Как написать электронное строение атома


Загрузить PDF


Загрузить PDF

Электронная конфигурация атома — это численное представление его электронных орбиталей. Электронные орбитали — это области различной формы, расположенные вокруг атомного ядра, в которых математически вероятно нахождение электрона. Электронная конфигурация помогает быстро и с легкостью сказать читателю, сколько электронных орбиталей есть у атома, а также определить количество электронов, находящихся на каждой орбитали. Прочитав эту статью, вы освоите метод составления электронных конфигураций.

  1. 1

    Найдите атомный номер вашего атома. Каждый атом имеет определенное число электронов, связанных с ним. Найдите символ вашего атома в таблице Менделеева. Атомный номер — это целое положительное число, начинающееся от 1 (у водорода) и возрастающее на единицу у каждого последующего атома. Атомный номер — это число протонов в атоме, и, следовательно, это еще и число электронов атома с нулевым зарядом.

  2. 2

    Определите заряд атома. Нейтральные атомы будут иметь столько же электронов, сколько показано в таблице Менделеева. Однако заряженные атомы будут иметь большее или меньшее число электронов — в зависимости от величины их заряда. Если вы работаете с заряженным атомом, добавляйте или вычитайте электроны следующим образом: добавляйте один электрон на каждый отрицательный заряд и вычитайте один на каждый положительный.

    • Например, атом натрия с зарядом -1 будет иметь дополнительный электрон в добавок к своему базовому атомному числу 11. Иначе говоря, в сумме у атома будет 12 электронов.
    • Если речь идет об атоме натрия с зарядом +1, от базового атомного числа 11 нужно отнять один электрон. Таким образом, у атома будет 10 электронов.
  3. 3

    Запомните базовый список орбиталей. По мере того, как у атома увеличивается число электронов, они заполняют различные подуровни электронной оболочки атома согласно определенной последовательности. Каждый подуровень электронной оболочки, будучи заполненным, содержит четное число электронов. Имеются следующие подуровни:

    • s-подуровень (любое число в электронной конфигурации, которое стоит перед буквой «s») содержит единственную орбиталь, и, согласно Принципу Паули, одна орбиталь может содержать максимум 2 электрона, следовательно, на каждом s-подуровне электронной оболочки может находиться 2 электрона.
    • p-подуровень содержит 3 орбитали, и поэтому может содержать максимум 6 электронов.
    • d-подуровень содержит 5 орбиталей, поэтому в нем может быть до 10 электронов.
    • f-подуровень содержит 7 орбиталей, поэтому в нем может быть до 14 электронов.
    • g-, h-, i- и k-подуровни являются теоретическими. Атомы, содержащие электроны в этих орбиталях, неизвестны. g-подуровень содержит 9 орбиталей, поэтому теоретически в нем может быть 18 электронов. В h-подуровне может быть 11 орбиталей и максимум 22 электрона; в i-подуровне —13 орбиталей и максимум 26 электронов; в k-подуровне — 15 орбиталей и максимум 30 электронов.
    • Запомните порядок орбиталей с помощью мнемонического приема:[1]

      Sober Physicists Don’t Find Giraffes Hiding In Kitchens (трезвые физики не находят жирафов, скрывающихся на кухнях).
  4. 4

    Разберитесь в записи электронной конфигурации. Электронные конфигурации записываются для того, чтобы четко отразить количество электронов на каждой орбитали. Орбитали записываются последовательно, причем количество атомов в каждой орбитали записывается как верхний индекс справа от названия орбитали. Завершенная электронная конфигурация имеет вид последовательности обозначений подуровней и верхних индексов.

    • Вот, например, простейшая электронная конфигурация: 1s2 2s2 2p6. Эта конфигурация показывает, что на подуровне 1s имеется два электрона, два электрона — на подуровне 2s и шесть электронов на подуровне 2p. 2 + 2 + 6 = 10 электронов в сумме. Это электронная конфигурация нейтрального атома неона (атомный номер неона — 10).
  5. 5

    Запомните порядок орбиталей. Имейте в виду, что электронные орбитали нумеруются в порядке возрастания номера электронной оболочки, но располагаются по возрастанию энергии. Например, заполненная орбиталь 4s2 имеет меньшую энергию (или менее подвижна), чем частично заполненная или заполненная 3d10, поэтому сначала записывается орбиталь 4s. Как только вы будете знать порядок орбиталей, вы сможете с легкостью заполнять их в соответствии с количеством электронов в атоме. Порядок заполнения орбиталей следующий: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p.

    • Электронная конфигурация атома, в котором заполнены все орбитали, будет иметь следующий вид: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d107p6
    • Обратите внимание, что приведенная выше запись, когда заполнены все орбитали, является электронной конфигурацией элемента Uuo (унуноктия) 118, атома периодической системы с самым большим номером. Поэтому данная электронная конфигурация содержит все известные в наше время электронные подуровни нейтрально заряженного атома.
  6. 6

    Заполняйте орбитали согласно количеству электронов в вашем атоме. Например, если мы хотим записать электронную конфигурацию нейтрального атома кальция, мы должны начать с поиска его атомного номера в таблице Менделеева. Его атомный номер — 20, поэтому мы напишем конфигурацию атома с 20 электронами согласно приведенному выше порядку.

    • Заполняйте орбитали согласно приведенному выше порядку, пока не достигнете двадцатого электрона. На первой 1s орбитали будут находится два электрона, на 2s орбитали — также два, на 2p — шесть, на 3s — два, на 3p — 6, и на 4s — 2 (2 + 2 + 6 +2 +6 + 2 = 20.) Иными словами, электронная конфигурация кальция имеет вид: 1s2 2s2 2p6 3s2 3p6 4s2.
    • Обратите внимание: орбитали располагаются в порядке возрастания энергии. Например, когда вы уже готовы перейти на 4-й энергетический уровень, то сначала записывайте 4s орбиталь, а затем 3d. После четвертого энергетического уровня вы переходите на пятый, на котором повторяется такой же порядок. Это происходит только после третьего энергетического уровня.
  7. 7

    Используйте таблицу Менделеева как визуальную подсказку. Вы, вероятно, уже заметили, что форма периодической системы соответствует порядку электронных подуровней в электронных конфигурациях. Например, атомы во второй колонке слева всегда заканчиваются на «s2«, а атомы на правом краю тонкой средней части оканчиваются на «d10» и т.д. Используйте периодическую систему как визуальное руководство к написанию конфигураций — как порядок, согласно которому вы добавляете к орбиталям соответствует вашему положению в таблице. Смотрите ниже:

