Как написать что треугольники подобны

Подобные треугольники

3 октября 2022

Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника пропорциональны соответственным сторонам другого.

Подобные треугольники — ключевая тема геометрии 8 класса. Они будут преследовать нас до самого конца школы. И сегодня мы разберём всё, что нужно знать о них.

План такой:

  1. Основное определение
  2. Лемма о подобных треугольниках
  3. Свойства подобных треугольников
  4. Разбор задач

1. Основное определение

Определение. Треугольники называются подобными, если их углы соответственно равны, а стороны одного треугольника пропорциональны соответственным сторонам другого.

Рассмотрим треугольники $ABC$ и $MNK$:

Подобные треугольники коэффициент подобия

У них есть равные углы: $angle A=angle M$, $angle B=angle N$, $angle C=angle K$. И пропорциональные стороны:

[frac{AB}{MN}=frac{BC}{NK}= frac{AC}{MK}= frac{color{red}{3}}{color{red}{2}}]

Следовательно, треугольники $ABC$ и $MNK$ подобны. Записывается это так:

[Delta ABCsim Delta MNK]

Число $k={color{red}{3}}/{color{red}{2}};$ называется коэффициентом подобия. К нему мы ещё вернёмся.

Пропорциональные стороны подобных треугольников (например, $AB$ и $MN$, либо $BC$ и $NK$) в некоторых учебниках называют сходственными. На практике этот термин применяется редко. Мы будем говорить просто «соответственные стороны».

Дальше идёт очень важное замечание.

1.1. Обозначение подобных треугольников

В геометрии один и тот же треугольник можно называть по-разному. Например, $Delta ABC$, $Delta BCA$ или $Delta CAB$ — это всё один и тот же треугольник. То же самое касается и углов.

Но в подобных треугольниках есть негласное правило:

При обозначении подобных треугольников порядок букв выбирают так, чтобы равные углы перечислялись в одной и той же последовательности.

Вернёмся к нашим треугольникам $ABC$ и $MNK$:

Подобные треугольники ABC и MNK

Поскольку $anglecolor{red}{A}=anglecolor{red}{M}$ и $anglecolor{blue}{B}=anglecolor{blue}{N}$, можно записать $Deltacolor{red}{A}color{blue}{B}Csim Deltacolor{red}{M}color{blue}{N}K$. Или $Delta Ccolor{red}{A}color{blue}{B}sim Delta Kcolor{red}{M}color{blue}{N}$. Но никак не $Deltacolor{red}{A}color{blue}{B}Csim Delta Kcolor{red}{M}color{blue}{N}$.

Да, это негласное правило. И если вы нарушите последовательность букв, это не ошибка. Никто не снизит вам за это баллы. А если снизит — добро пожаловать на апелляцию.

Правильная запись позволяет быстро и безошибочно выписывать пропорциональные стороны треугольников. Рассмотрим два подобных треугольника:

[Delta ABCsim Delta MNK]

Берём две первые буквы из каждого треугольника: ${AB}/{MN};$. Затем две последние буквы: ${BC}/{NK};$. Наконец, вычёркиваем «центральную» букву: ${AC}/{MK};$.

Приравниваем полученные три дроби:

[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}]

Вот и всё! Даже рисунок не нужен! Этот приём настолько прост и эффективен, что его в обязательном порядке изучают на моих занятиях, курсах и вебинарах.

В будущем мы увидим, что подобные треугольники чаще всего ищут как раз для составления таких пропорций.

2. Лемма о подобных треугольниках

Подобные треугольники появляются всякий раз, когда прямая, параллельная стороне треугольника, пересекает его стороны.

Теорема 1. Прямая, пересекающая две стороны треугольника и параллельная третьей стороне, отсекает треугольник, подобный исходному.

Доказательство. Рассмотрим треугольник $ABC$. Пусть прямая $MNparallel AB$ отсекает треугольник $MNC$:

Параллельная прямая отсекает подобный треугольник

Докажем, что $Delta ABCsim Delta MNC$. Рассмотрим треугольники $ABC$ и $MNC$. У них есть общий угол $ACB$.

Углы $ABC$ и $MNC$ — соответственными при $MNparallel AB$ и секущей $BC$. Следовательно, они равны: $angle ABC=angle MNC$.

Аналогично равны углы $BAC$ и $NMC$. Следовательно, треугольники $ABC$ и $MNC$ имеют три соответственно равных угла.

Докажем теперь, что соответственные стороны пропорциональны. Т.е. докажем пропорцию

[frac{AB}{MN}=frac{BC}{NC}=frac{AC}{MC}]

Рассмотрим угол $ACB$. Параллельные прямые $AB$ и $MN$ пересекают стороны этого угла. По теореме о пропорциональных отрезках:

[frac{AC}{MC}=frac{BC}{NC}]

Это равенство — второе в искомом:

[frac{AB}{MN}= color{red}{frac{BC}{NC}=frac{AC}{MC}}]

Осталось доказать первое равенство. Дополнительное построение: прямая $KNparallel AC$:

Параллельные прямые дополнительное построение

Поскольку $AMparallel KN$ (по построению) и $AKparallel MN$ (по условию), четырёхугольник $AKNM$ — параллелограмм. Поэтому $AK=MN$.

Рассмотрим угол $ABC$. Параллельные прямые $AC$ и $KN$ пересекают стороны этого угла. По теореме о пропорциональных отрезках:

[frac{AB}{AK}=frac{BC}{NC}]

Учитывая, что $AK=MN$, получаем

[frac{AB}{MN}=frac{BC}{NC}=frac{AC}{MC}]

Итак, соответственные углы треугольников $ABC$ и $MNC$ равны, а их стороны пропорциональны. Следовательно, по определению подобных треугольников

[Delta ABCsim Delta MNC]

Что и требовалось доказать.

Эта лемма — не признак подобия. Это самостоятельная теорема, которая ускоряет решение многих задач.

Признаки подобия разобраны в отдельном уроке — см. «Признаки подобия треугольников».

Частный случай этой леммы — средняя линия. Она отсекает треугольник со сторонами в два раза меньше, чем у исходного:

Средняя линия отсекает подобный треугольник

Оформляется это так. Поскольку $AM=MC$ и $BN=NC$, то $MN$ — средняя линия треугольника $ABC$. Следовательно, прямые $AB$ и $MN$ параллельны, откуда

[Delta ABCsim Delta MNC]

3. Свойства подобных треугольников

Два важнейших свойства: связь периметров и связь площадей.

3.1. Периметры подобных треугольников

Теорема 2. Отношение периметров подобных треугольников равно коэффициенту подобия.

Доказательство. Рассмотрим подобные треугольники $ABC$ и $MNK$:

Подобные треугольники ABC и MNK

Запишем равенство из определения подобия. Поскольку $Delta ABCsimDelta MNK$, стороны этих треугольников пропорциональны:

[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}=color{red}{k}]

Здесь число $color{red}{k}$ — коэффициент подобия. Полученное тройное равенство можно переписать так:

[frac{AB}{MN}=color{red}{k}; frac{BC}{NK}=color{red}{k}; frac{AC}{MK}=color{red}{k}]

Или, что то же самое:

[begin{align}AB&=color{red}{k}cdot MN \ BC &=color{red}{k}cdot NK \ AC &=color{red}{k}cdot MK \ end{align}]

Периметр треугольника $MNK$:

[{{P}_{Delta MNK}}=MN+NK+MK]

Периметр треугольника $ABC$:

[begin{align}{{P}_{Delta ABC}} &=AB+BC+CD= \ &=color{red}{k}cdot MN+color{red}{k}cdot NK+color{red}{k}cdot MK= \ &=color{red}{k}cdot left( MN+NK+MK right)= \ &=color{red}{k}cdot {{P}_{Delta MNK}} end{align}]

Итого получаем равенство

[{{P}_{Delta ABC}}=color{red}{k}cdot {{P}_{Delta MNK}}]

Обычно именно в таком виде это равенство и применяют. Но можно записать его и как отношение:

[frac{{{P}_{Delta ABC}}}{{{P}_{Delta MNK}}}=color{red}{k}]

В любом случае, мы получили отношение, которое и требовалось доказать.

