Как написать давление газа

Давление газа


Давление газа

4.7

Средняя оценка: 4.7

Всего получено оценок: 74.

Обновлено 6 Августа, 2021

4.7

Средняя оценка: 4.7

Всего получено оценок: 74.

Обновлено 6 Августа, 2021

Из курса физики 7 класса известно, что газ — это состояние вещества, при котором молекулы имеют достаточную скорость и энергию, чтобы преодолевать силы взаимного притяжения и удаляться друг от друга, заполняя весь предоставленный объём. Важнейшей характеристикой газа является давление. Рассмотрим эту тему подробнее, приведём формулу давления газа.

Давление в газах

Как известно из механики, давление — это мера распределения силы по некоторой площади. Она равна отношению величины силы, действующей на тело, к площади, на которой распределено действие.

Молекулы газа, заполняя предоставленный объём сосуда, непрерывно сталкиваются друг с другом и со стенками. Силы соударений отдельных молекул сливаются в одну общую силу. При этом из-за хаотичности движения молекул в любой точке газа есть молекулы, движущиеся во всех направлениях. А значит, эта сила есть в любой точке газа, и действует она также во всех направлениях. Причём, чем большую область мы будем рассматривать, тем больше в ней будет молекул, и тем большая сила будет действовать на границы этой области.

Получается, что в любой точке газа соударения молекул создают некоторую силу, пропорциональную площади, причём отношение этих двух величин постоянно. Это и есть давление газа.

Удары молекул о стенки сосуда

Рис. 1. Удары молекул о стенки сосуда.

Связь температуры и давления

Итак, давление газа создаётся хаотически движущимися молекулами в результате постоянных соударений. Следовательно, чем больше средняя скорость движения молекул, тем больше будет давление газа. А мера средней скорости молекул — это температура. Значит, если газ содержится в некотором постоянном объёме, то его давление будет пропорционально температуре. Данный закон был установлен в конце XVIII в. Ж. Шарлем и получил его имя.

Закон Шарля гласит, что отношение давления газа к его абсолютной температуре при неизменном объёме остаётся постоянным:

$${pover T} = const$$

где:

  • $p$ — давление газа;
  • $T$ — абсолютная температура газа.

Закон Шарля — это один из газовых законов молекулярно-кинетической теории (МКТ), связывающих макроскопические газовые параметры: давление, температуру и объём. Закон Шарля описывает ситуацию, когда объём газа постоянен.

Газовые законы

Рис. 2. Газовые законы.

Основное уравнение МКТ

Поскольку давление газа обуславливается хаотическим движением молекул, то его величина может быть определена, исходя из концентрации молекул, массы и средней скорости молекулы:

$$p={1over 3}nm_0v_{ср}^2$$

где:

  • $p$ — давление газа;
  • $n$ — число молекул в единице объёма (концентрация);
  • $m_0$ — масса молекулы;
  • $ v_{ср}^2$ — среднеквадратичная скорость молекулы.

Данное соотношение называется основным уравнением МКТ. Оно связывает средние параметры одной молекулы с давлением газа. Температура в эту формулу не входит, однако она неявно присутствует в ней в виде среднеквадратичной скорости, которая пропорциональна температуре.

Молекулярно-кинетическая теория

Рис. 3. Молекулярно-кинетическая теория.

Заключение

Что мы узнали?

Давление газа обуславливается постоянными ударами молекул газа о стенки сосуда и между собой. Давление при постоянном объёме растёт при росте температуры. Величина давления может быть определена с помощью основного уравнения МКТ.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Санёёёк Некрасов

    4/5

Оценка доклада

4.7

Средняя оценка: 4.7

Всего получено оценок: 74.


А какая ваша оценка?

Давление газа

Содержание:

  • Давление газа — что это за параметр
  • Причина возникновения давления в газах
  • Формула давления идеального газа из молекулярно-кинетической теории
  • Второй способ записи основного уравнения МКТ

Давление газа — что это за параметр

Определение

Давление в физике представляет собой один из трех ключевых термодинамических макроскопических характеристик для измерения любой газовой системы.

Определение

Газ — это одно из четырех, включая плазму, агрегатных состояний материи, характеризующееся очень слабыми связями между составляющими его частицами, а также их большой подвижностью.

В газообразной среде частицы в определенной концентрации расположены не упорядоченно и перемещаются в хаотичном порядке в разных направлениях с одинаковой вероятностью. Подобное строение не позволяет газам сохранять стабильность объема и формы даже при малом внешнем силовом воздействии. Для любого газа, включая одноатомный, значение средней кинетической энергии его частиц в виде атомов и молекул будет превышать энергию межмолекулярного взаимодействия между ними.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Кроме того, расстояние, на которое удалены частицы, значительно превышает их собственные размеры. В том случае, когда молекулярными взаимодействиями и габаритами частиц допускается пренебрегать, газ считают идеальным. Для такой формы материи характерен только один тип внутреннего взаимодействия в виде упругих столкновений. Так как размер частиц пренебрежимо мал по сравнению с расстоянием, на которое они удалены, вероятность столкновений частиц между собой будет низкой.

Примечание

По этой причине в идеальной газовой среде можно наблюдать лишь столкновения частиц со стенками сосуда. Какой-либо реальный газ с хорошей точностью можно отнести к идеальному, когда их температура выше, чем комнатная, а давление несущественно больше, чем атмосферное.

Причина возникновения давления в газах

Давление газа нельзя объяснить теми же причинами, что и давление твердого тела на опору. Расстояние, на которое удалены молекулы газообразной среды, существенно больше. В результате хаотичного движения они сталкиваются между собой и со стенками сосуда, который они занимают. Давление газа на стенки сосуда и вызвано ударами его молекул.

Данный параметр увеличивается по мере того, как нарастает сила ударов молекул о стенки. Газ характеризуется одинаковым давлением во всех направлениях, которое является следствием хаотичного движения огромного числа молекул.

Примечание

Важно отметить, что газ оказывает давление на дно и стенки сосуда, объем которого он занимает, во всех направления равномерно. В связи с этим, воздушный шарик сохраняет форму, несмотря на то, что его оболочка достаточно эластична.

Перед тем как транспортировать или отправить на хранение газообразные вещества, их сильно сжимают. В этом случае давление газа увеличивается. Его помещают в специальные баллоны из стали высокой прочности. Такие емкости необходимы для хранения сжатого воздуха на подводных лодках и кислорода, предназначенного для сварки металлов.

Свойства давления газа:

  1. Если объем уменьшается, то давление газа возрастает, а во время увеличения объема, давление будет снижаться при постоянных величинах массы и температуры вещества.
  2. Газ, находящийся в закрытом сосуде, характеризуется давлением, которое возрастает по мере увеличения температуры вещества при условии постоянства его массы и объема.
  3. В том случае, когда масса газа увеличивается, его давление также будет возрастать и наоборот.

Давление

 

Запись формул для определения давления газа начинают с выяснения причин, по которым оно возникает в рассматриваемой системе. Исходя из физического смысла, давление представляет собой величину, равную отношению силы, перпендикулярно воздействующей на некоторое основание, к площади этого основания:

(P=frac{F}{S})

Как было отмечено ранее, для идеальной газовой системы характерен лишь один тип взаимодействия — это абсолютно упругие столкновения. В процессе частицы передают количество движения Δp стенкам сосуда в течение времени соударения Δt. В данном случае применим второй закон Ньютона:

(F*Δt = Δp)

Таким образом, конкретно сила F является причиной формирования давления на стенки сосуда. Данная величина F, производимая одной частицей, незначительна. Однако, когда количество частиц огромно, они в совокупности создают ощутимый эффект, проявляемый в виде наличия давления в сосуде.

