, and you’ll need it to start writing your program. Ask yourself the following questions, and address each as necessary:[2]

    • Does the algorithm solve the problem/accomplish the task?
    • Does it have clearly defined inputs and outputs?
    • Should the end goal be redefined to be more general? More specific?
    • Can any of the steps be simplified?
    • Is the algorithm guaranteed to end with the correct result?
  7. Advertisement

Add New Question

  • Question

    How do I write an algorithm that 7 is greater than 5?

    nicholasz2510 Gaming, Travel, and Music

    nicholasz2510 Gaming, Travel, and Music

    Community Answer

    The syntax can vary over different languages, but to write the conditional 7 is greater than 5 would most likely by simply be this: 7 > 5.

  • Question

    How do I make an algorithm of the sum of two numbers?

    Adam Blalock

    Adam Blalock

    Community Answer

    To add two numbers in a programming language, you just use a «+» between them. In Python (a programming language), it would look like: x = 10, y = 13; print x + y.

  • Question

    Is there any way to understand this easier? I’m 15 and still trying to understand the concepts.

    Community Answer

    I just started programming and my college professors are very vague and make understanding the concepts pretty hard. Your best bet is to keep looking up the terms on Google, that’s what I’ve been doing, and it works to a degree.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

  • Check out existing algorithms for ideas on writing your own.

  • Use fast calculating iterations.

  • Focus on efficiency when coding.

Show More Tips

Thanks for submitting a tip for review!

Advertisement

About This Article

Article SummaryX

1. Determine the problem or task to accomplish.
2. Decide the starting point.
3. Figure out the endpoint.
4. List the steps that occur between the start and finish.
5. Break down the steps as necessary.
6. Review the algorithm and change where necessary.

Did this summary help you?

Thanks to all authors for creating a page that has been read 432,118 times.

Is this article up to date?

Схемаэто абстракция какого-либо процесса или системы, наглядно отображающая наиболее значимые части. Схемы широко применяются с древних времен до настоящего времени — чертежи древних пирамид, карты земель, принципиальные электрические схемы. Очевидно, древние мореплаватели хотели обмениваться картами и поэтому выработали единую систему обозначений и правил их выполнения. Аналогичные соглашения выработаны для изображения схем-алгоритмов и закреплены ГОСТ и международными стандартами.

На территории Российской Федерации действует единая система программной документации (ЕСПД), частью которой является Государственный стандарт — ГОСТ 19.701-90 «Схемы алгоритмов программ, данных и систем» [1]. Не смотря на то, что описанные в стандарте обозначения могут использоваться для изображения схем ресурсов системы, схем взаимодействия программ и т.п., в настоящей статье описана лишь разработка схем алгоритмов программ.

Рассматриваемый ГОСТ практически полностью соответствует международному стандарту ISO 5807:1985.

Содержание:

  1. Элементы блок-схем алгоритмов
  2. Примеры блок-схем
  3. Нужны ли блок-схемы? Альтернативы

Элементы блок-схем алгоритмов

Блок-схема представляет собой совокупность символов, соответствующих этапам работы алгоритма и соединяющих их линий. Пунктирная линия используется для соединения символа с комментарием. Сплошная линия отражает зависимости по управлению между символами и может снабжаться стрелкой. Стрелку можно не указывать при направлении дуги слева направо и сверху вниз. Согласно п. 4.2.4, линии должны подходить к символу слева, либо сверху, а исходить снизу, либо справа.

Есть и другие типы линий, используемые, например, для изображения блок-схем параллельных алгоритмов, но в текущей статье они, как и ряд специфических символов, не рассматриваются. Рассмотрены лишь основные символы, которых всегда достаточно студентам.