    • В частности, две самые левые колонки содержат атомы, чьи электронные конфигурации заканчиваются s-орбиталями, в правом блоке таблицы представлены атомы, чьи конфигурации заканчиваются p-орбиталями, а в нижней части атомы заканчиваются f-орбиталями.
    • Например, когда вы записываете электронную конфигурацию хлора, размышляйте следующим образом: «Этот атом расположен в третьем ряду (или «периоде») таблицы Менделеева. Также он располагается в пятой группе орбитального блока p периодической системы. Поэтому, его электронная конфигурация будет заканчиваться на …3p5
    • Обратите внимание: элементы в области орбиталей d и f таблицы характеризуются энергетическими уровнями, которые не соответствуют периоду, в котором они расположены. Например, первый ряд блока элементов с d-орбиталями соответствует 3d орбиталям, хотя и располагается в 4 периоде, а первый ряд элементов с f-орбиталями соответствует орбитали 4f, несмотря на то, что он находится в 6 периоде.
  8. 8

    Выучите сокращения написания длинных электронных конфигураций. Атомы на правом краю периодической системы называются благородными газами. Эти элементы химически очень устойчивы. Чтобы сократить процесс написания длинных электронных конфигураций, просто записывайте в квадратных скобках химический символ ближайшего благородного газа с меньшим по сравнению с вашим атомом числом электронов, а затем продолжайте писать электронную конфигурацию последующих орбитальных уровней. Смотрите ниже:

    • Чтобы понять эту концепцию, полезно будет написать пример конфигурации. Давайте напишем конфигурацию цинка (атомный номер 30), используя сокращение, включающее благородный газ. Полная конфигурация цинка выглядит так: 1s2 2s2 2p6 3s2 3p6 4s2 3d10. Однако мы видим, что 1s2 2s2 2p6 3s2 3p6 — это электронная конфигурация аргона, благородного газа. Просто замените часть записи электронной конфигурации цинка химическим символом аргона в квадратных скобках ([Ar].)
    • Итак, электронная конфигурация цинка, записанная в сокращенном виде, имеет вид: [Ar]4s2 3d10.
    • Учтите, если вы пишете электронную конфигурацию благородного газа, скажем, аргона, писать [Ar] нельзя! Нужно использовать сокращение благородного газа, стоящего перед этим элементом; для аргона это будет неон ([Ne]).

    Реклама

  1. Изображение с названием ADOMAH Table v2

    1

    Освойте периодическую таблицу ADOMAH. Данный метод записи электронной конфигурации не требует запоминания, однако требует наличия переделанной периодической таблицы, поскольку в традиционной таблице Менделеева, начиная с четвертого периода, номер периода не соответствует электронной оболочке. Найдите периодическую таблицу ADOMAH — особый тип периодической таблицы, разработанный ученым Валерием Циммерманом. Ее легко найти посредством короткого поиска в интернете.[2]

    • В периодической таблице ADOMAH горизонтальные ряды представляют группы элементов, такие как галогены, инертные газы, щелочные металлы, щелочноземельные металлы и т.д. Вертикальные колонки соответствуют электронным уровням, а так называемые «каскады» (диагональные линии, соединяющие блоки s,p,d и f) соответствуют периодам.
    • Гелий перемещен к водороду, поскольку оба этих элемента характеризуются орбиталью 1s. Блоки периодов (s,p,d и f) показаны с правой стороны, а номера уровней приведены в основании. Элементы представлены в прямоугольниках, пронумерованных от 1 до 120. Эти номера являются обычными атомными номерами, которые представляют общее количество электронов в нейтральном атоме.
  2. 2

    Найдите ваш атом в таблице ADOMAH. Чтобы записать электронную конфигурацию элемента, найдите его символ в периодической таблице ADOMAH и вычеркните все элементы с большим атомным номером. Например, если вам нужно записать электронную конфигурацию эрбия (68), вычеркните все элементы от 69 до 120.

    • Обратите внимание на номера от 1 до 8 в основании таблицы. Это номера электронных уровней, или номера колонок. Игнорируйте колонки, которые содержат только вычеркнутые элементы. Для эрбия остаются колонки с номерами 1,2,3,4,5 и 6.
  3. 3

    Посчитайте орбитальные подуровни до вашего элемента. Смотря на символы блоков, приведенные справа от таблицы (s, p, d, and f), и на номера колонок, показанные в основании, игнорируйте диагональные линии между блоками и разбейте колонки на блоки-колонки, перечислив их по порядку снизу вверх. И снова игнорируйте блоки, в которых вычеркнуты все элементы. Запишите блоки-колонки, начиная от номера колонки, за которым следует символ блока, таким образом: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 6s (для эрбия).

    • Обратите внимание: Приведенная выше электронная конфигурация Er записана в порядке возрастания номера электронного подуровня. Ее можно также записать в порядке заполнения орбиталей. Для этого следуйте по каскадам снизу вверх, а не по колонкам, когда вы записываете блоки-колонки: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f12.
  4. 4

    Посчитайте электроны для каждого электронного подуровня. Подсчитайте элементы, в каждом блоке-колонке которые не были вычеркнуты, прикрепляя по одному электрону от каждого элемента, и запишите их количество рядом с символом блока для каждого блока-колонки таким образом: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f12 5s2 5p6 6s2. В нашем примере это электронная конфигурация эрбия.

  5. 5

    Учитывайте неправильные электронные конфигурации. Существует восемнадцать типичных исключений, относящихся к электронным конфигурациям атомов в состоянии с наименьшей энергией, также называемом основным энергетическим состоянием. Они не подчиняются общему правилу только по последним двум-трем положениям, занимаемым электронами. При этом действительная электронная конфигурация предполагает нахождение электронов в состоянии с более низкой энергией в сравнении со стандартной конфигурацией атома. К атомам-исключениям относятся:

    • Cr (…, 3d5, 4s1); Cu (…, 3d10, 4s1); Nb (…, 4d4, 5s1); Mo (…, 4d5, 5s1); Ru (…, 4d7, 5s1); Rh (…, 4d8, 5s1); Pd (…, 4d10, 5s0); Ag (…, 4d10, 5s1); La (…, 5d1, 6s2); Ce (…, 4f1, 5d1, 6s2); Gd (…, 4f7, 5d1, 6s2); Au (…, 5d10, 6s1); Ac (…, 6d1, 7s2); Th (…, 6d2, 7s2); Pa (…, 5f2, 6d1, 7s2); U (…, 5f3, 6d1, 7s2); Np (…, 5f4, 6d1, 7s2) и Cm (…, 5f7, 6d1, 7s2).