Формула давления идеального газа из молекулярно-кинетической теории

Объяснение концепции идеального газа построено на основных положениях молекулярно-кинетической теории, которая вытекает из принципов статистической механики. Наука получила активное развитие во второй половине XIX, благодаря таким ученым, как Джеймс Максвелл и Людвиг Больцман. Основы дисциплины были заложены еще Бернулли в первой половине XVIII века.

Давление газа

 

Исходя из статистики Максвелла-Больцмана, все частицы в системе обладают разными скоростями движения. При этом можно наблюдать небольшой процент частиц со скоростями, приближенными к нулю, и малую долю частиц, обладающих огромной скоростью. Средняя квадратичная скорость в этом случае будет соответствовать некоторой величине, не изменяющейся с течением времени.

Средняя квадратичная скорость частиц однозначно характеризует температуру газа. Используя приближения молекулярно-кинетической теории в виде невзаимодействующих безразмерных и хаотично движущихся частиц, получают формулу для расчета давления газа в сосуде:

(P=frac{N*m*v^{2}}{3*V})

где N является количеством частиц в системе; V обозначает объем; v представляет собой среднюю квадратичную скорость; m является массой одной частицы.

При наличии указанных в формуле параметров, выраженных в единицах СИ, можно вычислить давление газа в сосуде.

Второй способ записи основного уравнения МКТ

Определение

В середине 30-х годов XIX столетия французскому инженеру Эмилю Клапейрону удалось обобщить накопленный до этого времени экспериментальный опыт изучения поведения газов во время разнообразных изопроцессов и получить формулу, которую в будущем назвали универсальным уравнением состояния идеального газа:

(P*V = n*R*T )

n является количеством вещества в молях; T представляет собой температуру по абсолютной шкале и обозначается в кельвинах.

Величина R является универсальной газовой постоянной. Этот термин был введен в уравнение русским химиком Д.И. Менделеевым. Исходя из этого, запись уравнения называют законом Клапейрона-Менделеева.

Определение

С помощью данного выражения можно определить формулу для расчета давления газа:

(P=frac{n*R*T}{V})

Полученное уравнение объясняет линейный рост давления при увеличении температуры в условиях стабильности объема. Если объем уменьшается с сохранением температуры, то давление увеличивается по гиперболе. Данные закономерности явления отражены в законах Гей-Люссака и Бойля-Мариотта.

График

 

Сравнивая представленное выражение с записью формулы, которая вытекает из положений молекулярно-кинетической теории, можно установить связь кинетической энергии одной частицы, либо системы в общем, и абсолютной температуры.

Газы

 

Важно отметить, что при расчетах с использованием формулы для Р, вытекающей из уравнения Клапейрона, связь с химическим составом газа отсутствует. Если давление определяют с помощью выражения, согласно понятию молекулярно-кинетической теории, то данную связь следует учитывать в виде параметра m. В том случае, когда определяют давление смеси идеальных газов, применяют один из следующих методов:

  1. Расчет средней массы частиц m, либо среднего значения молярной массы М с учетом атомных процентов каждого газа в смеси.
  2. Применение закона Дальтона, согласно которому давление в системе равно сумме парциальных давлений всех ее компонентов.

Пример

Предположим, что молекулы кислорода движутся со средней скоростью в 500 м/с. Требуется рассчитать, каково давление в сосуде, объем которого равен 10 литров, содержащий 2 моль молекул.

Для того чтобы найти ответ, следует применить формулу для Р из молекулярно-кинетической теории:

(P=frac{N*m*v^{2}}{3*V})

Из-за неизвестных параметров m и N требуется выполнить некоторые преобразования формулы:

(m=frac{M}{NA})

(n=frac{N}{NA})

(m*N= M*n)

(P=frac{M*n*v^{2}}{3*V})

Таким образом, удельный объем сосуда в кубических метрах равен 0,01. Молярная масса молекулы кислорода М составляет 0,032 кг/моль. Данные параметры можно подставить в уравнение вместе со скоростью и количеством вещества. Тогда Р = 533333 Па, что представляет собой давление в 5,3 атмосферы.

Давление
газа

«Вызывает
изумление

это
самое давление»

В
этой теме речь пойдёт о том, каким образом могут оказывать давление газы.

В
газах молекулы расположены друг от друга на большом расстоянии, поэтому,
силы взаимного притяжения между молекулами практически отсутствуют. Известно
также, что газы легко сжимаются. Молекулы газа двигаются беспорядочно, занимая
весь предоставленный им объём
. Молекулы сталкиваются не только друг с
другом, но и ударяются о стенки сосуда. Именно эти удары и создают давление.
Сила удара одной молекулы ничтожно мала, но ведь количество молекул даже в
маленьком сосуде очень велико.

Рассмотрим
классический опыт
: возьмем завязанный шарик с небольшим
количеством воздуха и накроем его стеклянным сосудом. Если выкачать из сосуда
воздух, то объём воздушного шарика увеличится. Почему же это произошло?
Дело в том, что изначально по шарику ударяли молекулы воздуха внутри сосуда,
противодействуя ударам молекул внутри шарика. Таким образом, оболочка шарика
сохраняла свой объём. Но когда воздух был откачен из сосуда, во много раз
уменьшилось количество молекул воздуха внутри него. Ударов по шарику снаружи
стало гораздо меньше, но вот количество молекул внутри шарика не изменилось.
Это позволило газу внутри шарика расширяться до тех пор, пока давление газа
внутри не стало равно давлению газа снаружи
. Из этого можно сделать вывод,
что при увеличении объёма, давление газа уменьшается. Но если мы вновь
наполним сосуд воздухом, то шарик снова сдуется. Значит, при уменьшении
объёма, давление увеличивается
.

Следует
понимать, что эти утверждения верны только в том случае, если речь идет о неизменной
массе газа
, находящейся при неизменной температуре. Также
следует отметить: когда воздух был откачен из сосуда, форма шарика
действительно стала шарообразной (а не вытянутой, как это было изначально). Это
значит, что газ давит на оболочку шарика (или стенки сосуда) одинаково по
всем направлениям.
Это объясняется беспорядочным движением молекул.
Они двигаются в случайных направлениях, но их число настолько велико, что можно
с уверенностью сказать, что во всех направлениях летит одинаковое число
молекул. В результате этого на каждый маленький кусочек площади поверхности
шарика приходится одинаковое число ударов, то есть, создается одинаковое
давление
.

Проведем
еще один опыт:
возьмем цилиндр с подвижным поршнем и поместим
туда некоторое количество газа.

Если
поршень будет двигаться, то можно изменять объём газа, при этом сохраняя его
массу. Таким образом, плотность газа увеличиться, то есть на единицу объёма
будет приходиться большее число молекул газа. В этом случае, они значительно
чаще будут ударяться о стенки сосуда. То есть, таким способом можно
увеличить давление
. Это еще раз доказывает, что при уменьшении объёма
газа постоянной массы и температуры, давление увеличивается, а при увеличении
объёма – давление уменьшается.

Если
плотно закрыть пластиковую бутылку и сжать её, то можно почувствовать
значительное сопротивление – молекулы газа будут давить на стенки бутылки
изнутри, не давая вам сжать её.

Поставим
опыт
:
Не будем изменять ни массу газа, ни его объём, а просто нагреем газ в плотно
закрытом сосуде. В этом случае давление газа увеличится. Это объясняется тем,
что при увеличении температуры, молекулы газа начинают двигаться быстрее, а,
следовательно, будут чаще ударяться о стенки сосуда. То есть, при увеличении
температуры газа постоянной массы и объёма, давление газа увеличивается
, и,
наоборот, при уменьшении температуры, давление газа уменьшается. Если
слегка заткнуть стеклянную бутылку пробкой и нагреть бутылку, то пробка
выскочит из горлышка под давлением газа.