3.2. Площади подобных треугольников

Теорема 3. Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Доказательство. Первые шаги очень похожи на доказательство предыдущей теоремы. Вновь рассмотрим подобные треугольники $ABC$ и $MNK$:

Подобные треугольники ABC и MNK

Поскольку $Delta ABCsimDelta MNK$, углы $ABC$ и $MNK$ равны. Следовательно, равны синусы этих углов:

[begin{align}angle ABC &=angle MNK=color{blue}{alpha} \ sin angle ABC &=sin angle MNK=sin color{blue}{alpha} end{align}]

Кроме того, стороны подобных треугольников пропорциональны:

[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}=color{red}{k}]

В частности, из этого равенства следует, что

[frac{AB}{MN}=color{red}{k}; frac{BC}{NK}=color{red}{k}]

Или, что то же самое:

[begin{align}AB &= color{red}{k}cdot MN \ BC &= color{red}{k}cdot NK \ end{align}]

Площадь треугольника $MNK$:

[{{S}_{Delta MNK}}=frac{1}{2}cdot MNcdot NKcdot sin color{blue}{alpha} ]

Площадь треугольника $ABC$:

[begin{align}{{S}_{Delta ABC}} &=frac{1}{2}cdot ABcdot BCcdot sincolor{blue}{alpha} = \ &=frac{1}{2}cdotcolor{red}{k}cdot MNcdotcolor{red}{k}cdot NKcdot sincolor{blue}{alpha} = \ &={color{red}{k}^{2}}cdot frac{1}{2}cdot MNcdot NKcdot sin alpha = \ &={color{red}{k}^{2}}cdot {{S}_{Delta MNK}} end{align}]

Получаем равенство

[{{S}_{Delta ABC}}={color{red}{k}^{2}}cdot {{S}_{Delta MNK}}]

Перепишем в виде отношения:

[frac{{{S}_{Delta ABC}}}{{{S}_{Delta MNK}}}={color{red}{k}^{2}}]

Что и требовалось доказать.

Для доказательства теоремы мы использовали формулу площади треугольника:

[{{S}_{Delta }}=frac{1}{2}absin alpha ]

Тригонометрию проходят после подобия, поэтому мы опираемся на ещё не изученный материал.

Впрочем, ничто не мешает взять уже известную формулу:

[{{S}_{Delta }}=frac{1}{2}ah]

Здесь $a$ — сторона треугольника, $h$ — высота, проведённая к этой стороне. Дело в том, что высоты в подобных треугольниках тоже пропорциональны. И не только высоты. Назовём это Свойством 3.3.:)

3.3. Элементы подобных треугольников

Теорема 4. Отношение высот, биссектрис и медиан, проведённых к соответствующим сторонам подобных треугольников, равно коэффициенту подобия.

Проиллюстрируем это на высотах. Пусть треугольники $ABC$ и $MNK$ подобны:

Подобные треугольники и высоты

В этом случае высоты $CDbot AB$ и $KLbot MN$ относятся как

[frac{CD}{KL}=frac{AB}{MN}= color{red}{k}]

Для доказательства этой теоремы нужно знать признаки подобия. Поэтому оставим его до следующего урока. А сейчас переходим к задачам.

4. Задачи на подобие

Здесь разобрано пять задач на подобие треугольников. Все они довольно простые. За сложными задачами добро пожаловать в задачник.:)

Задача 1. Готовые треугольники

Известно, что треугольники $ABC$ и $MNK$ подобны, причём $angle A=angle M$, $angle B=angle N$, $angle C=angle K$. Кроме того, стороны $AB=6$, $BC=7$, $AC=10$ и $MN=9$. Найдите стороны $NK$ и $MK$.

Решение. Построим треугольники $ABC$ и $MNK$, отметим известные стороны:

Подобные треугольники — задание 1

Из условия $Delta ABCsim Delta MNK$ следует, что верно равенство

[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}]

Подставим в это равенство всё, что нам известно:

[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{7}}{NK}=frac{color{red}{10}}{MK}]

Опустим последнюю дробь и получим пропорцию

[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{7}}{NK}]

Найдём сторону $NK$:

[NK=frac{color{red}{9}cdot color{red}{7}}{color{red}{6}}=10,5]

Аналогично, убирая среднюю дробь, получим пропорцию

[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{10}}{MK}]

Найдём сторону $MK$:

[NK=frac{color{red}{9}cdot color{red}{10}}{color{red}{6}}=15]

Ответ: $NK=10,5$, $MK=15$.

Задача 2. Прямая, параллельная стороне

Прямая, параллельная стороне $AC$ треугольника $ABC$, пересекает сторону $AB$ в точке $D$, а сторону $BC$ — в точке $E$. Найдите:

а) Отрезок $BD$, если $AB=16$, $AC=20$, $DE=15$.

б) Отрезок $AD$, если $AB=28$, $BC=63$, $BE=27$.

Решение. Для начала построим рисунок. Он будет общий для обоих пунктов.

Из условия следует, что прямая $DE$ пересекает стороны треугольника $ABC$:

Прямая параллельна стороне треугольника

Поскольку $DEparallel AC$, по лемме о подобных треугольниках прямая $DE$ отсекает от треугольника $ABC$ новый треугольник, подобный исходному:

[Delta ABCsim Delta DBE]

Из подобия треугольников $ABC$ и $DBE$ следует равенство

[frac{AB}{DB}=frac{BC}{BE}=frac{AC}{DE}]

Решаем пункт а). Подставляем в это равенство всё, что нам известно:

[frac{color{red}{16}}{DB}=frac{BC}{BE}=frac{color{red}{20}}{color{red}{15}}]

Вычёркиваем среднюю дробь и получаем пропорцию

[frac{color{red}{16}}{DB}=frac{color{red}{20}}{color{red}{15}}]

Отсюда легко найти $DB$ (или, что то же самое, $BD$):

[DB=frac{color{red}{16}cdotcolor{red}{15}}{color{red}{20}}=12]

Аналогично решаем пункт б). Подставляем в исходное равенство известные величины:

[frac{color{red}{28}}{DB}=frac{color{red}{63}}{color{red}{27}}=frac{AC}{DE}]

Первые две дроби образуют пропорцию, из которой вновь легко найти $DB$:

[DB=frac{color{red}{28}cdotcolor{red}{27}}{color{red}{63}}=12]

Осталось найти $AD$:

[begin{align}AD &=AB-BD= \ &=color{red}{28}-color{red}{12}=16 end{align}]

Ответ: а) $BD=12$; б) $AD=16$.

Важное замечание по работе с пропорциями. Ни в коем случае не нужно перемножать числа в числителе.

Напротив: нужно разложить их на множители и сократить!

Взгляните:

[DB=frac{color{red}{28}cdotcolor{red}{27}}{color{red}{63}}=frac{4cdotcolor{blue}{7}cdot 3cdotcolor{green}{9}}{color{blue}{7}cdotcolor{green}{9}}=12]

Так вы сэкономите время, избежите умножения столбиком и защитите себя от множества ошибок. Никогда не умножайте большие числа, если дальше их нужно будет сокращать.

Задача 3. Доказательство подобия

Точки $M$ и $K$ — середины сторон $CD$ и $AD$ квадрата $ABCD$ соответственно. Докажите, что треугольники $MDK$ и $BCD$ подобны.

Решение. Сделаем первоначальный рисунок по условию задачи:

Квадрат содержит два подобных треугольника

Здесь нет прямых, параллельных сторонам треугольника, поэтому лемма о подобных треугольниках не поможет. Докажем подобие по определению.