    Реклама

Советы

  • Чтобы найти атомный номер атома, когда он записан в форме электронной конфигурации, просто сложите все числа, которые идут за буквами (s, p, d, и f). Это работает только для нейтральных атомов, если вы имеете дело с ионом, то ничего не получится — вам придется добавить или вычесть количество дополнительных или потерянных электронов.
  • Число, идущее за буквой — это верхний индекс, не сделайте ошибку в контрольной.
  • «Стабильности полузаполненного» подуровня не существует. Это упрощение. Любая стабильность, которая относится к «наполовину заполненным» подуровням, имеет место из-за того, что каждая орбиталь занята одним электроном, поэтому минимизируется отталкивание между электронами.
  • Каждый атом стремится к стабильному состоянию, а самые стабильные конфигурации имеют заполненные подуровни s и p (s2 и p6). Такая конфигурация есть у благородных газов, поэтому они редко вступают в реакции и в таблице Менделеева расположены справа. Поэтому, если конфигурация заканчивается на 3p4, то для достижения стабильного состояния ей необходимо два электрона (чтобы потерять шесть, включая электроны s-подуровня, потребуется больше энергии, поэтому потерять четыре легче). А если конфигурация оканчивается на 4d3, то для достижения стабильного состояния ей необходимо потерять три электрона. Кроме того, полузаполненные подуровни (s1, p3, d5..) являются более стабильными, чем, например, p4 или p2; однако s2 и p6 будут еще более устойчивыми.
  • Когда вы имеете дело с ионом, это значит, что количество протонов не равно количеству электронов. Заряд атома в этом случае будет изображен сверху справа (как правило) от химического символа. Поэтому атом сурьмы с зарядом +2 имеет электронную конфигурацию 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p1. Обратите внимание, что 5p3 изменилось на 5p1. Будьте внимательны, когда конфигурация нейтрального атома заканчивается на подуровни, отличные от s и p. Когда вы забираете электроны, вы можете забрать их только с валентных орбиталей (s и p орбиталей). Поэтому, если конфигурация заканчивается на 4s2 3d7 и атом получает заряд +2, то конфигурация будет заканчиваться 4s0 3d7. Обратите внимание, что 3d7 не меняется, вместо этого теряются электроны s-орбитали.
  • Существуют условия, когда электрон вынужден «перейти на более высокий энергетический уровень». Когда подуровню не хватает одного электрона до половинной или полной заполненности, заберите один электрон из ближайшего s или p- подуровня и переместите его на тот подуровень, которому необходим электрон.
  • Имеется два варианта записи электронной конфигурации. Их можно записывать в порядке возрастания номеров энергетических уровней или в порядке заполнения электронных орбиталей, как было показано выше для эрбия.
  • Также вы можете записывать электронную конфигурацию элемента, записав лишь валентную конфигурацию, которая представляет собой последний s и p подуровень. Таким образом, валентная конфигурация сурьмы будет иметь вид 5s2 5p3.
  • Ионы не то же самое. С ними гораздо сложнее. Пропустите два уровня и действуйте по той же схеме в зависимости от того, где вы начали, и от того, насколько велико количество электронов.

Реклама

Об этой статье

Эту страницу просматривали 470 535 раз.

Была ли эта статья полезной?

Электронная конфигурация атома

Электронная конфигурация атома — это формула, показывающая расположение электронов в атоме по уровням и
подуровням. После изучения статьи Вы узнаете, где и как располагаются электроны, познакомитесь с квантовыми числами и
сможете построить электронную конфигурацию атома по его номеру, в конце статьи приведена таблица элементов.

Для чего изучать электронную конфигурацию элементов?

Атомы как конструктор: есть определённое количество деталей, они отличаются друг от друга, но две детали
одного типа абсолютно одинаковы. Но этот конструктор куда интереснее, чем пластмассовый и вот почему.
Конфигурация меняется в зависимости от того, кто есть рядом. Например, кислород рядом с водородом может
превратиться в воду, рядом с натрием в газ, а находясь рядом с железом вовсе превращает его в ржавчину.
Что бы ответить на вопрос почему так происходит и предугадать поведение атома рядом с другим необходимо
изучить электронную конфигурацию, о чём и пойдёт речь ниже.

Сколько электронов в атоме?

Атом состоит из ядра и вращающихся вокруг него электронов, ядро состоит из протонов и нейтронов. В нейтральном
состоянии у каждого атома количество электронов равно количеству протонов в его ядре. Количество
протонов обозначили порядковым номером элемента, например, сера, имеет 16 протонов — 16й элемент периодической
системы. Золото имеет 79 протонов — 79й элемент таблицы Менделеева. Соответственно, в сере в нейтральном
состоянии 16 электронов, а в золоте 79 электронов.

Где искать электрон?

Наблюдая поведение электрона были выведены определённые закономерности, они описываются
квантовыми числами, всего их четыре:

  • Главное квантовое число
  • Орбитальное квантовое число
  • Магнитное квантовое число
  • Спиновое квантовое число

Орбиталь

Далее, вместо слова орбита, мы будем использовать термин «орбиталь», орбиталь — это волновая функция электрона,
грубо — это область, в которой электрон проводит 90% времени.

N — уровень
L — оболочка
Ml — номер орбитали
Ms — первый или второй электрон на орбитали

Орбитальное квантовое число l

В результате исследования электронного облака, обнаружили, что в зависимости от уровня энергии,
облако принимает четыре основных формы: шар, гантели и другие две, более сложные.
В порядке возрастания энергии, эти формы называются s-,p-,d- и f-оболочкой.
На каждой из таких оболочек может располагаться 1 (на s), 3 (на p), 5 (на d) и 7 (на f)
орбиталей. Орбитальное квантовое число — это оболочка, на которой находятся
орбитали. Орбитальное квантовое число для s,p,d и f-орбиталей соответственно
принимает значения 0,1,2 или 3.

Как выглядят орбитали в атоме, формы орбиталей

На s-оболочке одна орбиталь (L=0) — два электрона
На p-оболочке три орбитали (L=1) — шесть электронов
На d-оболочке пять орбиталей (L=2) — десять электронов
На f-оболочке семь орбиталей (L=3) — четырнадцать электронов

Магнитное квантовое число ml

На p-оболочке находится три орбитали, они обозначаются цифрами
от -L, до +L, то есть, для p-оболочки (L=1) существуют орбитали «-1», «0» и «1».
Магнитное квантовое число обозначается буквой ml.

Внутри оболочки электронам легче
располагаться на разных орбиталях, поэтому первые электроны заполняют по одному на каждую
орбиталь, а затем уже к каждому присоединяется его пара.

Рассмотрим d-оболочку:
d-оболочке соответствует значение L=2, то есть пять орбиталей (-2,-1,0,1 и 2), первые пять
электронов заполняют оболочку принимая значения Ml=-2,Ml=-1,Ml=0,
Ml=1,Ml=2.

Спиновое квантовое число ms

Спин — это направление вращения электрона вокруг своей оси, направлений два, поэтому спиновое квантовое число
имеет два значения: +1/2 и -1/2. На одном энергетическом подуровне могут находиться два электрона только с
противоположными спинами. Спиновое квантовое число обозначается ms

Главное квантовое число n

Главное квантовое число — это уровень энергии, на данный момент известны семь энергетических уровней,
каждый обозначается арабской цифрой: 1,2,3,…7. Количество оболочек на каждом уровне равно номеру уровня:
на первом уровне одна оболочка, на втором две и т.д.