Зависимость
давления газа от температуры нередко используется людьми. Например, чтобы
поместить большое количество газа в сравнительно небольшой объём, газ охлаждают
и закачивают в баллон. После того, как газ вновь нагревается, в баллоне
создается очень высокое давление. Именно поэтому на таких баллонах, как
правило, пишут предупреждения о том, чтобы баллон ни в коем случае не нагревали
и не ударяли (это может привести к взрыву – настолько в баллоне высокое
давление).

Примеров
давления газа можно привести очень много: это и накачанный мяч, и накачанные
шины автомобиля, и атмосферное давление.

Упражнения:

Упражнение
1.

Из баллона медленно выпустили половину газа и снова закрыли его. Как изменится
давление в баллоне?

Решение:

Поскольку
молекул газа внутри баллона стало вдвое меньше, они вдвое меньше стали
ударяться о стенки баллона. Следовательно, давление уменьшилось вдвое.

Упражнение
2.

Одинаковые массы одного и того же газа находятся в двух баллонах: зеленом и
синем. Известно, что температура и в том, и в другом баллоне одинакова. В каком
баллоне давление будет больше?

Решение:

По
условию задачи, в обоих баллонах одинаковые условия. Из рисунка явно видно, что
синий баллон больше зеленого. Поэтому давление в нем будет меньше, поскольку
молекулы газа меньше будут ударяться о его стенки.

Упражнение
3.

Воздушный шарик завязали и облили его ледяной водой. Из-за этого шарик немного
сжался. Можете ли вы объяснить, почему это произошло?

Решение:

Из-за
понижения температуры, давление внутри шарика уменьшилось. В результате внешнее
давление сжимало шарик до тех пор, пока внутреннее давление вновь ни стало
равным внешнему.

Основные
выводы:


Давление газа – это давление, которое создается в результате ударов
молекул о стенки сосуда (или о какое-то другое тело).


Давление газа одинаково по всем направлениям.


При неизменной массе и температуре, давление газа тем больше, чем меньше его
объём. И, наоборот, давление газа тем меньше, чем больше объём.


При постоянной массе и объёме, давление можно изменить, изменяя температуру.
При нагревании газа, его давление будет увеличиваться, а
при охлаждении – наоборот, уменьшаться.

Что такое формула давления,перечень зависимых величин

Точные науки

Единица измерения давления в физике и химии — буква «Р» (перевод на латинский — «pressūra). Если наблюдается равновесие внутри и снаружи стенок цилиндра, показатель обозначается «П». По международной системе используются Паскали. Используя формулу давления жидкости и силу, можно прийти к выводу, что 1 Па=1 Н/ 1 кв. м. Так как единица мала, применять её в расчётах сложно.

Из таблицы стандартных конвертеров в физике чаще используются обозначения:

  1. Бары. 1 Бар=105 Па.
  2. Торры либо мм ртутного столба (1 торр равен 133 Па).
  3. Мм вод. столба.

Для определения давления используется сила и площадь: Р = mg / S. Существует зависимость величины от объёма и массы. Для показателя характерно следующее свойство: чем меньше площадь, тем большая сила оказывается на тело. Если давление не изменяется, но увеличивается S, тогда искомый показатель уменьшается.

Главные формулы

При изменении условия агрегатного состояния вещества наблюдаются отличные друг от друга свойства. С учётом этого принципа определяется способ вычисления Р. Для гидростатического состояния используется формула: Р = pgh, где:

  • р — плотность;
  • g — ускорение;
  • h — высота.

Гидростатика применяется к газам. Исключение — вычисление АД. Это объясняется разностью высот и плотностей воздушных масс. От глубины погружения предмета либо объекта зависит значение Р вещества. Так как сила F вычисляется путём умножения m на g, а масса воды — p на V, идеальным вариантом для расчёта давления считается выражение: P = pVg / S. Формула применяется на онлайн-ресурсах, где можно решать задачи по физике и химии.

Если площадь записать в виде S= V/h, тогда Р= pgh. Давление в воде либо иной жидкости вычисляется с учётом изменения верхнего слоя. Это приводит к образованию другого Р. Чтобы найти абсолютную силу, используется формула:

Р = Р0 + 2QH, где:

  • Р0 — давление неизменяемого слоя;
  • Q — поверхность натяжения жидкого вещества;
  • H — среднее значение.

Последний показатель должен сообщаться между первыми двумя, поэтому он считается усреднённым. Для определения значения используются радиусы кривизны: ½ (1/R1+ 1/R2). Каждый вид газа оказывает особенное парциальное давление. Для идеального состояния характерна сумма Р каждого отдельного компонента смеси. Частая ошибка, которую допускают школьники при вычислении давления воздуха — применение только кислорода. Но воздух представлен в виде различных газов:

  • аргон;
  • азот.

Для нахождения давления воздушных масс используется формула P=P1+P2+P3…

Виды величины

Трактовка закона Паскаля

Давление может быть различным (избыточным, барометрическим). Абсолютное понятие характерно для вещества либо объекта, на которое не оказывают влияния иные газы. Показатель измеряется в Паскалях. Он вычисляется по следующему калькулятору: нормальное Р = Р2 + Р3 или Р = Р2 — Р4.

Начало отсчёта идёт от планеты Земля, силы внутри сосуда, из которого удалён воздух. Величина используется во многих термодинамических формулах. Для определения гравитации используется понятие барометрическое либо атмосферное давление. Оно изменяется с учётом температуры атмосферы, времени, высоты.

В норме показатель равняется 760 мм рт. ст., при этом температура должна соответствовать нулю по Цельсию. Чем выше находится объект от Земли, тем ниже оказывается на него давление. Значение уменьшается на 100 Па через каждый восьмой километр.

В горах вода закипает быстрее, чем в домашних условиях: давление воздействует на температуру кипения. Если оно снижается, уменьшается t. Зависимость сохраняется и в обратном порядке. На подобном свойстве функционируют некоторые кухонные приборы: скороварка, автоклав. При повышении номинального Р внутри поднимается температура.

Для расчётов применяется стандартная формула, где используются переменные:

  • плотность воздушных масс вблизи уровня Земли;
  • высота;
  • ускорение;
  • температура;
  • молярная масса.

Если количество частиц задано в молях, используется формула с постоянной величиной К. При проведении расчётов учитывается вероятность изменения температуры, что связано со сменой погоды, набором высоты, географической широтой. Если из атмосферного Р вычесть измеренное, получится избыточная сила. С учётом результата изменяется название показателя:

  • положительный — манометрический;
  • отрицательный — вакуумметрический.

Последнее значение не может превышать барометрический уровень. Разница давлений в разных точках называется дифференциальным явлением. Его используют, чтобы определить Р на определённом оборудовании. Такое понятие используется в нефтедобывающей отрасли.

Решение задач

 Примеры и задачи

В задачах по физике формулы давления могут выглядеть по-разному. Задача первая: нужно найти Р, оказываемое телом на судно и грунт под водой, когда водолаз находится в движении. Человек весит со снаряжением на суше 180 кг. Площадь стопы равняется 360 кв. см. Сила, с которой человек воздействует на судно равно 180/360 = 0.5 (кгс/см). Используя таблицу, величину можно перевести в Па. Получится 49 кПа. На грунт под водой оказывается сила в 2,46 кПа.

Пример 2: нужно вычислить абсолютное Р воды, если глубина равна 150 м, сила — 765, а масса тела — 1,024 кгс/л. Решение: P = 765/735,6+1,024×150/10=16.4.

Пример 3: ёмкость баллона равна 40 л, давление в нём 150 кгс/см2. Нужно найти V свободных воздушных масс. Решение: начальное Р вычисляется следующим образом: 150+1 = 151 кгс/кв.см. Начальное V равно 40 литров. Свободное V вычисляется p1xнач V/p2=6.04 куб. м. Аналогичным способом решаются задачи, где нужно найти Р любой жидкости, твёрдого объекта, газового вещества.