flowcharts_terminator
Терминатор начала и конца работы функции
Терминатором начинается и заканчивается любая функция. Тип возвращаемого значения и аргументов функции обычно указывается в комментариях к блоку терминатора.
flowcharts_data
Операции ввода и вывода данных
В ГОСТ определено множество символов ввода/вывода, например вывод на магнитные ленты, дисплеи и т.п. Если источник данных не принципиален, обычно используется символ параллелограмма. Подробности ввода/вывода могут быть указаны в комментариях.
flowcharts_process
Выполнение операций над данными
В блоке операций обычно размещают одно или несколько (ГОСТ не запрещает) операций присваивания, не требующих вызова внешних функций.
flowcharts_solution
Блок, иллюстрирующий ветвление алгоритма
Блок в виде ромба имеет один вход и несколько подписанных выходов. В случае, если блок имеет 2 выхода (соответствует оператору ветвления), на них подписывается результат сравнения — «да/нет». Если из блока выходит большее число линий (оператор выбора), внутри него записывается имя переменной, а на выходящих дугах — значения этой переменной.
flowcharts_procedure
Вызов внешней процедуры
Вызов внешних процедур и функций помещается в прямоугольник с дополнительными вертикальными линиями.
flowcharts_loop
Начало и конец цикла
Символы начала и конца цикла содержат имя и условие. Условие может отсутствовать в одном из символов пары. Расположение условия, определяет тип оператора, соответствующего символам на языке высокого уровня — оператор с предусловием (while) или постусловием (do … while).
flowcharts_preprocess
Подготовка данных
Символ «подготовка данных» в произвольной форме (в ГОСТ нет ни пояснений, ни примеров), задает входные значения. Используется обычно для задания циклов со счетчиком.
flowcharts_connector
Соединитель
В случае, если блок-схема не умещается на лист, используется символ соединителя, отражающий переход потока управления между листами. Символ может использоваться и на одном листе, если по каким-либо причинам тянуть линию не удобно.
flowcharts_comment
Комментарий
Комментарий может быть соединен как с одним блоком, так и группой. Группа блоков выделяется на схеме пунктирной линией.

Примеры блок-схем

В качестве примеров, построены блок-схемы очень простых алгоритмов сортировки, при этом акцент сделан на различные реализации циклов, т.к. у студенты делают наибольшее число ошибок именно в этой части.

Сортировка вставками

Массив в алгоритме сортировки вставками разделяется на отсортированную и еще не обработанную части. Изначально отсортированная часть состоит из одного элемента, и постепенно увеличивается.

На каждом шаге алгоритма выбирается первый элемент необработанной части массива и вставляется в отсортированную так, чтобы в ней сохранялся требуемый порядок следования элементов. Вставка может выполняться как в конец массива, так и в середину. При вставке в середину необходимо сдвинуть все элементы, расположенные «правее» позиции вставки на один элемент вправо. В алгоритме используется два цикла — в первом выбираются элементы необработанной части, а во втором осуществляется вставка.

insertsort_flowchart

Блок-схема алгоритма сортировки вставками

В приведенной блок-схеме для организации цикла используется символ ветвления. В главном цикле (i < n) перебираются элементы необработанной части массива. Если все элементы обработаны — алгоритм завершает работу, в противном случае выполняется поиск позиции для вставки i-того элемента. Искомая позиция будет сохранена в переменной j в результате выполнения внутреннего цикла, осуществляющем сдвиг элементов до тех пор, пока не будет найден элемент, значение которого меньше i-того.

На блок-схеме показано каким образом может использоваться символ перехода — его можно использовать не только для соединения частей схем, размещенных на разных листах, но и для сокращения количества линий. В ряде случаев это позволяет избежать пересечения линий и упрощает восприятие алгоритма.

Сортировка пузырьком

Сортировка пузырьком, как и сортировка вставками, использует два цикла. Во вложенном цикле выполняется попарное сравнение элементов и, в случае нарушения порядка их следования, перестановка. В результате выполнения одной итерации внутреннего цикла, максимальный элемент гарантированно будет смещен в конец массива. Внешний цикл выполняется до тех пор, пока весь массив не будет отсортирован.

bubblesort_flowchart

Блок-схема алгоритма сортировки пузырьком

На блок-схеме показано использование символов начала и конца цикла. Условие внешнего цикла (А) проверяется в конце (с постусловием), он работает до тех пор, пока переменная hasSwapped имеет значение true. Внутренний цикл использует предусловие для перебора пар сравниваемых элементов. В случае, если элементы расположены в неправильном порядке, выполняется их перестановка посредством вызова внешней процедуры (swap). Для того, чтобы было понятно назначение внешней процедуры и порядок следования ее аргументов, необходимо писать комментарии. В случае, если функция возвращает значение, комментарий может быть написан к символу терминатору конца.

Сортировка выбором

В сортировке выбором массив разделяется на отсортированную и необработанную части. Изначально отсортированная часть пустая, но постепенно она увеличивается. Алгоритм производит поиск минимального элемента необработанной части и меняет его местами с первым элементом той же части, после чего считается, что первый элемент обработан (отсортированная часть увеличивается).

selectsort_flowchart

Блок-схема сортировки выбором

На блок-схеме приведен пример использования блока «подготовка», а также показано, что в ряде случаев можно описывать алгоритм более «укрупнённо» (не вдаваясь в детали). К сортировке выбором не имеют отношения детали реализации поиска индекса минимального элемента массива, поэтому они могут быть описаны символом вызова внешней процедуры. Если блок-схема алгоритма внешней процедуры отсутствует, не помешает написать к символу вызова комментарий, исключением могут быть функции с говорящими названиями типа swap, sort, … .