Сначала разберёмся с углами. Поскольку $ABCD$ — квадрат, и $KD=MD$ — половина стороны квадрата, треугольники $MDK$ и $BCD$ — прямоугольные и равнобедренные.

Все острые углы треугольников $MDK$ и $BCD$ равны 45°. Можем записать это так:

[begin{align}angle BCD &=angle MDK={90}^circ \ angle CBD &=angle DMK={45}^circ \ angle CDB &=angle DKM={45}^circ \ end{align}]

Дополнительное построение: диагональ квадрата $color{red}{AC}$:

Квадрат — дополнительное построение диагонали

Рассмотрим треугольник $ACD$. Отрезок $KM$ — средняя линия, поэтому $KM={color{red}{AC}}/{2};$. С другой стороны, $AC=BD$ как диагонали квадрата. Поэтому верно равенство

[frac{KM}{BD}=frac{KM}{color{red}{AC}}=frac{1}{2}]

Но тогда выполняется следующее равенство:

[frac{MD}{BC}=frac{DK}{CD}=frac{MK}{BD}=frac{1}{2}]

А это вместе с равенством углов как раз и означает, что треугольники $MDK$ и $BCD$ подобны:

[Delta MDKsim Delta BCD]

Доказательство завершено.

Мы доказали подобие треугольников по определению. Если пользоваться признаками подобия, всё будет намного быстрее. Но пока мы не вправе пользоваться этими признаками.

Задача 4. Вписанный ромб

В треугольник $ABC$ вписан ромб $BDEK$ так, как показано на рисунке. Найдите сторону ромба, если $AB=10$, $BC=15$.

Решение. Пусть искомая сторона ромба равна $color{red}{x}$. Из условия задачи получим такой рисунок:

Ромб вписан в треугольник

Зная, что $AB=10$ и $BC=15$, выразим $AK$ и $CD$:

[begin{align}AK &=10-color{red}{x} \ CD &=15-color{red}{x} \ end{align}]

Далее рассмотрим треугольник $ABC$. Поскольку $BDEK$ — ромб, то $KEparallel BC$. По лемме о подобных треугольниках имеем:

[Delta ABCsim Delta AKE]

В подобных треугольниках подобные стороны пропорциональны, поэтому

[frac{AB}{AK}=frac{BC}{KE}=frac{AC}{AE}]

Подставим в это равенство всё, что нам известно или выражено через $color{red}{x}$:

[frac{10}{10-color{red}{x}}=frac{15}{color{red}{x}}=frac{AC}{AE}]

Последняя дробь оказалась бесполезной. Вычеркнем её и получим пропорцию:

[frac{10}{10-color{red}{x}}=frac{15}{color{red}{x}}]

Применяем основное свойство пропорции и уравнение:

[begin{align}10cdotcolor{red}{x} &=15cdot left( 10- color{red}{x} right) \ 2cdotcolor{red}{x} &=3cdot left( 10- color{red}{x} right) \ &cdots\ color{red}{x} &=6 end{align}]

Это и есть искомая сторона ромба. Она равна $color{red}{x}=6$.

Ответ: $BD=6$.

Задача 5. Свойства биссектрисы

В треугольнике $ABC$ стороны $AB=8$, $BC=12$, угол $ABC={120}^circ $. Отрезок $BD$ — биссектриса. Найдите длину $BD$.

Решение. Из условия задачи можно сделать вот такой рисунок:

Биссектриса в треугольнике

Поскольку $BD$ — биссектриса угла в треугольнике, точка $D$ делит сторону $AC$ на отрезки, пропорциональные сторонам $AB$ и $BC$. Это можно записать так:

[frac{AD}{CD}=frac{AB}{CB}=frac{color{red}{8}}{color{red}{12}}=frac{color{red}{2}}{color{red}{3}}]

Обозначим пропорциональные отрезки переменными. Пусть $AD=color{blue}{2x}$, $CD=color{blue}{3x}$.

Дополнительное построение: прямая $DMparallel AB$:

Дополнительное построение параллельная прямая

Рассмотрим угол $ACB$. Поскольку $DMparallel AB$, по теореме о пропорциональных отрезках получаем, что

[frac{BM}{CM}=frac{AD}{CD}=frac{color{red}{2}}{color{red}{3}}]

Вновь обозначим пропорциональные отрезки переменными. Пусть $BM=color{blue}{2y}$, $CM=color{blue}{3y}$. Но тогда

[BC=BM+MC=color{blue}{5y}=color{red}{12}]

Получаем, что $color{blue}{y}=color{red}{2,4}$. Отсюда легко найти длину $BM$:

[BM=color{blue}{2y}=2cdotcolor{red}{2,4}= color{red}{4,8}]

Далее заметим, что если угол $ABC$ равен 120°, то

[angle ABD=angle CBD={60}^circ ]

С другой стороны, прямые $AB$ и $MD$ параллельны по построению. Прямая $BD$ — секущая для этих параллельных прямых.

Следовательно, углы $ABD$ и $BDM$ — внутренние накрест лежащие, поэтому

[angle BDM=angle ABD={60}^circ ]

Рассмотрим треугольник $BDM$. В нём есть два угла по 60°. Следовательно, это равносторонний треугольник:

[BD=BM=color{red}{4,8}]

Мы нашли длину отрезка $BD$. Задача решена.

Ответ: $BD=4,8$.

Итак, с определением разобрались. В следующем уроке разберём признаки подобия.:)

Смотрите также:

  1. Как применяется теорема косинусов и подобие треугольников для решения широкого класса задач в планиметрии.
  2. Теорема менелая
  3. Комбинаторика в задаче B6: легкий тест
  4. Введение системы координат
  5. Четырехугольная пирамида: как найти координаты вершин
  6. Нестандартная задача B5 на площадь круга

Подобные треугольники

Определение

Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

Коэффициентом подобия называют число k , равное отношению сходственных сторон подобных треугольников.

Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов.

Признаки подобия треугольников

I признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

II признак подобия треугольников

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

Свойства подобных треугольников

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
  • Отношение периметров подобных треугольников равно коэффициенту подобия.
  • Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.

Примеры наиболее часто встречающихся подобных треугольников

1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.

2. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия –

3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

Здесь вы найдете подборку задач по теме «Подобные треугольники» .

Знак подобия в геометрии — правило и примеры обозначения

В учебниках по геометрии часто встречаются задачи на подобие фигур. Какой знак используется для обозначения подобия фигур? Какие фигуры называются подобными? Поговорим обо всем этом в нашей статье.

Определение и знак подобия в геометрии

На нижеприведенном рисунке подобные фигуры: круги, параллелограммы, пятиугольники и ромбы.

Для обозначения термина «подобие» в геометрии используют знак «тильда», который является типографским символом и обозначается волнистой чертой:

Знак «двойная тильда» ставится около чисел для демонстрации примерности или приблизительности чего-либо:

1,35 ≈ 1,4 — числа 1,35 и 1,4 приблизительно равны.

Коэффициент подобия треугольников и знак подобия

Часто сверху знака подобия выставляют коэффициент подобия треугольников:

В математических задачах и уравнениях «тильду» используют для маркирования разных типов подобия. Часто применяется для обозначения подобия, эквивалентности.

В алгебре высказываний знаком

обозначают логическую операцию «эквиваленция».

При сочетании тильды и знака равенства получают обозначение отношения конгруэнтности, определения в геометрии, применяемого в контексте обозначения равенства различных фигур и тел (углов, отрезков):

Признаки подобия прямоугольных треугольников

Острые углы: наличие равного острого угла в прямоугольных треугольниках делает их подобными.

Два катета: общая пропорциональность катетам одного прямоугольного треугольника к катетам второго делает их подобными.

Катет и гипотенуза: пропорциональность катета и гипотенузы одного прямоугольного треугольника к катету и гипотенузе второго прямоугольного треугольника делает их подобными.