Измерительные приборы

Можно сэкономить время на расчётах, воспользовавшись специальными приборами, функционирующими путём определения давления в соответствующей среде, что схоже с манометром. Их отличия между собой заключаются в инструкции по эксплуатации, сфере использования, точности, области применения.

В чём измеряется показатель давления газа в химии и физике

Чтобы определить АД, понадобится манометр типа барометра. Для определения разряжения (Па меньше атмосферного) понадобится иная разновидность аппарата — вакуумметр. У человека показатель определяется с помощью сфигмоманометра. Большинство пациентов называют такое оборудование неинвазивным тонометром.

Подобные приборы классифицируются на следующие подвиды:

  • ртутные механические;
  • полуавтоматические;
  • автоматические цифровые.

Температура, плотность газа

Их погрешность зависит от материалов, используемых в процессе производства и области измерения. Некоторые устройства одновременно измеряют давление и пульс. Они работают автоматически от батареек. За счёт наличия цифрового табло легко узнать результат. Более точными считаются механические.

Чтобы определить Р, понадобится надеть манжет на правую руку больного. Зажав механизм, производится накачка груши. Максимальный и минимальный пределы начинаются с появления, а затем с исчезновения характерного стука. Постепенно механизм ослабляется. Для получения точных данных потребуется опыт работы с механическим тонометром и внимательность. Если наблюдаются колебания давления в воздухе, понадобится дифнамометр либо манометр.

Давление является одним из трех основных термодинамических макроскопических параметров любой газовой системы. В данной статье рассмотрим формулы давления газа в приближении идеального газа и в рамках молекулярно-кинетической теории.

Идеальные газы

Каждый школьник знает, что газ является одним из четырех (включая плазму) агрегатных состояний материи, в котором частицы не имеют определенных положений и движутся хаотичным образом во всех направлениях с одинаковой вероятностью. Исходя из такого строения, газы не сохраняют ни объем, ни форму при малейшем внешнем силовом воздействии на них.

В любом газе средняя кинетическая энергия его частиц (атомов, молекул) больше, чем энергия межмолекулярного взаимодействия между ними. Кроме того, расстояния между частицами намного превышают их собственные размеры. Если молекулярными взаимодействиями и размерами частиц можно пренебречь, тогда такой газ называется идеальным.

В идеальном газе существует лишь единственный вид взаимодействия — упругие столкновения. Поскольку размер частиц пренебрежимо мал в сравнении с расстояниями между ними, то вероятность столкновений частица-частица будет низкой. Поэтому в идеальной газовой системе существуют только столкновения частиц со стенками сосуда.

Все реальные газы с хорошей точностью можно считать идеальными, если температура в них выше комнатной, и давление не сильно превышает атмосферное.

Причина возникновения давления в газах

Давление в газах

Прежде чем записать формулы расчета давления газа, необходимо разобраться, почему оно возникает в изучаемой системе.

Согласно физическому определению, давление – это величина, равная отношению силы, которая перпендикулярно воздействует на некоторую площадку, к площади этой площадки, то есть:

P = F/S

Выше мы отмечали, что существует только один единственный тип взаимодействия в идеальной газовой системе – это абсолютно упругие столкновения. В результате них частицы передают количество движения Δp стенкам сосуда в течение времени соударения Δt. Для этого случая применим второй закон Ньютона:

F*Δt = Δp

Именно сила F приводит к появлению давления на стенки сосуда. Сама величина F от столкновения одной частицы является незначительной, однако количество частиц огромно (≈ 1023), поэтому они в совокупности создают существенный эффект, который проявляется в виде наличия давления в сосуде.

Формула давления газа идеального из молекулярно-кинетической теории

Зависимость давления от объема

При объяснении концепции идеального газа выше были озвучены основные положения молекулярно-кинетической теории (МКТ). Эта теория основывается на статистической механике. Развита она была во второй половине XIX века такими учеными, как Джеймс Максвелл и Людвиг Больцман, хотя ее основы заложил еще Бернулли в первой половине XVIII века.

Согласно статистике Максвелла-Больцмана, все частицы системы движутся с различными скоростями. При этом существует малая доля частиц, скорость которых практически равна нулю, и такая же доля частиц, имеющих огромные скорости. Если вычислить среднюю квадратичную скорость, то она примет некоторую величину, которая в течение времени остается постоянной. Средняя квадратичная скорость частиц однозначно определяет температуру газа.

Применяя приближения МКТ (невзаимодействующие безразмерные и хаотично перемещающиеся частицы), можно получить следующую формулу давления газа в сосуде:

P = N*m*v2/(3*V)

Здесь N – количество частиц в системе, V – объем, v – средняя квадратичная скорость, m – масса одной частицы. Если все указанные величины определены, то, подставив их в единицах СИ в данное равенство, можно рассчитать давление газа в сосуде.

Формула давления из уравнения состояния

Эмиль Клапейрон

В середине 30-х годов XIX века французский инженер Эмиль Клапейрон, обобщая накопленный до него экспериментальный опыт по изучению поведения газов во время разных изопроцессов, получил уравнение, которое в настоящее время называется универсальным уравнением состояния идеального газа. Соответствующая формула имеет вид:

P*V = n*R*T

Здесь n – количество вещества в молях, T – температура по абсолютной шкале (в кельвинах). Величина R называется универсальной газовой постоянной, которая была введена в это уравнение русским химиком Д. И. Менделеевым, поэтому записанное выражение также называют законом Клапейрона-Менделеева.

Из уравнения выше легко получить формулу давления газа:

P = n*R*T/V

Равенство говорит о том, что давление линейно возрастает с температурой при постоянном объеме и увеличивается по гиперболе с уменьшением объема при постоянной температуре. Эти зависимости отражены в законах Гей-Люссака и Бойля-Мариотта.

Формула давления идеального газа

Если сравнить это выражение с записанной выше формулой, которая следует из положений МКТ, то можно установить связь между кинетической энергией одной частицы или всей системы и абсолютной температурой.

Давление в газовой смеси

Давление газовой смеси

Отвечая на вопрос о том, как найти давление газа и формулы, мы ничего не говорили о том, является ли газ чистым, или речь идет о газовой смеси. В случае формулы для P, которая следует из уравнения Клапейрона, нет никакой связи с химическим составом газа, в случае же выражения для P из МКТ эта связь присутствует (параметр m). Поэтому при использовании последней формулы для смеси газов становится непонятным, какую массу частиц выбирать.

Когда необходимо рассчитать давление смеси идеальных газов, следует поступать одним из двух способов:

  • Рассчитывать среднюю массу частиц m или, что предпочтительнее, среднее значение молярной массы M, исходя из атомных процентов каждого газа в смеси;
  • Воспользоваться законом Дальтона. Он гласит, что давление в системе равно сумме парциальных давлений всех ее компонентов.

Пример задачи

Известно, что средняя скорость молекул кислорода составляет 500 м/с. Необходимо определить давление в сосуде объемом 10 литров, в котором находится 2 моль молекул.

Ответ на задачу можно получить, если воспользоваться формулой для P из МКТ:

P = N*m*v2/(3*V)

Здесь содержатся два неудобных для выполнения расчетов параметра – это m и N. Преобразуем формулу следующим образом:

m = M/NA;

n = N/NA;

m*N = M*n;

P = M*n*v2/(3*V)

Объем сосуда в кубических метрах равен 0,01 м3. Молярная масса молекулы кислорода M равна 0,032 кг/моль. Подставляя в формулу эти значения, а также величины скорости v и количества вещества n из условия задачи, приходим к ответу: P = 533333 Па, что соответствует давлению в 5,3 атмосферы.