На блоге можно найти другие примеры блок-схем:

  • блок-схема проверки правильности расстановки скобок арифметического выражения [2];
  • блок-схемы алгоритмов быстрой сортировки и сортировки слиянием [3].

Часть студентов традиционно пытается рисовать блок-схемы в Microsoft Word, но это оказывается сложно и не удобно. Например, в MS Word нет стандартного блока для терминатора начала и конца алгоритма (прямоугольник со скругленными краями, а не овал). Наиболее удобными, на мой взгляд, являются утилиты MS Visio и yEd [5], обе они позволяют гораздо больше, чем строить блок-схемы (например рисовать диаграммы UML), но первая является платной и работает только под Windows, вторая бесплатная и кроссплатфомренная. Все блок-схемы в этой статье выполнены с использованием yEd.

Частные конторы никакие блок-схемы не используют, в книжках по алгоритмам [6] вместо них применяют словесное описание (псевдокод) как более краткую форму. Возможно блок-схемы применяют на государственных предприятиях, которые должны оформлять документацию согласно требованиям ЕСПД, но есть сомнения — даже для регистрации программы в Государственном реестре программ для ЭВМ никаких блок-схем не требуется.

Тем не менее, рисовать блок-схемы заставляют школьников (примеры из учебников ГОСТ не соответствуют) — выносят вопросы на государственные экзамены (ГИА и ЕГЭ), студентов — перед защитой диплом сдается на нормоконтроль, где проверяется соответствие схем стандартам.

Разработка блок-схем выполняется на этапах проектирования и документирования, согласно каскадной модели разработки ПО, которая сейчас почти не применяется, т.к. сопровождается большими рисками, связанными с ошибками на этапах проектирования.

Появляются подозрения, что система образования прогнила и отстала лет на 20, однако аналогичная проблема наблюдается и за рубежом. Международный стандарт ISO 5807:1985 мало чем отличается от ГОСТ 19.701-90, более нового стандарта за рубежом нет. Там же производится множество программ для выполнения этих самых схем — Dia, MS Visio, yEd, …, а значит списывать их не собираются. Вместо блок-схем иногда применяют диаграммы деятельности UML [6], однако удобнее они оказываются, разве что при изображении параллельных алгоритмов.

Периодически поднимается вопрос о том, что ни блок-схемы, ни UML не нужны, да и документация тоже не нужна. Об этом твердят программисты, придерживающиеся методологии экстремального программирования (XP) [7], ходя даже в их кругу нет единого мнения.

В ряде случаев, программирование невозможно без рисования блок-схем, т.к. это один процесс — существуют визуальные языки программирования, такие как ДРАКОН [8], кроме того, блок-схемы используются для верификации алгоритмов (формального доказательства их корректности) методом индуктивных утверждений Флойда [9].

В общем, единого мнения нет. Очевидно, есть области, в которых без чего-то типа блок-схем обойтись нельзя, но более гибкой альтернативы нет. Для формальной верификации необходимо рисовать подробные блок-схемы, но для проектирования и документирования такие схемы не нужны — я считаю разумным утверждение экстремальных программистов о том, что нужно рисовать лишь те схемы, которые помогают в работе и не требуют больших усилий для поддержания в актуальном состоянии [10].

Список использованных источников:

  1. ГОСТ 19.701–90 (ИСО 5807–85) «Единая система программной документа­ции».
  2. Алгоритм. Свойства алгоритма https://pro-prof.com/archives/578
  3. Алгоритмы сортировки слиянием и быстрой сортировки https://pro-prof.com/archives/813
  4. yEd Graph Editor https://www.yworks.com/products/yed
  5. Книги: алгоритмы https://pro-prof.com/books-algorithms
  6. Рамбо Дж., Якобсон А., Буч Г. UML: специальный справочник. -СПб.: Питер, 2002. -656 с.
  7. Кент Бек Экстремальное программирование: разработка через тестирование – СПб.: Питер – 2003
  8. Визуальный язык ДРАКОН https://drakon.su/
  9. Шилов Н.В. Верификация шаблонов алгоритмов для метода отката и метода ветвей и границ. Моделирование и анализ информационных систем, ISSN 1818 – 1015, т.18, №4, 2011
  10. Брукс Ф., Мифический человеко — месяц или как создаются программные системы. СПб. Символ Плюс, 1999 — 304 с. ил.

Понравилась статья? Поделить с друзьями:
  • Информ дайджест как пишется
  • Инфоресурс как пишется
  • Инфопространство как пишется
  • Инфопродюсер как пишется
  • Инфополе как пишется