Номер электрона

Расположение электронов в атоме, электронная конфигурация атома

Итак, любой электрон можно описать четырьмя квантовыми числами, комбинация из этих чисел уникальна для каждой
позиции электрона, возьмём первый электрон, самый низкий энергетический уровень это N=1, на первом уровне
распологается одна оболочка, первая оболочка на любом уровне имеет форму шара (s-оболочка), т.е. L=0,
магнитное квантовое число может принять только одно значение, Ml=0 и спин будет равен +1/2.
Если мы возьмём пятый электрон (в каком бы атоме он не был), то главные квантовые числа для него будут:
N=2, L=1, M=-1, спин 1/2.

Энергетические уровни с подуровнями для наглядности изображены ниже, сверху вниз расположены уровни
и цветом разделены подуровни:

1
2
3
4
5
6
7
8
Таблица 1. Распределение электронов по энергетическим уровням

Здесь, сверху-вниз показаны энергетические уровни (1-7), слева-направо разделены по группам электронные
подуровни (s,p,d,f), в каждой ячейке располагаются по два электрона в противоположных направлениях. Общий
принцип распределения электронов такой, что энергетические подуровни заполняются в порядке суммы главного
и орбитального квантовых чисел, то есть: 1S, 2S, 2P, 3S, 3P, 4S, 3D и так далее, если сумма одинакова, то
сначала заполняется уровень с меньшим главным квантовым числом N.

У некоторых элементов имеются отклонения в формировании электронной конфигурации, а именно у
24Cr,
29Cu,
41Nb,
42Mo,
44Ru,
45Rh,
46Pd,
47Ag,
78Pt,
79Au

Элементы

Проверьте себя, составьте электронную конфигурацию для элементов #4, #13 и #19, затем проверьте себя по таблице ниже.

Элемент Название Электронная конфигурация Энергетических уровней
1 H водород 1s 1 1
2 He гелий 1s 2 1
3 Li литий 1s 22s 1 2
4 Be бериллий 1s 22s 2 2
5 B бор 1s 22s 22p 1 2
6 C углерод 1s 22s 22p 2 2
7 N азот 1s 22s 22p 3 2
8 O кислород 1s 22s 22p 4 2
9 F фтор 1s 22s 22p 5 2
10 Ne неон 1s 22s 22p 6 2
11 Na натрий 1s 22s 22p 63s 1 3
12 Mg магний 1s 22s 22p 63s 2 3
13 Al алюминий 1s 22s 22p 63s 23p1 3
14 Si кремний 1s 22s 22p 63s 23p2 3
15 P фосфор 1s 22s 22p 63s 23p3 3
16 S сера 1s 22s 22p 63s 23p4 3
17 Cl хлор 1s 22s 22p 63s 23p5 3
18 Ar аргон 1s 22s 22p 63s 23p6 3
19 K калий 1s 22s 22p 63s 23p64s 1 4
20 Ca кальций 1s 22s 22p 63s 23p64s 2 4
21 Sc скандий 1s 22s 22p 63s 23p64s 23d1 4
22 Ti титан 1s 22s 22p 63s 23p64s 23d2 4
23 V ванадий 1s 22s 22p 63s 23p64s 23d3 4
24 Cr хром 1s 22s 22p 63s 23p64s 13d5 4
25 Mn марганец 1s 22s 22p 63s 23p64s 23d5 4
26 Fe железо 1s 22s 22p 63s 23p64s 23d6 4
27 Co кобальт 1s 22s 22p 63s 23p64s 23d7 4
28 Ni никель 1s 22s 22p 63s 23p64s 23d8 4
29 Cu медь 1s 22s 22p 63s 23p64s 13d10 4
30 Zn цинк 1s 22s 22p 63s 23p64s 23d10 4
31 Ga галлий 1s 22s 22p 63s 23p64s 23d104p1 4
32 Ge германий 1s 22s 22p 63s 23p64s 23d104p2 4
33 As мышьяк 1s 22s 22p 63s 23p64s 23d104p3 4
34 Se селен 1s 22s 22p 63s 23p64s 23d104p4 4
35 Br бром 1s 22s 22p 63s 23p64s 23d104p5 4
36 Kr криптон 1s 22s 22p 63s 23p64s 23d104p6 4
37 Rb рубидий 1s 22s 22p 63s 23p64s 23d104p65s1 5
38 Sr стронций 1s 22s 22p 63s 23p64s 23d104p65s2 5
39 Y иттрий 1s 22s 22p 63s 23p64s 23d104p65s24d1 5
40 Zr цирконий 1s 22s 22p 63s 23p64s 23d104p65s24d2 5
41 Nb ниобий 1s 22s 22p 63s 23p64s 23d104p65s14d4 5
42 Mo молибден 1s 22s 22p 63s 23p64s 23d104p65s14d5 5
43 Tc технеций 1s 22s 22p 63s 23p64s 23d104p65s24d5 5
44 Ru рутений 1s 22s 22p 63s 23p64s 23d104p65s14d7 5
45 Rh родий 1s 22s 22p 63s 23p64s 23d104p65s14d8 5
46 Pd палладий 1s 22s 22p 63s 23p64s 23d104p64d10 5
47 Ag серебро 1s 22s 22p 63s 23p64s 23d104p65s14d10 5
48 Cd кадмий 1s 22s 22p 63s 23p64s 23d104p65s24d10 5
49 In индий 1s 22s 22p 63s 23p64s 23d104p65s24d105p1 5
50 Sn олово 1s 22s 22p 63s 23p64s 23d104p65s24d105p2 5
51 Sb сурьма 1s 22s 22p 63s 23p64s 23d104p65s24d105p3 5
52 Te теллур 1s 22s 22p 63s 23p64s 23d104p65s24d105p4 5
53 I йод 1s 22s 22p 63s 23p64s 23d104p65s24d105p5 5
54 Xe ксенон 1s 22s 22p 63s 23p64s 23d104p65s24d105p6 5
55 Cs цезий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s1 6
56 Ba барий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s2 6
57 La лантан 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s25d1 6
58 Ce церий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f2 6
59 Pr празеодим 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f3 6
60 Nd неодим 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f4 6
61 Pm прометий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f5 6
62 Sm самарий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f6 6
63 Eu европий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f7 6
64 Gd гадолиний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f75d1 6
65 Tb тербий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f9 6
66 Dy диспрозий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f10 6
67 Ho гольмий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f11 6
68 Er эрбий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f12 6
68 Tm тулий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f13 6
70 Yb иттербий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f14 6
71 Lu лютеций 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d1 6
72 Hf гафний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d2 6
73 Ta тантал 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d3 6
74 W вольфрам 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d4 6
75 Re рений 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d5 6
76 Os осмий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d6 6
77 Ir иридий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d7 6
78 Pt платина 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s14f145d9 6
79 Au золото 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s14f145d10 6
80 Hg ртуть 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d10 6
81 Tl таллий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p1 6
82 Pb свинец 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p2 6
83 Bi висмут 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p3 6
84 Po полоний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p4 6
85 At астат 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p5 6
86 Rn радон 1s 22s 22p 63s 23p64s 23d104p65s14d105p66s24f145d106p6 6
87 Fr франций 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s1 7
88 Ra радий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s2 7
89 Ac актиний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s26d1 7
90 Th торий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s26d25f0 7
91 Pa протактиний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f26d1 7
92 U уран 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f36d1 7
93 Np нептуний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f46d1 7
94 Pu плутоний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f56d1 7
95 Am америций 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f7 7
96 Cm кюрий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f76d1 7
97 Bk берклий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f86d1 7
98 Cf калифорний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f10 7
99 Es эйнштейний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f11 7
100 Fm фермий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f12 7
101 Md менделеевий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f13 7
102 No нобелий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f14 7
103 Lr лоуренсий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d1 7
104 Rf резерфордий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d2 7
105 Db дубний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d3 7
106 Sg сиборгий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d4 7
107 Bh борий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d5 7
108 Hs хассий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d6 7
109 Mt мейтнерий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d7 7
110 Ds дармштадтий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d8 7
111 Rg рентгений 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d9 7
112 Cn коперниций 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d10 7
113 Nh нихоний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p1 7
114 Fl флеровий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p2 7
115 Mc московий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p3 7
116 Lv ливерморий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p4 7
117 Ts теннесcин 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p5 7
118 Og оганесон 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p6 7
Таблица 2. Электронная конфигурация атомов