Содержание:

  1. Свойства газов
  2. Давление газов
  3. Зависимость между объёмом и давлением газа. Закон Еойля — Мариотта
  4. Зависимость между плотностью газа и его давлением
  5. Зависимость объёма газа от температуры. Закон Гей-Люссака
  6. Зависимость давления газа от температуры. Закон Шарля
  7. Абсолютная шкала температур
  8. Зависимость между объёмом, давлением и температурой газа
  9. Физическая сущность понятия абсолютного нуля
  10. Изменение температуры газа при быстром расширении и сжатии
  11. Применение сжатых газов

Газ — это одно из трёх основных агрегатных состояний вещества, характеризующееся очень слабыми связями между составляющими его частицами (молекулами, атомами или ионами), а также их большой подвижностью. Частицы газа почти свободно и хаотически движутся в промежутках между столкновениями, во время которых происходит резкое изменение характера их движения.

На странице -> решение задач по физике собраны решения задач и заданий с решёнными примерами по всем темам физики.

Свойства газов

Главные свойства газов – это подвижность и хаотичное движение частиц, направление которых меняется при столкновении. Газ – одно из 4 агрегатных состояний веществ, которые на сегодняшний день известны науке.

Давление газов

Всякий газ производит давление на оболочку, внутри которой он находится.

Давление, производимое газом на стенки сосуда, объясняется ударами движущихся молекул.

При ударе о стенку молекулы газа отдают ей определённое количество движения; стенка испытывает при этом действие некоторой силы.

Удар каждой отдельной молекулы о стенку сосуда производит очень небольшое действие. Но молекул газа очень много, удары о стенки сосуда происходят беспрерывно, поэтому в результате получается значительное давление.

Хаотичность движения молекул приводит к тому, что давление газа одинаково во всех направлениях.

При нагревании давление газа увеличивается. Так как при этом число молекул газа не изменяется, то увеличение давления можно объяснить только тем, что удары молекул о стенки заключающего газ сосуда делаются при нагревании чаще и что каждый удар становится сильнее. Удары же могут стать чаще и сильнее, если увеличивается скорость движения молекул. Это подтверждается, как мы видели (гл. V), многочисленными опытами.

Зависимость между объёмом и давлением газа. Закон Еойля — Мариотта

Состояние газа определяется его объёмом, давлением и температурой. С изменением этих величин меняется и состояние газа. Мы будем рассматривать последовательно процессы, при которых одна из величин, характеризующих состояние газа, постоянна, а две другие меняются.

Изучим сначала такой процесс, при котором давление и объём газа изменяются, а температура остаётся постоянной. Такой процесс называется изотермическим 1.

1 От греч. слов: изос — равный, термос — тёплый.

Итак, рассмотрим, как изменяется давление данной массы газа при изменении его объёма, если температура газа не меняется.

Опыты, устанавливающие эту зависимость, можно произвести на приборе, три положения которого изображены на рисунке 134.

Свойства газов в физике

Рис. 134. Прибор для установления зависимости между объёмом и давлением газа (в трёх положениях).

В этом приборе стеклянная трубка А соединяется резиновой трубкой с другой стеклянной трубкой В. Трубка А вверху снабжена краном Свойства газов в физике обе трубки наполняются ртутью.

Откроем кран Свойства газов в физике и установим трубку В так, чтобы уровень ртути в трубке А был, например, на середине трубки (положение I). Давление над ртутью в обеих трубках атмосферное; допустим, что оно равно 76 см рт. ст. Закроем теперь кран, отделив этим массу воздуха в трубке А от атмосферного воздуха. Таким образом, в этой стадии опыта мы будем иметь в трубке А определённую массу воздуха, находящегося под давлением p1 = 76 см рт. ст.

Поднимем теперь трубку В вверх на столько, чтобы объём воздуха в трубке А уменьшился вдвое (положение II). Уровень ртути в трубке В при этом значительно поднимется над уровнем в трубке А.

Рассмотрим теперь, чему будет равно давление воздуха в трубке А. Это давление уравновешивает атмосферное давление и давление всего столба ртути в трубке В, стоящего выше уровня n1 высота этого столба n1n оказывается равной 76 см. Таким образом, давление воздуха в трубке А уравновешивает не одну, как в первом случае, а две атмосферы 2 = 2 am).

Значит, с уменьшением объёма данной массы газа в два раза давление его увеличивается в два раза. Если уменьшить объём газа в 1,5; 2,5; 3 раза, то соответственно в 1,5; 2,5; 3 раза увеличится его давление.

Опустим теперь трубку В так, чтобы масса воздуха в трубке А заняла вдвое больший объём (положение III). Уровень ртути в трубке А при этом понизится. Атмосферное давление теперь уравновешивает давление воздуха в трубке А и давление столба ртути от уровня n в трубке А до уровня в трубке В. Измерения показывают, что высота этого столба ртути равна 38 см. Давление, производимое воздухом в трубке А, найдём, вычтя из атмосферного давления давление столба ртути: р3 = 76 см—38 см = 38 см; следовательно, р3 = 0,5 am.

Итак, при увеличении объёма газа в два раза его давление уменьшается в два раза.

Перемещая трубку В в различные положения и отсчитывая каждый раз объём и давление воздуха в трубке А, найдём, что при уменьшении объёма исследуемой массы воздуха в некоторое число раз давление его увеличивается во столько же раз. Температура воздуха при всех опытах остаётся постоянной.

Опыты, проведённые с другими газами, дали те же результаты.

Изучая на опыте зависимость давления газа от его объёма, английский учёный Бойль (1627—1691) и французский учёный Мариотт (1620—1684) независимо один от другого открыли следующий закон.

Давление данной массы газа при неизменной температуре обратно пропорционально объёму газа.

Этот закон называется законом Бойля — Мариотта.

Выразим закон Бойля — Мариотта математически. Пусть температура некоторой массы газа постоянная и пусть:

V1 — объём газа при давлении р1,

V2  » » » » р2.

Согласно закону Бойля — Мариотта можно написать:

Свойства газов в физике

Из этой формулы следует, что:

Свойства газов в физике

Полученное равенство можно рассматривать как новое выражение закона Бойля — Мариотта.

Произведение объёма данной массы газа на его давление при неизменной температуре есть величина постоянная.

Изобразим графически изотермическое изменение состояния газа. Для этого по оси абсцисс будем откладывать значения объёмов газа, а по оси ординат соответствующие им значения давлений. Выберем масштаб так, чтобы начальные значения объёма и давления были равны 1. Тогда начальное состояние газа будет изображено точкой А (рис. 135). Если давление увеличится вдвое, объём уменьшится в два раза, состояние газа изобразится на графике точкой В. При уменьшении первоначального давления вдвое объём удвоится, получим точку С. Беря далее давления в три, четыре и т. д. раза больше или меньше начального, а объёмы соответственно в три, четыре и т. д. раза меньше или больше, получим ряд точек, изображающих различные состояния одной и той же массы газа при одинаковой температуре.

Свойства газов в физике

Рис. 135. График изотермического процесса.

Проведя через эти точки линию, получим кривую, которая называется изотермой.

Тщательными исследованиями установлено, что для реально существующих газов закон Бойля — Мариотта имеет лишь приближённое значение. Так, например, если произведение pV при 1 am равно единице, то при 2 am оно имеет следующие значения:

для воздуха ………………………0,99977

» водорода …………………….. 1,00026

» окиси углерода………………….. 0,99974

» двуокиси углерода………………… 0,99720

При очень больших давлениях (в сотни и тысячи атмосфер) закон Бойля — Мариотта становится совершенно неприменимым; в таких случаях зависимость между объёмом и давлением газа выражается более сложными уравнениями.

Зависимость между плотностью газа и его давлением

Плотность газа численно равна массе, заключённой в единице объёма.

Масса газа не меняется при его сжатии или расширении, но объём меняется; следовательно, меняется и плотность газа.