треугольник ∆ABC и треугольник ∆A1B1C1 считаются подобными при равнозначности углов и пропорциональности сторон;

отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Доказательство подобия треугольников через среднюю линию

Имеется треугольник ∆ABC, mn — средняя линия. M лежит на AB, N лежит на BC.

Требуется доказательство подобия треугольников ∆MBN и ∆ABC.

Посмотрев на ∆MBN и ∆ABC, видим, что угол В — общий, а отношение:

Отсюда делаем вывод, что ∆MBN

∆ABC по II признаку подобия треугольников, что и требовалось доказать.

Примеры решения задач по геометрии на тему «Подобие треугольников»

Подобные треугольники

Подобные треугольники — это треугольники, у которых все три угла равны, а все стороны одного треугольника в одно и то же число раз длиннее (или короче) сторон другого треугольника, то есть треугольники подобны если их углы равны, а сходственные стороны пропорциональны.

Сходственные стороны — это стороны двух треугольников, лежащие против равных углов.

Рассмотрим два треугольника ABC и A1B1C1, у которых ∠A = ∠A1, ∠B = ∠B1, ∠C = ∠C1:

Стороны AB и A1B1, BC и B1C1, CA и C1A1, лежащие напротив равных углов, называются сходственными сторонами. Следовательно, отношения сходственных сторон равны:

AB = BC = AC = k,
A1B1 B1C1 A1C1

k — это коэффициент подобия ( число, равное отношению сходственных сторон подобных треугольников). Если k = 1, то треугольники равны, то есть равенство треугольников – это частный случай подобия.

Подобие треугольников обозначается знаком

: ABC

A1B1C1.

Отношение площадей подобных треугольников равно квадрату коэффициента подобия. Если обозначить площади двух подобных треугольников буквами S и S1, то:

Первый признак подобия треугольников

Если два угла одного треугольника равны двум углам другого, то треугольники подобны.

то ABC

A1B1C1.

Второй признак подобия треугольников

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами, равны, то треугольники подобны.

Если AB = AC , ∠A = ∠A1,
A1B1 A1C1
то ABC

A1B1C1.

Третий признак подобия треугольников

Если три стороны одного треугольника пропорциональны трём сходственным сторонам другого, то треугольники подобны.

источники:

http://nauka.club/matematika/geometriya/znak-podobiya-v-geometrii.html

http://izamorfix.ru/matematika/planimetriya/podob_treug.html

В учебниках по геометрии часто встречаются задачи на подобие фигур. Какой знак используется для обозначения подобия фигур? Какие фигуры называются подобными? Поговорим обо всем этом в нашей статье.

Определение и знак подобия в геометрии

Подобными называются фигуры, если одна из них представляет уменьшенную копию другой.

На нижеприведенном рисунке подобные фигуры: круги, параллелограммы, пятиугольники и ромбы.

Подобные фигуры

Для обозначения термина «подобие» в геометрии используют знак «тильда», который является типографским символом и обозначается волнистой чертой:

Подобные треугольники

∆ABC ~ ∆A1B1C1
— треугольники ABC и A1B1C1
подобны.

Знак «двойная тильда» ставится около чисел для демонстрации примерности или приблизительности чего-либо:

1,35 ≈ 1,4 — числа 1,35 и 1,4 приблизительно равны.

Коэффициент подобия треугольников и знак подобия

Часто сверху знака подобия выставляют коэффициент подобия треугольников:

Знак подобия

В математических задачах и уравнениях «тильду» используют для маркирования разных типов подобия. Часто применяется для обозначения подобия, эквивалентности.

В алгебре высказываний знаком ~ обозначают логическую операцию «эквиваленция».

При сочетании тильды и знака равенства получают обозначение отношения конгруэнтности, определения в геометрии, применяемого в контексте обозначения равенства различных фигур и тел (углов, отрезков):

423

Признаки подобия прямоугольных треугольников

Острые углы: наличие равного острого угла в прямоугольных треугольниках делает их подобными.

Два катета: общая пропорциональность катетам одного прямоугольного треугольника к катетам второго делает их подобными.

Катет и гипотенуза: пропорциональность катета и гипотенузы одного прямоугольного треугольника к катету и гипотенузе второго прямоугольного треугольника делает их подобными.

Признаки подобия прямоугольных треугольников

Утверждения:

  • треугольник ∆ABC и треугольник ∆A1B1C1 считаются подобными при равнозначности углов и пропорциональности сторон;

  • отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Доказательство подобия треугольников через среднюю линию

Имеется треугольник ∆ABC, mn — средняя линия. M лежит на AB, N лежит на BC.

425

Требуется доказательство подобия треугольников ∆MBN и ∆ABC.

Посмотрев на ∆MBN и ∆ABC, видим, что угол В — общий, а отношение:

426

Отсюда делаем вывод, что ∆MBN ~ ∆ABC по II признаку подобия треугольников, что и требовалось доказать.

Примеры решения задач по геометрии на тему «Подобие треугольников»

427

_____________________________________________________________________

429

430

Подобные треугольники в евклидовой геометрии — треугольники, углы у которых соответственно равны, а стороны соответственно пропорциональны. Являются подобными фигурами.

В данной статье рассматриваются свойства подобных треугольников в евклидовой геометрии. Некоторые утверждения являются неверными для неевклидовых геометрий.

Признаки подобия треугольников[править | править код]

Признаки подобия треугольников — геометрические признаки, позволяющие установить, что два треугольника являются подобными без использования всех элементов определения.

Первый признак[править | править код]

Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны.

то есть:

Дано: и

Доказать:

Следствия первого признака подобия[править | править код]

  • Если три разные стороны исходного треугольника попарно параллельны (дважды антипараллельны или перпендикулярны) трем разным сходственным сторонам другого треугольника, то указанные два треугольника подобны. Примеры применения этого следствия см. ниже в разделах: «Примеры подобных треугольников» и «Свойства параллельности (антипараллельности) сторон родственных треугольников».
  • Под дважды антипараллельными сторонами понимается следующее. Например, стороны данного остроугольного треугольника антипараллельны соответствующим сторонам ортотреугольника, против которых они лежат. В таком случае соответствующие стороны ортотреугольника ортотреугольника (дважды ортотреугольника) дважды антипараллельны соответствующим сторонам исходного треугольника, то есть просто параллельны. Следовательно, подобны, например, ортотреугольник ортотреугольника и исходный треугольник как треугольники с параллельными сторонами.

Второй признак[править | править код]

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами, равны, то такие треугольники подобны.

Дано: и

Доказать:

Третий признак[править | править код]

Если три стороны одного треугольника соответственно пропорциональны трем сторонам другого, то такие треугольники подобны.

Дано: и = = .

Доказать:

Признаки подобия прямоугольных треугольников[править | править код]

  1. По острому углу — см. первый признак;
  2. По двум катетам — см. второй признак;
  3. По катету и гипотенузе — см. третий признак.

Свойства подобных треугольников[править | править код]

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия
  • Отношение периметров и длин биссектрис, медиан, высот и серединных перпендикуляров равно коэффициенту подобия.