Если Вы хотите узнать, как составить электронную конфигурацию, обратитесь к статье
«как написать электронную конфигурацию»

Квантовые числа электронов в атомах


Download Article


Download Article

An atom’s electron configuration is a numeric representation of its electron orbitals. Electron orbitals are differently-shaped regions around an atom’s nucleus where electrons are mathematically likely to be located. An electron configuration can quickly and simply tell a reader how many electron orbitals an atom has as well as the number of electrons populating each of its orbitals. Once you understand the basic principles behind electron configuration, you will be able to write your own configurations and tackle those chemistry tests with confidence.

  1. Image titled Write Electron Configurations for Atoms of Any Element Step 1

    1

    What is an electron configuration? An electron configuration shows the distribution of electrons of an atom or a molecule. There is a specific notation that can quickly show you where the electrons are likely to be located, so knowing this notation is an essential part of knowing electron configurations. Reading these notations can tell you what element you’re referring to and how many electrons it has.[1]

    • The structure of the periodic table is based on electron configuration.
    • For example, the notation for Phosphorus (P) is {displaystyle 1s^{2}2s^{2}2p^{6}3s^{2}3p^{3}}.
  2. Image titled Write Electron Configurations for Atoms of Any Element Step 2

    2

    What are electron shells? The area that surrounds the nucleus of an atom, or the area where the electrons orbit, is called an electron shell. There are usually around 3 electron shells per atom, and the arrangement of these shells is called the electron configuration. All electrons in the same shell must have the same energy.[2]

    • Electron shells are also sometimes referred to as energy levels.

    Advertisement

  3. Image titled Write Electron Configurations for Atoms of Any Element Step 3

    3

    What is an atomic orbital? As an atom gains electrons, they fill different orbitals sets according to a specific order. Each set of orbitals, when full, contains an even number of electrons. The orbital sets are:[3]

    • The s orbital set (any number in the electron configuration followed by an «s») contains a single orbital, and by Pauli’s Exclusion Principle, a single orbital can hold a maximum of 2 electrons, so each s orbital set can hold 2 electrons.
    • The p orbital set contains 3 orbitals, and thus can hold a total of 6 electrons.
    • The d orbital set contains 5 orbitals, so it can hold 10 electrons.
    • The f orbital set contains 7 orbitals, so it can hold 14 electrons.
    • The g, h, i and k orbital sets are theoretical. No known atoms have electrons in any of these orbitals. The g set has 9 orbitals, so it could theoretically contain 18 electrons. The h set would have 11 orbitals and a maximum of 22 electrons, the i set would have 13 orbitals and a maximum of 26 electrons, and the k set would have 15 orbitals and a maximum of 30 electrons.
    • Remember the order of the letters with this mnemonic: Sober Physicists Don’t Find Giraffes Hiding In Kitchens.
  4. Image titled Write Electron Configurations for Atoms of Any Element Step 4

    4

    What are overlap orbitals? Sometimes, electrons occupy a shared orbital space. Take the Dihydrogen molecule, or H2. The 2 electrons must stay close to each other in order to stay attracted to each other and connect. Since they’re so close, they will occupy the same orbital space, thus sharing the orbital, or overlapping it.[4]

    • In your notation, you’d simply change the row number to 1 less than it actually is. For example, the electron configuration for germanium (Ge) is {displaystyle 1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{2}3d^{10}4p^{2}.} Even though you go all the way to row 4, there is still a “3d” in the middle there because of overlap.[5]
  5. Image titled Write Electron Configurations for Atoms of Any Element Step 5

    5

    How do you use an electron configuration table? If you’re having trouble visualising your notation, it can be useful to use an electron configuration table so you can actually see what you’re writing. Set up a basic table with the energy levels going down the y-axis and the orbital type going across the x-axis. From there, you can draw your notation in the corresponding spaces as they go down the y-axis and across the x-axis. Then, you can follow the line to get your notation.[6]

    • For example, if you were writing out the configuration for beryllium, you’d start up at the 1s, then loop back around to the 2s. Since beryllium only has 4 electrons, you’d stop after that, and get your notion of {displaystyle 1s^{2}2s^{2}.}
  6. Advertisement

  1. Image titled Write Electron Configurations for Atoms of Any Element Step 6

    1

    Find your atom’s atomic number. Each atom has a specific number of electrons associated with it. Locate your atom’s chemical symbol on the periodic table. The atomic number is a positive integer beginning at 1 (for hydrogen) and increasing by 1 for each subsequent atom. The atom’s atomic number is the number of protons of the atom—thus, it is also the number of electrons in an atom with 0 charge.[7]

    • Since the periodic table is based on electron configuration, you can use it to determine the element’s configuration notation.
  2. Image titled Write Electron Configurations for Atoms of Any Element Step 7

    2

    Determine the charge of the atom. Uncharged atoms will have exactly the number of electrons as is represented on the periodic table. However, charged atoms (ions) will have a higher or lower number of electrons based on the magnitude of their charge. If you’re working with a charged atom, add or subtract electrons accordingly: add 1 electron for each negative charge and subtract 1 for each positive charge.[8]

    • For instance, a sodium atom with a +1 charge would have an electron taken away from its basic atomic number of 11. So, the sodium atom would have 10 electrons in total.
    • A sodium atom with a -1 charge would have 1 electron added to its basic atomic number of 11. The sodium atom would then have a total of 12 electrons.
  3. Image titled Write Electron Configurations for Atoms of Any Element Step 8

    3

    Understand electron configuration notation. Electron configurations are written so as to clearly display the number of electrons in the atom as well as the number of electrons in each orbital. Each orbital is written in sequence, with the number of electrons in each orbital written in superscript to the right of the orbital name. The final electron configuration is a single string of orbital names and superscripts.[9]