Пусть при постоянной температуре: D1 — плотность газа при объёме V1 и давлении p1 a D2 —  плотность газа при объёме V2 и давлении p2.

Если масса газа равна m, то можно написать:

Свойства газов в физике

откуда:

Свойства газов в физике

Но Свойства газов в физике на основании закона Бойля — Мариотта; поэтому

Свойства газов в физике

При постоянной температуре плотность газа прямо пропорциональна его давлению.

Нетрудно понять справедливость этого вывода, исходя из молекулярно-кинетической теории. В самом деле, давление газа обусловлено ударами его молекул. Если объём газа уменьшится вдвое, то в новом объёме , плотность газа станет вдвое больше. Вдвое увеличится и число ударов молекул о стенки, т. е. давление газа возрастёт в два раза.

Зависимость объёма газа от температуры. Закон Гей-Люссака

Как и все тела, газы при нагревании расширяются, причём весьма заметно даже при незначительном нагревании. Это легко обнаружить на следующем простом опыте (рис. 136).

Свойства газов в физике

Рис. 136. Установка для наблюдения расширения газа при нагревании.

Колба А соединяется с расположенной горизонтально трубкой CD, которая укреплена вдоль шкалы. Внутри этой трубки находится небольшой столбик ртути. Достаточно к колбе прикоснуться рукой, как столбик ртути в трубке CD начнёт двигаться.

При охлаждении колбы столбик ртути перемещается влево, а при нагревании — вправо; следовательно, газ при охлаждении сжимается, а при нагревании расширяется. Зная объём колбы и диаметр трубки, можно измерить увеличение объёма газа.

Постепенно нагревая газ в колбе, можно установить, что при постоянном давлении изменение объёма данной массы газа пропорционально изменению температуры. Поэтому тепловое расширение газа, так же как и других тел, можно охарактеризовать при помощи коэффициента объёмного расширения.

Пусть при температуре 0°С объём газа равен V0 , а при температуре t объём Vt. Увеличение объёма, приходящееся на каждую единицу объёма, взятого при 0°С, при нагревании на один градус будет равно:

Свойства газов в физике

откуда: Свойства газов в физике (1)

Величина Свойства газов в физике входящая в писанные выше формулы, называется коэффициентом объёмного расширения газа.

Свойства газов в физике

Жозеф Луи Гей-Люссак (1778—1850)— один из выдающихся французских химиков и физиков. Он открыл ряд важных химических и физических законов, из которых в физике широко известен закон одинакового расширения газов и паров при одинаковом повышении температуры.

Французский учёный Гей-Люссак, исследуя на опыте тепловое расширение газов, открыл, что, коэффициент объёмного расширения у всех газов при постоянном давлении одинаков и численно равен Свойства газов в физике

В этом отношении расширение газов при нагревании отличается от расширения твёрдых и жидких тел, где, как мы видели (см. § 81 и 82), коэффициент объёмного расширения зависит от химического состава тел.

Положим в формуле (1): Свойства газов в физике

получим: Свойства газов в физике откуда следует, что при нагревании на 1° под постоянным давлением объём данной массы газа увеличивается на Свойства газов в физике того объёма, который газ занимал при 0°С.

Этот закон получил название закона Гей-Люссака. Процессы, подобные рассмотренному, протекающие при постоянном давлении, называются изобарными1.

1 От греч. слов: изос — равный, барос — тяжесть, вес.

Формула (1) показывает, что объём газа при температуре равен произведению его объёма, взятого при 0°С, на двучлен объёмного расширения Свойства газов в физике

Пример. 1. Объём некоторой массы газа при 0°С равен 10 л. Найти объём его при t=273°С, если давление постоянно.

По условиям задачи нам известен объём газа при 0°С, т. е. V0 = 10 л; подставляя числовые данные задачи в формулу Свойства газов в физике найдем, что

Свойства газов в физике

Пример 2. При температуре 273°С объём некоторой массы газа равен 10 л. Чему будет равняться объём этого газа при температуре 546°С, если давление постоянно?

Нам известен объём газа при температуре 273°С; чтобы определить объём этого газа при t2 = 546°С, надо предварительно найти его объём при 0°.

Этот объём найдётся из равенства:

Свойства газов в физике

откуда:

Свойства газов в физике

Найдём теперь объём газа при 546°:

Свойства газов в физике

Зависимость давления газа от температуры. Закон Шарля

Нагревая газ в закрытом цилиндре, например в папиновом котле (рис. 136а), можно по манометру заметить, что давление газа увеличивается. Следя по термометру за повышением температуры, легко установить, что при постоянном объёме давление газа возрастает пропорционально повышению температуры.

Свойства газов в физике

Рис. 136а. При нагревании газа в закрытом цилиндре давление его повышается.

Аналогично тому, как для характеристики теплового расширения газов мы ввели коэффициент объёмного расширения, введём величину, характеризующую изменение давления газа при изменении его температуры.

Обозначим буквой р0 давление газа при 0°С, a pt — давление при. Увеличение давления, приходящееся на каждую единицу начального давления при нагревании на 1°С, будет равно:

Свойства газов в физике  (1)

Величина Свойства газов в физике (греч. «гамма») называется термическим коэффициентом давления газа.

Измерения показывают, что величина термического коэффициента давления для всех

газов одинакова и равна Свойства газов в физике

Определяя из формулы (1) величину pt получим:

Свойства газов в физике   (2)

Положим в формуле (2) Свойства газов в физикетогда Свойства газов в физике

Отсюда следует, что давление данной массы газа при нагревании на 1° при постоянном объеме увеличивается на Свойства газов в физике того давления, которым обладал газ при 0°C. 

Этот закон называется законом Шарля, по имени французского учёного, открывшего его в 1787 г.

Из закона Шарля следует, что термический коэффициент давления газа Свойства газов в физике равен коэффициенту объёмного расширения Свойства газов в физике Это равенство вытекает из закона Бойля — Мариотта. Докажем это.

Пусть некоторая масса газа заключена в цилиндре под поршнем (рис. 137, а) и пусть температура её в этом начальном состоянии равна 0°, объём V0 и давление р0. Закрепим поршень АВ и нагреем газ до температуры (рис. 137, б); тогда давление газа увеличится и станет равным рt объём же его останется прежним.

По закону Шарля: Свойства газов в физике

Будем теперь газ нагревать от 0 до (рис. 137, в), предоставив поршню свободно перемещаться. Давление газа останется таким же, каким было в начальном его состоянии, т. е. р, объём же увеличится до Vt. По закону Гей-Люссака:

Свойства газов в физике

Свойства газов в физике

Рис. 137.

а)    начальное состояние газа: 0°, V0, р0;

б)    состояние газа, определяемое величинами: Свойства газов в физике

в)    состояние газа, определяемое величинами: Свойства газов в физике

Итак, имеем: при температуреобъём данной массы газа V0 и давление Свойства газов в физике при той же температуре: давление ри объём Свойства газов в физике По закону Бойля— Мариотта:

Свойства газов в физике

После упрощения этого выражения получаем равенство:

Свойства газов в физике

Выразим сначала в виде таблицы, а потом графически зависимость давления газа от температуры. Для этого воспользуемся уравнением:

Свойства газов в физике

Свойства газов в физике

Рис. 138. График изменения давления газа от температуры.

Отложим по оси абсцисс в некотором условном масштабе температуры газа, а по оси ординат соответствующие этим температурам давления, взятые из написанной выше таблицы.

Соединяя на графике отмеченные точки, получим прямую LM (рис. 138), представляющую собой график зависимости давления газа от температуры при постоянном объёме.

Процесс изменения состояния газа, происходящий при неизменном объёме газа, называется  изохорным 1 процессом, а линия LM, изображающая изменение давления газа при постоянном объеме в зависимости от температуры, называется изохорой.