Примеры подобных треугольников[править | править код]

Подобны следующие виды треугольников:

  • Дополнительный треугольник и антидополнительный треугольник подобны; соответственные их стороны параллельны.
  • Треугольник ABC подобен своему дополнительному треугольнику; соответственные их стороны параллельны и относятся как 2:1.
  • Треугольник ABC подобен своему антидополнительному треугольнику; соответственные их стороны параллельны и относятся как 1:2.
  • Исходный треугольник по отношению к ортотреугольнику является треугольником трёх внешних биссектрис[1].
  • Ортотреугольник и тангенциальный треугольник подобны (Зетель, следствие 1, § 66, с. 81).
  • Ортотреугольник ортотреугольника и исходный треугольник подобны.
  • Треугольник трёх внешних биссектрис треугольника трех внешних биссектрис и исходный треугольник подобны.
  • Пусть точки касания вписанной в данный треугольник окружности соединены отрезками, тогда получится треугольник Жергонна, и в полученном треугольнике проведены высоты. В этом случае прямые, соединяющие основания этих высот, параллельны сторонам исходного треугольника. Следовательно ортотреугольник треугольника Жергонна и исходный треугольник подобны.
  • Выше указанные свойства подобия родственных треугольников являются следствием ниже перечисленных свойств параллельности сторон родственных треугольников.
  • Теорема: окружностно-чевианный треугольник подобен подерному[2]. Здесь использованы определения:
    • Треугольник с вершинами во вторых точках пересечения прямых, проведённых через вершины и данную точку, с описанной окружностью, называют окружностно-чевианным треугольником.
    • Треугольник с вершинами в проекциях данной точки на стороны называется подерным или педальным треугольником этой точки.

Свойства параллельности (антипараллельности) сторон родственных треугольников[править | править код]

  • Соответственные стороны дополнительного треугольника, антидополнительного треугольника и исходного треугольника попарно параллельны.
  • Стороны данного остроугольного треугольника антипараллельны соответствующим сторонам ортотреугольника, против которых они лежат.
  • Стороны тангенциального треугольника антипараллельны соответствующим противоположным сторонам данного треугольника (по свойству антипараллельности касательных к окружности).
  • Стороны тангенциального треугольника параллельны соответствующим сторонам ортотреугольника.
  • Пусть точки касания вписанной в данный треугольник окружности соединены отрезками, тогда получится треугольник Жергонна, и в полученном треугольнике проведены высоты. В этом случае прямые, соединяющие основания этих высот, параллельны сторонам исходного треугольника. Следовательно ортотреугольник треугольника Жергонна и исходный треугольник подобны.

Подобие в прямоугольном треугольнике[править | править код]

Треугольники, на которые высота, опущенная из прямого угла, делит прямоугольный треугольник, подобны всему треугольнику по первому признаку, а значит:

  • Высота прямоугольного треугольника, опущенная на гипотенузу, равна среднему геометрическому проекций катетов на гипотенузу,
  • Катет равен среднему геометрическому гипотенузы и проекции этого катета на гипотенузу.

Связанные определения[править | править код]

  • Коэффициент подобия — число k, равное отношению сходственных сторон подобных треугольников.
  • Сходственные стороны подобных треугольников — стороны, лежащие напротив равных углов.

См. также[править | править код]

  • Неравенство Пидо
  • Подобие
  • Признаки равенства треугольников
  • Решение треугольников
  • Среднее геометрическое
  • Треугольник

Примечания[править | править код]

  1. Стариков В. Н. Исследования по геометрии// Сборник публикаций научного журнала Globus по материалам V-й международной научно-практической конференции «Достижения и проблемы современной науки» г. Санкт-Петербург: сборник со статьями (уровень стандарта, академический уровень). С-П.: Научный журнал Globus, 2016. С. 99-100
  2. Система задач по геометрии Р. К. Гордина. Задача 6480. Дата обращения: 26 апреля 2016. Архивировано 4 марта 2016 года.

Литература[править | править код]

  • Геометрия 7-9/Л. С. Атанасян и др. — 12-е изд. — М.: Просвещение, 2002. — 384 c.:
  • Зетель С. И. Новая геометрия треугольника. Пособие для учителей. 2-е издание. М.:Учпедгиз, 1962. 153 с.

Ссылки[править | править код]

  • Видео. Подобные треугольники
  • Подобие треугольников
  • Признаки подобия из учебника за восьмой класс

Теорема 1. Первый признак подобия треугольников. Если два угла одного треугольника соответственно равны двум углам другого, то такие
треугольники подобны.

Доказательство. Пусть ABC и $А_1В_1С_1$ — треугольники, у которых $angle A = angle A_1 ; angle B = angle B_1$ , и, следовательно, $angle C = angle C_1$ . Докажем, что $triangle ABC sim triangle A_1B_1C_1$ (рис.1).

Репетитор ГИА ЕГЭ

Рис.1

Отложим на ВА от точки В отрезок $ВА_2$, равный отрезку $A_1B_1$ , и через точку $А_2$ проведем прямую, параллельную прямой АС. Эта прямая пересечет ВС в некоторой точке $С_2$ . Треугольники $А_1В_1С_1text{ и }А_2ВС_2$ равны: $А_1В_1 = А_2В$ по построению, $angle В = angle В_1$ по условию и $angle А_1 = angle А_2$ , так как $angle А_1 = angle А$ по условию и $angle А = angle А_2$ как соответственные углы. По лемме 1 о подобных треугольниках имеем: $triangle A_2BC_2 sim triangle ABC$ , и значит, $triangle ABC sim triangle A_1B_1C_1$ . Теорема доказана.

По аналогичной схеме устанавливаются теоремы 2 и 3.

Теорема 2. Второй признак подобия треугольников. Если две стороны одного треугольника соответственно пропорциональны двум сторонам другого треугольника и углы между этими сторонами
равны, то треугольники подобны.

Теорема 3. Третий признак подобия треугольников. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Из теоремы 1 вытекает следующее.

Следствие 1. В подобных треугольниках сходственные стороны пропорциональны сходственным высотам, т. е. тем высотам, которые опущены на сходственные стороны.


Обучение по геометрии


Пример 1. Подобны ли два равносторонних треугольника?

Решение. Так как в равностороннем треугольнике каждый внутренний угол равен 60° (следствие 3), то два равносторонних треугольника подобны по первому признаку.


Пример 2. В треугольниках ABC и $А_1В_1С_1$ известно, что $angle A = angle A_1 ; angle B = angle B_1 ; АВ = 5 м, ВС = 7 м, А_1В_1 = 10 м, А_1С_1 = 8 м.$ Найти неизвестные стороны треугольников.

Решение. Треугольники, определенные условием задачи, подобны по первому признаку подобия.
Из подобия треугольников следует:
$$ frac{AB}{A_1B_1} = frac{BC}{B_1C_1} = frac{AC}{A_1C_1} ,,, (1) $$
Подставив в равенство (1) данные из условия задачи, получим:
$$ frac{5}{10} = frac{7}{B_1C_1} = frac{AC}{8} ,,, (2) $$
Из равенства (2) составим две пропорции
$$ frac{5}{10} = frac{7}{B_1C_1}
frac{5}{10} = frac{AC}{8}
text{ откуда }В_1С_1 = 14 (м), АС = 4 (м).
$$


Пример 3. Углы В и $В_1$ треугольников ABC и $А_1В_1С_1$ равны. Стороны АВ и ВС треугольника ABC в 2,5 раза больше сторон $A_1B_1$ и $B_1C_1$ треугольника $A_1B_1C_1$. Найти АС и $A_1C_1$ , если их сумма равна 4,2 м.

Решение. Пусть условию задачи отвечает рисунок 2.

Признаки подобия треугольников

Рис.2

Из условия задачи:
$$ 1) angle B = angle B_1 ;
2) frac{AB}{A_1B_1} = frac{BC}{B_1C_1} = 2,5
3) AC + A_1C_1 = 4,2 м.
$$
Следовательно, $triangle ABC sim triangle А_1В_1С_1$. Из подобия этих треугольников следует
$$ frac{AC}{A_1C_1} = 2,5text{ , или }АС = 2,5bullet А_1С_1 $$
Так как АС = 2,5 • А1С1, то АС + А1C1 = 2,5 • А1С1 + A1C1 = 4,2, откуда A1C1 = 1,2 (м), АС = 3 (м).


Пример 4. Подобны ли треугольники ABC и А1В1С1, если АВ = 3 см, ВС = 5 см, АС = 7 см, А1В1 = 4,5 см, B1C1 = 7,5 см, A1C1 = 10,5 см?