    • For example, here is a simple electron configuration: 1s2 2s2 2p6. This configuration shows that there are 2 electrons in the 1s orbital set, 2 electrons in the 2s orbital set, and 6 electrons in the 2p orbital set. 2 + 2 + 6 = 10 electrons total. This electron configuration is for an uncharged neon atom (neon’s atomic number is 10.)
  4. Image titled Write Electron Configurations for Atoms of Any Element Step 9

    4

    Memorize the order of the orbitals. Note that orbital sets are numbered by electron shell, but ordered in terms of energy. For instance, a filled 4s2 is lower energy (or less potentially volatile) than a partially-filled or filled 3d10, so the 4s shell is listed first. Once you know the order of orbitals, you can simply fill them according to the number of electrons in the atom. The order for filling orbitals is as follows: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s.[10]

    • An electron configuration for an atom with every orbital completely filled would be written: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d107p6
    • Note that the above list, if all the shells were filled, would be the electron configuration for Og (Oganesson), 118, the highest-numbered atom on the periodic table—so this electron configuration contains every currently known electron shell for a neutrally charged atom.
  5. Image titled Write Electron Configurations for Atoms of Any Element Step 10

    5

    Fill in the orbitals according to the number of electrons in your atom. For instance, if we want to write an electron configuration for an uncharged calcium atom, we’ll begin by finding its atomic number on the periodic table. Its atomic number is 20, so we’ll write a configuration for an atom with 20 electrons according to the order above.[11]

    • Fill up orbitals according to the order above until you reach 20 total electrons. The 1s orbital gets 2 electrons, the 2s gets 2, the 2p gets 6, the 3s gets 2, the 3p gets 6, and the 4s gets 2 (2 + 2 + 6 +2 +6 + 2 = 20.) Thus, the electron configuration for calcium is: 1s2 2s2 2p6 3s2 3p6 4s2.
    • Note: Energy level changes as you go up. For example, when you are about to go up to the 4th energy level, it becomes 4s first, then 3d. After the 4th energy level, you’ll move onto the 5th where it follows the order once again (5s, then 4d). This only happens after the 3rd energy level.
  6. Image titled Write Electron Configurations for Atoms of Any Element Step 11

    6

    Use the periodic table as a visual shortcut. You may have already noticed that the shape of the periodic table corresponds to the order of orbital sets in electron configurations. For example, atoms in the second column from the left always end in «s2«, atoms at the far right of the skinny middle portion always end in «d10,» etc. Use the periodic table as a visual guide to write configurations – the order that you add electrons to orbitals corresponds to your position in the table.[12]

    • Specifically, the 2 leftmost columns represent atoms whose electron configurations end in s orbitals, the right block of the table represents atoms whose configurations end in p orbitals, the middle portion, atoms that end in d orbital, and the bottom portion, atoms that end in f orbitals.
    • For example, when writing an electron configuration for Chlorine, think: «This atom is in third row (or «period») of the periodic table. It’s also in the fifth column of the periodic table’s p orbital block. Thus, its electron configuration will end …3p5
    • Caution: the d and f orbital regions of the table correspond to energy levels that are different from the period they’re located in. For instance, the first row of the d orbital block corresponds to the 3d orbital even though it’s in period 4, while the first row of the f orbital corresponds to the 4f orbital even though it’s in period 6.
  7. Image titled Write Electron Configurations for Atoms of Any Element Step 12

    7

    Learn shorthand for writing long electron configurations. The atoms along the right edge of the periodic table are called noble gases. These elements are very chemically stable. To shorten the process of writing a long electron configuration, simply write the chemical symbol of the nearest chemical gas with fewer electrons than your atom in brackets, then continue with the electron configuration for the following orbital sets.[13]

    • To understand this concept, it’s useful to write an example configuration. Let’s write a configuration for zinc (atomic number 30) using noble gas shorthand. Zinc’s full electron configuration is: 1s2 2s2 2p6 3s2 3p6 4s2 3d10. However, notice that 1s2 2s2 2p6 3s2 3p6 is the configuration for Argon, a noble gas. Just replace this portion of zinc’s electron notation with Argon’s chemical symbol in brackets ([Ar].)
    • So, zinc’s electron configuration written in shorthand is [Ar]4s2 3d10.
    • Note that if you are doing noble gas notation for, say, argon, you cannot write [Ar]! You have to use the noble gas that comes before that element; for argon, that would be neon ([Ne]).
  8. Advertisement

  1. Image titled Write Electron Configurations for Atoms of Any Element Step 13

    1

    Understand the ADOMAH Periodic Table. This method of writing electron configurations doesn’t require memorization. However, it does require a rearranged periodic table, because in a traditional periodic table, beginning with 4th row, period numbers do not correspond to the electron shells. Find an ADOMAH Periodic Table, a special type of periodic table designed by scientist Valery Tsimmerman. It’s easily found via a quick online search.

    • In the ADOMAH Periodic Table, horizontal rows represent groups of elements, such as halogens, inert gases, alkali metals, alkaline earths, etc. Vertical columns correspond to electron shells and so called “cascades” (diagonal lines connecting s,p,d and f blocks) correspond to periods.
    • Helium is moved next to Hydrogen, since both of them are characterized by the 1s orbital. Blocks of periods (s,p,d and f) are shown on the right side and shell numbers are shown at the base. Elements are presented in rectangular boxes that are numbered from 1 to 120. These numbers are normal atomic numbers that represent total number of electrons in a neutral atom.
  2. Image titled Write Electron Configurations for Atoms of Any Element Step 14

    2

    Find your atom in the ADOMAH table. To write electron configuration of an element, locate its symbol in ADOMAH Periodic Table and cross out all elements that have higher atomic numbers. For example, if you need to write electron configuration of Erbium (68), cross out elements 69 through 120.

    • Notice numbers 1 through 8 at the base of the table. These are electron shell numbers, or column numbers. Ignore columns which contain only crossed out elements. For Erbium, remaining columns are 1,2,3,4,5 and 6.
  3. Image titled Write Electron Configurations for Atoms of Any Element Step 15

    3

    Count orbital sets up to your atom. Looking at the block symbols shown on the right side of the table (s, p, d, and f) and at the column numbers shown at the base and ignoring diagonal lines between the blocks, break up columns into column-blocks and list them in order from the bottom up. Again, ignore column blocks where all elements are crossed out. Write down the column-blocks beginning with the column number followed by the block symbol, like this: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 6s (in case of Erbium).

    • Note: The above electron configuration of Er is written in the order of ascending shell numbers. It could also be written in the order of orbital filling. Just follow cascades from top to bottom instead of columns when you write down the column-blocks: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f12.
  4. Image titled Write Electron Configurations for Atoms of Any Element Step 16

    4

    Count electrons for each orbital set. Count elements that were not crossed out in each block-column, assigning 1 electron per element, and write down their quantity next to the block symbols for each block-column, like this: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f12 5s2 5p6 6s2. In our example, this is the electron configuration of Erbium.