1 От греч. слов: изос — разный, хорема — вместимость.

Пример 1. Давление газа при 0°С равно 780 мм рт. ст. Определить давление этого газа при температуре 273°С.

По формуле Свойства газов в физике найдем, что

Свойства газов в физике

Пример 2. Чему будет равно давление газа при температуре 546°, если давление его при температуре 273° равно 780 мм рт. cm.?

В этой задаче прежде всего надо определить давление газа при 0°С. По формуле Свойства газов в физике находим:

Свойства газов в физике

Теперь можно определить давление газа при t = 546°:

Свойства газов в физике

Законы Гей-Люссака и Шарля так же, как и закон Бойля — Мариотта, лишь приближённо отражают свойства газов. Это можно видеть хотя бы. из того факта, что для разных газов величины Свойства газов в физике и Свойства газов в физике несколько различаются между собой (см. таблицу).

Свойства газов в физике      

Точные измерения показывают, что для каждого данного газа значения Свойства газов в физикеи Свойства газов в физикеполучаются разные в зависимости от того, в каком температурном интервале и при каком давлении они определены. Однако эти различия очень незначительны, они учитываются лишь при весьма точных расчётах.

Абсолютная шкала температур

Вернёмся ещё раз к графику изменения давления газа с температурой (рис. 138).

Продолжим прямую LM на этом графике до пересечения её с горизонтальной осью, по которой откладываются температуры газа, она пересечёт эту ось в точке K. Отрезок ОК будет изображать на этом графике такую температуру газа, при которой давление его равно нулю. Чему равна эта температура?

Обратимся к уравнению Свойства газов в физике Положим в этом уравнении pt = 0, т. е. напишем следующее равенство:

Свойства газов в физике

Так как давление газа при 0°С не равно нулю Свойства газов в физике то из написанного равенства следует, что:

Свойства газов в физике

откуда: Свойства газов в физике или, так как

Свойства газов в физике

Итак, давление газа равняется нулю при температуре —273°С.

Свойства газов в физике

Вильям Томсон (Кельвин) (1824— 1907) — выдающийся английский физик. Ему принадлежат важные открытия в области теории электричества и теплоты и изобретения, из которых наиболее значительным было усовершенствование телеграфной связи. Он ввёл в физику понятие об абсолютной температуре. Его именем названы градусы шкалы абсолютных температур — градусы Кельвина.

Английский учёный Вильям Томсон (Кельвин) предложил такую шкалу температур, при которой за нуль градусов принята температура — 273°. Эта шкала получила название абсолютной шкалы температур, или шкалы Кельвина, а нуль градусов этой шкалы, равный — 273°, называется абсолютным нулём температур.

В шкале Кельвина величина градуса та же, что и в стоградусной шкале.

Будем обозначать температуру по шкале Кельвина буквой Т.

При нормальном атмосферном давлении температура таяния льда по шкале Кельвина Т0 = 273°, температура же кипения воды = 373°.

Всякая другая температура стоградусной шкалы связана с абсолютной температурой Т соотношениями:

Свойства газов в физике

Зависимость между объёмом, давлением и температурой газа

Объединённый закон газового состояния. Мы рассмотрели процессы, в которых одна из трёх величин, характеризующих состояние газа (объём, давление и температура), не меняется.

Вы видели, что если не меняется температура, то давление и объём газа связаны друг с другом законом Бойля —- Мариотта. При постоянном давлении объём газа изменяется с изменением температуры по закону Гей-Люссака, и, наконец, при постоянном объёме давление газа меняется с изменением температуры по закону Шарля.

Однако в природе часто имеют место процессы, когда одновременно меняются все три величины, характеризующие состояние газа. Установим теперь, какая связь существует между объёмом, давлением и температурой.

Пусть для двух каких-либо произвольных состояний некоторой массы газа эти величины будут:

Свойства газов в физике

Из этих состояний изменением величин р, V или t газ можно перевести в любые другие состояния. Будем, например, сохраняя постоянным давление, переводить газ из состояний 1) и 2) в состояния, при которых температура газа будет равна 0°С.

По закону Гей-Люссака объём газа V1 после уменьшения температуры от до 0° будет равен Свойства газов в физике объём V2, после уменьшения температуры от t2 до 0° будет Свойства газов в физике

Новые состояния газа выразятся так:

Свойства газов в физике

В обоих этих состояниях температура газа одинакова, поэтому на основании закона Бойля — Мариотта можно написать:

Свойства газов в физике  (1)

Так как величины р, V, t, характеризующие состояние рассматриваемого газа и обозначенные индексами 1 и 2, выбраны были нами произвольно, то равенство (1) справедливо для любых состояний этого газа. Поэтому можно утверждать, что:

Свойства газов в физике  (2)

Для данной массы газа произведение давления газа на его объём, делённое на двучлен объёмного расширения, есть величина постоянная.

Выведенная нами зависимость между объёмом, давлением и температурой газа называется объединённым законом газового состояния, а равенство (1) или (2) — уравнением состояния газа.

Уравнение состояния газа можно упростить, введя в него вместо температуры t по стоградусной шкале температуру Т по абсолютной шкале температур. Для этого преобразуем уравнение:

Свойства газов в физике

Введя в него значение Свойства газов в физике получим:

Свойства газов в физике

что после сокращения на 273 даст:

Свойства газов в физике

Но Свойства газов в физике и Свойства газов в физике; следовательно, можно написать:

Свойства газов в физике

Это означает, что для данной массы газа произведение давления на объём, делённое на абсолютную температуру, постоянно при всех температурах: Свойства газов в физике

В частности, если при температуре Т = 273° объём газа равен V0 и давление его р, то можно написать:

Свойства газов в физике

Физическая сущность понятия абсолютного нуля

Мы уже отмечали, что реальные газы лишь приближённо следуют законам Гей-Люссака, Шарля и Бойля — Мариотта. Однако можно представить себе газ, для которого эти законы выполнялись бы в точности. Молекулы такого газа можно представить себе в виде упругих шариков исчезающе малого объёма, взаимодействие между которыми осуществляется только через их столкновения друг с другом. В физике такой газ принято называть идеальным газом.

Из уравнения Свойства газов в физике следует, что при t = —273°, т. е. при абсолютном нуле, давление газа равно нулю. Но ведь давление газа есть результат ударов движущихся молекул о стенки сосуда. Следовательно, при температуре абсолютного нуля должно прекратиться тепловое движение молекул идеального газа.

Опыт показывает, что при малых давлениях свойства реальных газов очень близки к свойствам идеального газа. Следовательно, при приближении к температуре абсолютного нуля должно прекратиться тепловое движение молекул и реального газа. Этот вывод относится не только к газам, но и к твёрдым и жидким телам.

Физикой установлено, что такое состояние вещества недостижимо, но к нему можно подойти очень близко. В настоящее время достигнута температура, которая выше абсолютного нуля всего на несколько стотысячных долей градуса.

Изменение температуры газа при быстром расширении и сжатии

Опыты показывают, что при быстром сжатии температура газа повышается, а при быстром расширении понижается.

Увеличение температуры газа при сжатии можно показать на следующем простом опыте. Возьмём толстостенный цилиндрический стеклянный сосуд, внутри которого может двигаться поршень (рис. 139). При быстром сжатии воздух в сосуде сильно нагревается, и легко воспламеняющееся вещество (например, ватка, смоченная эфиром), положенное на дно сосуда, вспыхивает. Такого рода явление используется, например, в двигателях внутреннего сгорания —дизелях: при сжатии воздуха в цилиндре двигателя горючая смесь, введённая в цилиндр, нагревается до температуры воспламенения (работа двигателя описана в § 131).

Свойства газов в физике

Рис. 139. При быстром сжатии воздух в цилиндре сильно нагревается и легко воспламеняющееся вещество вспыхивает.