Решение. Имеем:
$$ frac{AB}{A_1B_1} = frac{3}{4,5} = frac{1}{1,5}
frac{BC}{B_1C_1} = frac{5}{7,5} = frac{1}{1,5}
frac{AC}{A_1C_1} = frac{7}{10,5} = frac{1}{1,5}
$$
Следовательно, треугольники подобны по третьему признаку.


Пример 5. Доказать, что медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины.

Решение. Рассмотрим произвольный треугольник ABC. Обозначим буквой О точку пересечения его медиан $АА_1text{ и }ВВ_1$ и проведем среднюю линию $A_1B_1$ этого треугольника (рис.3).

Подготовка и репетиторство по математике к ГИА и ЕГЭ

Рис.3

Отрезок $A_1B_1$ параллелен стороне АВ, поэтому $angle 1 = angle2 text{ и } angle 3 = angle 4 $. Следовательно, треугольники АОВ и $A_1OB_1$ подобны по двум углам, и, значит, их стороны пропорциональны:
$$ frac{AO}{A_1O} = frac{BO}{B_1O} = frac{AB}{A_1B_1} $$

Но $AB = 2A_1B_1$ , поэтому $AO = 2A_1O$ и $BO = 2B_1O$ .

Аналогично доказывается, что точка пересечения медиан $BB_1text{ и }CC_1} делит каждую из них в отношении 2:1, считая от вершины, и, следовательно, совпадает с точкой О.

Итак, все три медианы треугольника ABC пересекаются в точке О и делятся ею в отношении 2:1, считая от вершины.

Замечание. Ранее отмечалось, что биссектрисы треугольника пересекаются в одной точке, серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. На основе последнего утверждения устанавливается, что и высоты треугольника (или их продолжения) пересекаются в одной точке. Эти три точки и точка пересечения медиан называются замечательными точками треугольника.


Пример 6. Проектор полностью освещает экран А высотой 90 см, расположенный на расстоянии 240 см. На каком наименьшем расстоянии в см. от проектора нужно расположить экран Б, высотой 150 см, так, что бы он был полностью освещён, если настройки проектора остаются неизменными.

Видео-решение.


Обучение по геометрии



Презентация на тему: Подобие треугольников. Первый признак подобия

Скачать эту презентацию

Скачать эту презентацию

№ слайда 1
Подобие треугольников.Первый признак подобия

Описание слайда:

Подобие треугольников.Первый признак подобия

№ слайда 2
Изобразим: а) две неравные окружности; б) два неравных квадрата; в) два неравных

Описание слайда:

Изобразим: а) две неравные окружности; б) два неравных квадрата; в) два неравных равнобедренных прямоугольных треугольника; г) два неравных равносторонних треугольника.Чем отличаются фигуры в каждой представленной паре? Что у них общего? Почему они не равны?

№ слайда 3
Определение. Два треугольника называются подобными, если углы одного соответстве

Описание слайда:

Определение. Два треугольника называются подобными, если углы одного соответственно равны углам другого и соответствующие стороны пропорциональны. Коэффициент пропорциональности называется коэффициентом подобия.

№ слайда 4
Что значит, что Δ АВС подобен треугольнику Δ A1В1С1? Для своих изображенных пар

Описание слайда:

Что значит, что Δ АВС подобен треугольнику Δ A1В1С1? Для своих изображенных пар фигур определите их коэффициент подобия.

№ слайда 5
Δ АВС ~ Δ A1В1С1 Δ АВС подобен Δ A1В1С1. similitudeсходство, подобие

Описание слайда:

Δ АВС ~ Δ A1В1С1 Δ АВС подобен Δ A1В1С1. similitudeсходство, подобие

№ слайда 6
Укажите пропорциональные стороны

Описание слайда:

Укажите пропорциональные стороны

№ слайда 7
Укажите пропорциональные стороны

Описание слайда:

Укажите пропорциональные стороны

№ слайда 8
Стороны треугольника равны 5 см, 8 см и 10 см. Найдите стороны подобного ему тре

Описание слайда:

Стороны треугольника равны 5 см, 8 см и 10 см. Найдите стороны подобного ему треугольника, если коэффициент подобия равен: а) 0,5; б) 2.

№ слайда 9
В подобных треугольниках АВС и А1В1С1 АВ = 8 см, ВС = 10 см, А1В1 = 5,6 см, А1С1

Описание слайда:

В подобных треугольниках АВС и А1В1С1 АВ = 8 см, ВС = 10 см, А1В1 = 5,6 см, А1С1 = 10,5 см. Найдите АС и В1С1.

№ слайда 10
– Пройдите глазами по знаку подобия.– Закройте глаза. – Расслабьте мышцы лба.– М

Описание слайда:

– Пройдите глазами по знаку подобия.– Закройте глаза. – Расслабьте мышцы лба.– Медленно переведите глазные яблоки в крайнее левое положение.– Почувствуйте напряжение глазных мышц.– Зафиксируйте положение– Теперь медленно с напряжением переведите глаза вправо.– Повторите четыре раза.– Откройте глаза.– Пройдите глазами по знаку подобия.

№ слайда 11
Первый признак подобия Теорема. (Первый признак подобия.) Если два угла одного т

Описание слайда:

Первый признак подобия Теорема. (Первый признак подобия.) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

№ слайда 12
Теорема. (Первый признак подобия треугольников.) Если два угла одного треугольни

Описание слайда:

Теорема. (Первый признак подобия треугольников.) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

№ слайда 13
Значит, по определению, треугольники подобны. Аналогичным образом доказывается,

Описание слайда:

Значит, по определению, треугольники подобны. Аналогичным образом доказывается, что имеет место равенство .

№ слайда 14
Подобны ли прямоугольные треугольники, если у одного из них есть угол 40о, а у д

Описание слайда:

Подобны ли прямоугольные треугольники, если у одного из них есть угол 40о, а у другого 50о?Два треугольника подобны. Два угла одного треугольника равны 55о и 80о. Найдите наименьший угол второго треугольника.

№ слайда 15
В трапеции ABCD (BC||AD) проведите диагонали и найдите образовавшиеся подобные т

Описание слайда:

В трапеции ABCD (BC||AD) проведите диагонали и найдите образовавшиеся подобные треугольники. Назовите точку пересечения диагоналей O.

Подобные треугольники. Признаки подобия треугольников

Содержание

  • Определение подобных треугольников
  • Коэффициент подобия треугольников
  • Перый признак подобия треугольников
  • Второй признак подобия треугольников
  • Третий признак подобия треугольников
  • Отношение площадей подобных треугольников

Определение подобных треугольников

Определение 1. Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.

Определение 2. Сходственными называются стороны подобных треугольников, лежащих напротив равных углов.

На рисунке 1 углы треугольников ( small ABC ) и ( small A_1B_1C_1 ) соответственно равны:

Тогда стороны ( small AB ) и ( small A_1B_1 ), ( small BC ) и ( small B_1C_1 ), ( small AC ) и ( small A_1C_1 ) называются сходственными.

Определение 1 можно понимать так: два треугольника подобны, если для них можно ввести обозначения и (Рис.1) так, что

Если два треугольника и подобны, то это обозначают так:

Коэффициент подобия треугольников

Коэффициентом подобия треугольников k − это число, равное отношению сходственных сторон (см. формулу (2)).

Перый признак подобия треугольников

Теорема 1. Если два угла одного треугольника соответсвенно равны двум углам другого треугольника, то такие треугольники подобны.

Доказательство. Пусть заданы два треугольника и и пусть , . Докажем, что (Рис.2).

Поскольку сумма углов треугольника равна 180°, то можно записать:

и, так как , , получим:

Таким образом углы треугольника соответственно равны углам треугольника . Покажем, теперь, что стороны одного треугольника пропорциональны сходственным сторонам другого треугольника, т. е. выполнено равенство (2).