  5. Image titled Write Electron Configurations for Atoms of Any Element Step 17

    5

    Know irregular electron configurations. There are eighteen common exceptions to electron configurations for atoms in the lowest energy state, also called the ground state. They deviate from the general rule only by last 2 to 3 electron positions. In these cases, the actual electron configuration keeps the electrons in a lower-energy state than in a standard configuration for the atom. The irregular atoms are:

    • Cr (…, 3d5, 4s1); Cu (…, 3d10, 4s1); Nb (…, 4d4, 5s1); Mo (…, 4d5, 5s1); Ru (…, 4d7, 5s1); Rh (…, 4d8, 5s1); Pd (…, 4d10, 5s0); Ag (…, 4d10, 5s1); La (…, 5d1, 6s2); Ce (…, 4f1, 5d1, 6s2); Gd (…, 4f7, 5d1, 6s2); Au (…, 5d10, 6s1); Ac (…, 6d1, 7s2); Th (…, 6d2, 7s2); Pa (…, 5f2, 6d1, 7s2); U (…, 5f3, 6d1, 7s2); Np (…, 5f4, 6d1, 7s2) and Cm (…, 5f7, 6d1, 7s2).
  6. Advertisement

  1. Image titled Write Electron Configurations for Atoms of Any Element Step 18

    1

    Notating cations: When you’re dealing with cations, it’s very similar to neutral atoms in a grounded state. Start by removing electrons in the outermost p orbital, then the s orbital, then the d orbital.[14]

  2. Image titled Write Electron Configurations for Atoms of Any Element Step 19

    2

    Notating anions: When you notate an anion, you have to use the Aufbau Principle, which states that electrons fill the lowest available energy levels first before moving onto higher ones. So, you’d add electrons to the outermost energy level (or the lowest), before moving inwards to add more.[15]

  3. Image titled Write Electron Configurations for Atoms of Any Element Step 20

    3

    Chromium and Copper: As with every rule, there are exceptions. Although most elements follow the Aufbau Principle, these elements do not. Instead of going to the lowest energy state, these electrons are added to the level that will make them the most stable. It may be helpful to memorize the notation for these 2 elements, since they defy the rule.[16]

  4. Advertisement

Add New Question

  • Question

    In some elements, I have seen beside the electronic configuration, it is written [He], [Ne], etc. What is that supposed to be?

    wikiHow Staff Editor

    This answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.

    wikiHow Staff Editor

    wikiHow Staff Editor

    Staff Answer

    It’s a shorthand notation for the noble gas that comes before the element. It’s basically a way of skipping a step when you write out your notation so you don’t have to spend as much time on it.

  • Question

    What is an electron configuration?

    Community Answer

    An electron configuration is the arrangement of electron of an atom or a molecule in an atomic or molecular orbital.

  • Question

    What is the electron configuration of CH4?

    Community Answer

    CH4 isn’t an atom, but a composite substance. You can only tell the electron configuration of an atom.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

  • You can also write an element’s electron configuration by just writing the valence configuration, which is the last s and p orbital set. So, the valence configuration of an antimony atom would be 5s2 5p3.

  • There are also many electron figuration calculators you can use for free online by typing in the element name. However, they won’t usually show their work.

Advertisement

About This Article

Article SummaryX

If you need to write the electron configurations for atoms of any element, find the atom’s atomic number. If you’re working with a charged atom, add one electron for each negative charge and subtract one for each positive charge. Write the electron configuration to display the number of electrons in the atom, divided into orbital sets. The orbital sets go in a predetermined order and have a set number of electrons per set, so fill in the orbitals according to the number of electrons in your atom. If you want to learn how to find an electron configuration using an ADOMAH periodic table, keep reading!

Did this summary help you?

Thanks to all authors for creating a page that has been read 2,687,426 times.

Did this article help you?


Download Article


Download Article

An atom’s electron configuration is a numeric representation of its electron orbitals. Electron orbitals are differently-shaped regions around an atom’s nucleus where electrons are mathematically likely to be located. An electron configuration can quickly and simply tell a reader how many electron orbitals an atom has as well as the number of electrons populating each of its orbitals. Once you understand the basic principles behind electron configuration, you will be able to write your own configurations and tackle those chemistry tests with confidence.

  1. Image titled Write Electron Configurations for Atoms of Any Element Step 1

    1

    What is an electron configuration? An electron configuration shows the distribution of electrons of an atom or a molecule. There is a specific notation that can quickly show you where the electrons are likely to be located, so knowing this notation is an essential part of knowing electron configurations. Reading these notations can tell you what element you’re referring to and how many electrons it has.[1]

    • The structure of the periodic table is based on electron configuration.
    • For example, the notation for Phosphorus (P) is {displaystyle 1s^{2}2s^{2}2p^{6}3s^{2}3p^{3}}.
  2. Image titled Write Electron Configurations for Atoms of Any Element Step 2

    2

    What are electron shells? The area that surrounds the nucleus of an atom, or the area where the electrons orbit, is called an electron shell. There are usually around 3 electron shells per atom, and the arrangement of these shells is called the electron configuration. All electrons in the same shell must have the same energy.[2]

    • Electron shells are also sometimes referred to as energy levels.

    Advertisement

  3. Image titled Write Electron Configurations for Atoms of Any Element Step 3

    3

    What is an atomic orbital? As an atom gains electrons, they fill different orbitals sets according to a specific order. Each set of orbitals, when full, contains an even number of electrons. The orbital sets are:[3]

    • The s orbital set (any number in the electron configuration followed by an «s») contains a single orbital, and by Pauli’s Exclusion Principle, a single orbital can hold a maximum of 2 electrons, so each s orbital set can hold 2 electrons.
    • The p orbital set contains 3 orbitals, and thus can hold a total of 6 electrons.
    • The d orbital set contains 5 orbitals, so it can hold 10 electrons.
    • The f orbital set contains 7 orbitals, so it can hold 14 electrons.
    • The g, h, i and k orbital sets are theoretical. No known atoms have electrons in any of these orbitals. The g set has 9 orbitals, so it could theoretically contain 18 electrons. The h set would have 11 orbitals and a maximum of 22 electrons, the i set would have 13 orbitals and a maximum of 26 electrons, and the k set would have 15 orbitals and a maximum of 30 electrons.
    • Remember the order of the letters with this mnemonic: Sober Physicists Don’t Find Giraffes Hiding In Kitchens.
  4. Image titled Write Electron Configurations for Atoms of Any Element Step 4

    4

    What are overlap orbitals? Sometimes, electrons occupy a shared orbital space. Take the Dihydrogen molecule, or H2. The 2 electrons must stay close to each other in order to stay attracted to each other and connect. Since they’re so close, they will occupy the same orbital space, thus sharing the orbital, or overlapping it.[4]