При быстром же расширении газа температура его понижается. Это можно наблюдать на следующем опыте. Будем накачивать воздух в прочную закрытую пробкой стеклянную банку, содержащую пары воды. При достижении определённого давления пробка выскочит; при этом воздух, расширяясь, совершит работу и охладится, вследствие чего водяной пар превратится в туман (рис. 140).

Свойства газов в физике

Рис. 140. Сжатый в сосуде воздух, выбрасывая пробку, расширяется. Совершая при этом работу, он охлаждается, вследствие чего водяной пар в сосуде превращается в туман.

Понижение температуры при быстром расширении газа используется для получения сжиженных газов; об этом будет рассказано в § 122.

Изменение температуры тела, как было установлено в § 71, связано с изменением внутренней энергии тела. Так как при быстром сжатии температура газа повышается, то внутренняя энергия его при этом увеличивается. Увеличение внутренней энергии газа происходит в результате работы, совершённой при его сжатии. Расширяясь же, газ совершает работу; при этом внутренняя энергия его уменьшается, и если расширение происходит быстро, то температура газа, как мы видели в наших опытах, понижается.

Процесс, происходящий в теле без теплообмена с окружающими его другими телами, называется адиабатным процессом.

Все быстро протекающие процессы практически могут считаться адиабатными.

Применение сжатых газов

Многие сжатые газы в настоящее время находят широкое применение в технике.

Сжатый воздух, например, применяется в работе различных пневматических инструментов: отбойных молотков, заклёпочных молотков, в разбрызгивателях краски и др.

На рисунке 141 показана схема устройства отбойного молотка. Сжатый воздух подаётся в молоток по шлангу М. Золотники Z, аналогичные применяемым в паровых машинах, направляют его поочерёдно то в заднюю, то в переднюю часть цилиндра. Поэтому воздух давит на поршень Р то с одной, то с другой стороны, что вызывает быстрое возвратно-поступательное движение поршня и пики молотка В. Последняя наносит быстро следующие друг за другом удары, внедряется в уголь и откалывает куски его от массива.

Свойства газов в физике

Рис. 141. Схема устройства отбойного молотка.

Существуют также пескоструйные аппараты, которые дают сильную струю воздуха, смешанную с песком. Эти аппараты применяются, например, для очистки стен. Сейчас нередко можно видеть работу специальных аппаратов, применяемых для окраски стен, где краска распыляется сжатым воздухом. Сжатым воздухом открываются двери вагонов метро и троллейбусов. Сжатый воздух используется в работе тормозов на транспорте. Схематическое устройство одного из видов пневматического тормоза железнодорожного вагона изображено на рисунке 142.

Компрессор подаёт воздух по магистрали в стальной резервуар А. Поршень В тормозного цилиндра оказывается под одинаковым давлением справа и слева; поэтому соединённая с ним тормозная колодка D отжата от колеса. Если открыть тормозной кран М, то находящийся в магистрали под давлением воздух устремится в атмосферу; клапан К захлопнется, и, таким образом, стальной резервуар изолируется от магистрали. Теперь давление на поршень В справа станет больше, чем давление слева, вследствие чего тормозная колодка прижмётся к ободу колеса. Если теперь кран М закрыть и снова подать в магистраль сжатый воздух, то восстановится первоначальное положение.

Свойства газов в физике

Рис. 142. Схема устройства железнодорожного пневматического тормоза.

В технике применяется не только сжатый воздух, но и некоторые другие газы, так, например, водород, ацетилен и кислород применяются при газовой сварке; аммиак используется в холодильном деле. Чтобы газы было удобно перевозить, их помещают в прочные стальные баллоны, накачивая до давления 60—200 am.

Свойства газов в физике

Рис. 142а. Внешний вид мощного компрессора.

Сжатие газов осуществляется с помощью мощных нагнетательных насосов — компрессоров.

На рисунке 143, а, б дана схема работы компрессора.

Компрессор состоит из цилиндра с поршнем и двумя клапанами; один из них входной, другой выходной. При движении поршня вниз (рис. 143, б) открывается входной клапан и в цилиндр поступает воздух из помещения; при движении поршня вверх (рис. 143, а) входной клапан закрывается, вошедший воздух сжимается поршнем и через выходной клапан поступает в стальной баллон для хранения сжатого газа.

Существуют так называемые многоступенчатые компрессоры, в которых газ последовательно  

сжимается в трёх или четырёх цилиндрах. Такие компрессоры позволяют получить газ, сжатый до давления в тысячи атмосфер. На рисунке 142а изображён внешний вид одного из типов многоступенчатых компрессоров.

Свойства газов в физике

Рис. 143, а, б. Схема работы компрессора.

Услуги по физике:

  1. Заказать физику
  2. Заказать контрольную работу по физике
  3. Помощь по физике

Лекции по физике:

  1. Физические величины и их измерение
  2. Основные законы механики
  3. Прямолинейное равномерное движение
  4. Прямолинейное равнопеременное движение
  5. Сила
  6. Масса
  7. Взаимодействия тел
  8. Механическая энергия
  9. Импульс
  10. Вращение твердого тела
  11. Криволинейное движение тел
  12. Колебания
  13. Колебания и волны
  14. Механические колебания и волны
  15. Бегущая волна
  16. Стоячие волны
  17. Акустика
  18. Звук
  19. Звук и ультразвук
  20. Движение жидкости и газа
  21. Молекулярно-кинетическая теория
  22. Молекулярно-кинетическая теория строения вещества
  23. Молекулярно — кинетическая теория газообразного состояния вещества
  24. Теплота и работа
  25. Температура и теплота
  26. Термодинамические процессы
  27. Идеальный газ
  28. Уравнение состояния идеального газа
  29. Изменение внутренней энергии
  30. Переход вещества из жидкого состояния в газообразное и обратно
  31. Кипение, свойства паров, критическое состояние вещества
  32. Водяной пар в атмосфере
  33. Плавление и кристаллизация
  34. Тепловое расширение тел
  35. Энтропия
  36. Процессы перехода из одного агрегатного состояния в другое
  37. Тепловое расширение твердых и жидких тел
  38. Свойства жидкостей
  39. Свойства твёрдых тел
  40. Изменение агрегатного состояния вещества
  41. Тепловые двигатели
  42. Электрическое поле
  43. Постоянный ток
  44. Переменный ток
  45. Магнитное поле
  46. Электромагнитное поле
  47. Электромагнитное излучение
  48. Электрический заряд (Закон Кулона)
  49. Электрический ток в металлах
  50. Электрический ток в электролитах
  51. Электрический ток в газах и в вакууме
  52. Электрический ток в полупроводниках
  53. Электромагнитная индукция
  54. Работа, мощность и тепловое действие электрического тока
  55. Термоэлектрические явления
  56. Распространение электромагнитных волн
  57. Интерференционные явления
  58. Рассеяние
  59. Дифракция рентгеновских лучей на кристалле
  60. Двойное лучепреломление
  61. Магнитное поле и электромагнитная индукция
  62. Электромагнитные колебания и волны
  63. Природа света
  64. Распространение света
  65. Отражение и преломление света
  66. Оптические приборы и зрение
  67. Волновые свойства света
  68. Действия света
  69. Линзы и получение изображений с помощью линз
  70. Оптические приборы и глаз
  71. Фотометрия
  72. Излучение и спектры
  73. Квантовые свойства излучения
  74. Специальная теория относительности в физике
  75. Теория относительности
  76. Квантовая теория и природа поля
  77. Строение и свойства вещества
  78. Физика атомного ядра
  79. Строение атома

Понравилась статья? Поделить с друзьями:
  • Как написать давай расстанемся
  • Как написать давай мириться
  • Как написать давай знакомиться девушке
  • Как написать дабл тайм
  • Как написать гутен морген