Площади треугольников и по двум сторонам и углу между ними можно вычислить формулами:

Из (3) и (4), и из следует:

С другой стороны:

Из (6) и (7), и из следует:

Левые части уравнения (5) и (8) равны. Следовательно равны и правые части:

Умножая левую и правую части уравнения (9) на , получим:

Продолжая аналогичные рассуждения, получим:

Сравнивая (8) и (11), получим:

Умножая левую и правую части уравнения (12) на , получим:

Из (10) и (13), получим:

То есть стороны треугольника пропорциональны сходственным сторонам треугольника . Что и требовалось доказать.Конец доказательства

Второй признак подобия треугольников

Теорема 2. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны, то такие треугольники подобны.

Доказательство. Пусть заданы два треугольника и и пусть , . Докажем, что (Рис.3).

Рассмотрим треугольник у которого

Из условия (15) следует, что треугольники и подобны (по первому признаку подобия треугольников). Следовательно:

Но по условию теоремы . Поэтому . Треугольники и равны по двум сторонам и углу между ними (сторона AB общая, , (поскольку и )). Следовательно и поскольку , то .

Получили, что и . Тогда по первому признаку подобия треугольников .Конец доказательства

Третий признак подобия треугольников

Теорема 3. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Доказательство. Пусть стороны треугольников пропорциональны:

Докажем, что . Рассотрим треугольник у которого , (Рис.3). Треугольники и подобны по первому признаку подобия треугольников. Тогда выполнено следующее равенство:

Сравнивая равенства (16) и (17) получаем: , .

Из этих рассуждений следует, что треугольники и равны по трем сторонам (см. статью Треугольники. Признаки равенства треугольников). Тогда , а поскольку , то . Следовательно, по второму признаку подобия треугольников, треугольники и подобны: .Конец доказательства

Отношение площадей подобных треугольников

Теорема 4. Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Доказательство. Пусть треугольники и подобны. Тогда

и

где -коэффициент подобия.

Площади треугольников и по двум сторонам и углу между ними равны:

Тогда

22
Авг 2013

Категория: Справочные материалы

Подобные треугольники

2013-08-22
2014-01-31

Определение

Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

8

Коэффициентом подобия называют число k, равное отношению сходственных сторон подобных треугольников.

Сходственные (или соответственные) стороны  подобных треугольников — стороны, лежащие напротив равных углов.

коэффициент подобия треуг

Признаки подобия треугольников

I признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

3ed II признак подобия треугольников

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

12

III признак подобия треугольников

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

4e

Свойства подобных треугольников

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
  • Отношение периметров подобных треугольников равно коэффициенту подобия.r
  • Отношение длин соответствующих элементов подобных треугольников (в частности,  длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.

Примеры наиболее часто встречающихся подобных треугольников

1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.

подобные треугольники

2. Треугольники  AOD и COB, образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия – k=frac{AO}{OC}.

 podobie v trapetsii

3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

подобие в прямоугольном треугольнике

внимание

Здесь вы найдете  подборку задач по теме «Подобные треугольники».

Автор: egeMax |

комментариев 50

§3. Подобие треугольников

Признака подобия треугольников

Две фигуры `F` и `F’` называются подобными, если они переводятся друг в друга преобразованием подобия, т. е. таким преобразованием, при котором расстояния между точками изменяются (увеличиваются или уменьшаются) в одно и то же число раз. Если фигуры `F` и `F’` подобны, то пишется `F ~ F’`. Напомним, что запись подобия треугольников `Delta ABC ~ Delta A_1 B_1 C_1` означает, что вершины, совмещаемые преобразованием подобия, стоят на соответствующих местах, т. е. `A` переходит в `A_1`, `B` — в `B_1`, `C` — в `C_1`.

Из свойств преобразования подобия следует, что у подобных фигур соответствующие углы равны, а соответствующие отрезки пропорциональны. В частности, если `Delta ABC ~ Delta A_1B_1C_1`, то `/_ A = /_ A_1`, `/_ B = /_ B_1`, `/_ C = /_ C_1`,

`A_1B_1 : AB = B_1C_1 : BC = C_1A_1 : CA`.  

Два треугольника подобны, если:

1. два угла одного соответственно равны двум углам другого;

2. две стороны одного пропорциональны двум сторонам другого и углы, образованные этими сторонами, равны;

3. три стороны одного треугольника пропорциональны трём сторонам другого.

В решении задач и доказательстве теорем часто используется утверждение, которое, чтобы не повторять каждый раз, докажем сейчас отдельно.

Если две стороны треугольника пересекает прямая, параллельная третьей стороне (рис. 9), то она отсекает треугольник, подобный данному.

Доказательство

Действительно, из параллельности `MN` и `AC` следует, что углы `1` и `2` равны. Треугольники `ABC` и `MBN` имеют два равных угла: общий угол при вершине `B`  и равные углы `1` и `2`. По первому признаку эти треугольники подобны.

И сразу применим это утверждение в следующем примере, в котором устанавливается важное свойство трапеции.

Прямая, проходящая через точку пересечения диагоналей трапеции параллельно её основаниям, пересекает боковые стороны трапеции в точках `M` и `N`. Найти длину отрезка `MN`, если основания трапеции равны `a` и `b`. 

Решение

1. Пусть `O` — точка пересечения диагоналей, `AD = a`, `BC = b`. Прямая `MN` параллельна основанию `AD` (рис. 10а), следовательно, $$ MOparallel AD$$,  треугольники `BMO` и `BAD` подобны, поэтому

 `(MO)/(AD) = (BO)/(BD)`                                                                        (1)

2.  $$ ADparallel BC$$, `Delta AOD ~ Delta COB` по двум углам (рис. 10б):

`(OD)/(OB) = (AD)/(BC)`,  то есть `(OD)/(OB) = a/b`. 

3. Учитывая, что `BD = BO + OD`  находим отношение 

  `(BO)/(BD) = (BO)/(BO + OD) = 1/(1 + OD//BO) = b/(a + b)`.               

Подставляя это в (1), получаем `MO = (ab)/(a + b)`; аналогично устанавливаем, что `ON = (ab)/(a + b)`, таким образом `MN = (2ab)/(a + b)`.

Точки `M` и `N` лежат на боковых сторонах `AB` и `CD` трапеции `ABCD` и  $$ MNparallel AD$$ (рис. 11а). Найти длину `MN`, если `BC = a`, `AD = 5a`, `AM : MB = 1:3`.

1. Пусть  $$ BFVert CD$$  и  $$ MEVert CD$$ (рис. 11б), тогда `/_ 1 = /_ 2`, `/_ 3 = /_ 4` (как соответствующие углы при пересечении двух параллельных прямых третьей) и  `Delta AME ~ Delta MBF`. Из подобия следует `(AE)/(MF) = (AM)/(MB) = 1/3`. 

2. Обозначим `MN = x`. По построению `BCNF` и `MNDE` — параллелограммы,  `FN = a`, `ED = x` и, значит, `MF = x — a`; `AE = 5a — x`. Итак, имеем `(5a — x)/(x — a) = 1/3`, откуда находим `x = 4a`. 

Напомним, что отношение периметров подобных треугольников равно отношению их сходственных сторон. Верно также следующее утверждение: отношение медиан, биссектрис и высот, проведённых к сходственным сторонам в подобных треугольниках, равно отношению сходственных сторон.

Отношение радиусов вписанных окружностей, как и отношение радиусов описанных окружностей, в подобных треугольниках также равно отношению сходственных сторон.

Попытайтесь доказать это самостоятельно.

Прямоугольные треугольники подобны, если:

1. они имеют по равному острому углу;

2. катеты одного треугольника пропорциональны катетам другого;

3. гипотенуза и катет одного треугольника пропорциональны гипотенузе и катету другого.

Два первых признака следуют из первого и второго признаков подобия треугольников, поскольку прямые углы равны. Третий признак следует, например, из второго признака подобия и теоремы Пифагора.

Заметим, что высота прямоугольного треугольника, опущенная на гипотенузу, разбивает его на два прямоугольных треугольника, подобных между собой и подобных данному. Доказанные в § 1 метрические соотношения Свойств 1, 2, 3 можно доказать, используя подобие указанных треугольников.

СВОЙСТВА ВЫСОТ И БИССЕКТРИС

Если в треугольнике `ABC` нет прямого угла, `A A_1` и `BB_1` — его высоты, то  `Delta A_1B_1C ~ Delta ABC` (этот факт можно сформулировать так: если соединить основания двух высот, то образуется треугольник, подобный данному).

Доказательство

Как всегда, полагаем `AB = c`, `BC = a`, `AC = b`.
а) Треугольник `ABC` остроугольный (рис. 12а).

В треугольнике `A A_1C` угол `A_1` — прямой,  `A_1C = AC cos C = ul (b cos C)`.

В треугольнике `B B_1C`  угол `B_1`  — прямой, `B_1C = BC cos C = ul (a cos C)`. 

В треугольниках `A_1 B_1C` и `ABC` угол `C` общий, прилежащие стороны пропорциональны: `(A_1C)/(AC) = (B_1C)/(BC) = cos C`. 

Таким образом, `Delta A_1 B_1 C ~ Delta ABC` с коэффициентом подобия  `ul (cos C)`. (Заметим, что `/_ A_1 B_1 C = /_B`).
б) Треугольник `ABC` — тупоугольный (рис. 12б), угол `C` — острый, высота `A A_1` проведена из вершины тупого угла.

Рассуждения аналогичны:

$$left.begin{array}{rcl}
Delta AA_1C, angle A_1 =90^circ Rightarrow A_1C=ACcdot cos C =b cos C;\
Delta BB_1C, angle B_1 =90^circ Rightarrow B_1C=BCcdot cos C =a cos C,
end{array}
right}Rightarrow Delta A_1B_1Csim Delta ABC,$$

коэффициент подобия `ul (cos C)`,  `/_ A_1 B_1 C = /_B`.

Случай, когда угол `B` тупой, рассматривается аналогично.
в) Треугольник `ABC` — тупоугольный (рис. 12в), угол `C` — тупой, высоты `A A_1` и `B B_1`  проведены из вершин острых углов.

`varphi = /_ BCB_1 = /_ ACA_1 = 180^@ — /_ C`, `cos varphi = — cos C = |cos C|`.

$$left.begin{array}{rcl}
Delta AA_1C, angle A_1 =90^circ Rightarrow A_1C=ACcdot cosvarphi =b |cos C|;\
Delta BB_1C, angle B_1 =90^circ Rightarrow B_1C=BCcdot cosvarphi =b |cos C|,
end{array}
right}Rightarrow Delta A_1B_1Csim Delta ABC$$

с коэффициентом подобия `ul (k = |cos C|`, `(/_A_1B_1C=/_B)`. 

В остроугольном треугольнике `ABC` проведены высоты `A A_1`, `B B_1`, `C C_1` (рис. 13).

Треугольник, вершинами которого служат основания высот, называется «высотным» треугольником (или ортотреугольником).

Доказать, что лучи `A_1 A`, `B_1 B` и `C_1 C` являются биссектрисами углов высотного треугольника `A_1 B_1 C_1` (т. е. высоты остроугольного треугольника являются биссектрисами ортотреугольника).

Решение

По первой лемме о высотах `Delta A_1 B_1 C ~ Delta ABC`, `/_ A_1 B_1 C = /_ B`.

Аналогично `Delta AB_1C_1 ~ Delta ABC`, `/_ AB_1 C_1 = /_ B`, т. е.  `/_A_1 B_1C = /_ AB_1 C_1`.

Так как `BB_1` — высота, то `/_AB_1B = /_CB_1B = 90^@`. 

Поэтому `/_C_1B_1B = /_A_1B_1B = 90^@ — /_B`,  т. е. луч `B_1B` — биссектриса угла `A_1B_1C_1`. 

 Аналогично доказывается, что `A A_1` — биссектриса угла `B_1 A_1 C_1` и `C_1C` — биссектриса угла `B_1 C_1 A_1`.

Высоты `A A_1`, `B B_1` треугольника `ABC` пересекаются в точке `H` (рис. 14). Доказать, что имеет место равенство `AH * H A_1 = BH * HB_1`, т. е. произведение отрезков одной высоты равно произведению отрезков другой высоты.

Решение

`Delta AHB_1 ~ Delta BHA_1`, имеют по равному острому углу при вершине `H`  (заметим, что  этот  угол  равен углу `C`). Из подобия следует `(AH)/(BH) = (HB_1)/(HA_1)`,  откуда  `AH * HA_1 = BH * HB_1`. Для тупоугольного треугольника утверждение также верно. Попробуйте доказать самостоятельно.

Высоты `A A_1` и `B B_1` треугольника `ABC` пересекаются в точке `H`, при этом  `BH = HB_1` и `AH = 2 HA_1` (рис. 15). Найти величину угла `C`.

Решение

1. По условию пересекаются высоты, поэтому треугольник остроугольный. Положим  `BH = HB_1 = x` и `HA_1 = y`, тогда  `AH = 2y`. По второй лемме о высотах  `AH * HA_1 = BH * HB_1`,   т. е.  `x^2 = 2y^2`,  `x = y sqrt 2`. 
2. В треугольнике `AHB_1` угол `AHB_1` равен углу `C` (т. к. угол `A_1 AC` равен `90^@ — C`), поэтому `cos C = cos (/_ AHB_1) = x/(2y) = sqrt 2/ 2`. Угол `C` — острый,  `/_ C = 45^@`.

Ответ:

Установим ещё одно свойство биссектрисы угла треугольника.

Биссектриса внутреннего угла треугольника делит противолежащую этому углу сторону на отрезки, пропорциональные прилежащим сторонам, т. е. если `AD` —  биссектриса треугольника `ABC`, то  `(BD)/(DC) = (AB)/(AC)`.

Доказательство

Проведём через точку `B` прямую параллельно биссектрисе `DA`, пусть `K` — её точка пересечения с прямой `AC` (рис. 16).

Параллельные прямые `AD` и `KB` пересечены прямой `KC`, образуются равные углы `1` и    `3`. Те же прямые пересечены и прямой `AB`, здесь равные накрест лежащие  углы  `2` и `4`.   Но `AD` — биссектриса, `/_1 = /_2`,  следовательно  `/_3 = /_4`. Отсюда следует, что  треугольник  `KAB`  равнобедренный, `KA = AB`.
По теореме о пересечении сторон угла параллельными прямыми  из  $$ ADVert KB$$  следует  `(BD)/(DC) = (KA)/(AC)`.   Подставляя сюда вместо  `KA` равный ему отрезок `AB`,  получим `(BD)/(DC) = (AB)/(AC)`.  Теорема доказана.

Биссектриса треугольника делит одну из сторон треугольника на отрезки длиной `3` и `5`.  Найти в каких пределах может изменяться периметр треугольника.

Решение

Пусть `AD` — биссектриса и `BD = 3`, `DC = 5` (рис. 17).

По свойству биссектрисы `AB : AC = 3:5`. Положим `AB = 3x`, тогда `AC = 5x`.  Каждая сторона треугольника должна быть меньше суммы двух других сторон, т. е. `ul (5x < 3x + 8)`,   `3x < 5x + 8`  и  `ul (8 < 3x + 5x)`.  Получаем ограничения `x<4` и `x > 1`.

Периметр треугольника  `P = 8 + 8x = 8(1 + x)`,  поэтому `ul (16 < P < 40)`. 

Понравилась статья? Поделить с друзьями:
  • Как написать что требуется работник
  • Как написать что точка принадлежит окружности
  • Как написать что точка принадлежит графику функции
  • Как написать что точка лежит на прямой
  • Как написать что торт был вкусным