    • In your notation, you’d simply change the row number to 1 less than it actually is. For example, the electron configuration for germanium (Ge) is {displaystyle 1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{2}3d^{10}4p^{2}.} Even though you go all the way to row 4, there is still a “3d” in the middle there because of overlap.[5]
  5. Image titled Write Electron Configurations for Atoms of Any Element Step 5

    5

    How do you use an electron configuration table? If you’re having trouble visualising your notation, it can be useful to use an electron configuration table so you can actually see what you’re writing. Set up a basic table with the energy levels going down the y-axis and the orbital type going across the x-axis. From there, you can draw your notation in the corresponding spaces as they go down the y-axis and across the x-axis. Then, you can follow the line to get your notation.[6]

    • For example, if you were writing out the configuration for beryllium, you’d start up at the 1s, then loop back around to the 2s. Since beryllium only has 4 electrons, you’d stop after that, and get your notion of {displaystyle 1s^{2}2s^{2}.}
  6. Advertisement

  1. Image titled Write Electron Configurations for Atoms of Any Element Step 6

    1

    Find your atom’s atomic number. Each atom has a specific number of electrons associated with it. Locate your atom’s chemical symbol on the periodic table. The atomic number is a positive integer beginning at 1 (for hydrogen) and increasing by 1 for each subsequent atom. The atom’s atomic number is the number of protons of the atom—thus, it is also the number of electrons in an atom with 0 charge.[7]

    • Since the periodic table is based on electron configuration, you can use it to determine the element’s configuration notation.
  2. Image titled Write Electron Configurations for Atoms of Any Element Step 7

    2

    Determine the charge of the atom. Uncharged atoms will have exactly the number of electrons as is represented on the periodic table. However, charged atoms (ions) will have a higher or lower number of electrons based on the magnitude of their charge. If you’re working with a charged atom, add or subtract electrons accordingly: add 1 electron for each negative charge and subtract 1 for each positive charge.[8]

    • For instance, a sodium atom with a +1 charge would have an electron taken away from its basic atomic number of 11. So, the sodium atom would have 10 electrons in total.
    • A sodium atom with a -1 charge would have 1 electron added to its basic atomic number of 11. The sodium atom would then have a total of 12 electrons.
  3. Image titled Write Electron Configurations for Atoms of Any Element Step 8

    3

    Understand electron configuration notation. Electron configurations are written so as to clearly display the number of electrons in the atom as well as the number of electrons in each orbital. Each orbital is written in sequence, with the number of electrons in each orbital written in superscript to the right of the orbital name. The final electron configuration is a single string of orbital names and superscripts.[9]

    • For example, here is a simple electron configuration: 1s2 2s2 2p6. This configuration shows that there are 2 electrons in the 1s orbital set, 2 electrons in the 2s orbital set, and 6 electrons in the 2p orbital set. 2 + 2 + 6 = 10 electrons total. This electron configuration is for an uncharged neon atom (neon’s atomic number is 10.)
  4. Image titled Write Electron Configurations for Atoms of Any Element Step 9

    4

    Memorize the order of the orbitals. Note that orbital sets are numbered by electron shell, but ordered in terms of energy. For instance, a filled 4s2 is lower energy (or less potentially volatile) than a partially-filled or filled 3d10, so the 4s shell is listed first. Once you know the order of orbitals, you can simply fill them according to the number of electrons in the atom. The order for filling orbitals is as follows: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s.[10]

    • An electron configuration for an atom with every orbital completely filled would be written: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d107p6
    • Note that the above list, if all the shells were filled, would be the electron configuration for Og (Oganesson), 118, the highest-numbered atom on the periodic table—so this electron configuration contains every currently known electron shell for a neutrally charged atom.
  5. Image titled Write Electron Configurations for Atoms of Any Element Step 10

    5

    Fill in the orbitals according to the number of electrons in your atom. For instance, if we want to write an electron configuration for an uncharged calcium atom, we’ll begin by finding its atomic number on the periodic table. Its atomic number is 20, so we’ll write a configuration for an atom with 20 electrons according to the order above.[11]

    • Fill up orbitals according to the order above until you reach 20 total electrons. The 1s orbital gets 2 electrons, the 2s gets 2, the 2p gets 6, the 3s gets 2, the 3p gets 6, and the 4s gets 2 (2 + 2 + 6 +2 +6 + 2 = 20.) Thus, the electron configuration for calcium is: 1s2 2s2 2p6 3s2 3p6 4s2.
    • Note: Energy level changes as you go up. For example, when you are about to go up to the 4th energy level, it becomes 4s first, then 3d. After the 4th energy level, you’ll move onto the 5th where it follows the order once again (5s, then 4d). This only happens after the 3rd energy level.
  6. Image titled Write Electron Configurations for Atoms of Any Element Step 11

    6

    Use the periodic table as a visual shortcut. You may have already noticed that the shape of the periodic table corresponds to the order of orbital sets in electron configurations. For example, atoms in the second column from the left always end in «s2«, atoms at the far right of the skinny middle portion always end in «d10,» etc. Use the periodic table as a visual guide to write configurations – the order that you add electrons to orbitals corresponds to your position in the table.[12]

    • Specifically, the 2 leftmost columns represent atoms whose electron configurations end in s orbitals, the right block of the table represents atoms whose configurations end in p orbitals, the middle portion, atoms that end in d orbital, and the bottom portion, atoms that end in f orbitals.
    • For example, when writing an electron configuration for Chlorine, think: «This atom is in third row (or «period») of the periodic table. It’s also in the fifth column of the periodic table’s p orbital block. Thus, its electron configuration will end …3p5
    • Caution: the d and f orbital regions of the table correspond to energy levels that are different from the period they’re located in. For instance, the first row of the d orbital block corresponds to the 3d orbital even though it’s in period 4, while the first row of the f orbital corresponds to the 4f orbital even though it’s in period 6.
  7. Image titled Write Electron Configurations for Atoms of Any Element Step 12

    7

    Learn shorthand for writing long electron configurations. The atoms along the right edge of the periodic table are called noble gases. These elements are very chemically stable. To shorten the process of writing a long electron configuration, simply write the chemical symbol of the nearest chemical gas with fewer electrons than your atom in brackets, then continue with the electron configuration for the following orbital sets.[13]

    • To understand this concept, it’s useful to write an example configuration. Let’s write a configuration for zinc (atomic number 30) using noble gas shorthand. Zinc’s full electron configuration is: 1s2 2s2 2p6 3s2 3p6 4s2 3d10. However, notice that 1s2 2s2 2p6 3s2 3p6 is the configuration for Argon, a noble gas. Just replace this portion of zinc’s electron notation with Argon’s chemical symbol in brackets ([Ar].)
    • So, zinc’s electron configuration written in shorthand is [Ar]4s2 3d10.
    • Note that if you are doing noble gas notation for, say, argon, you cannot write [Ar]! You have to use the noble gas that comes before that element; for argon, that would be neon ([Ne]).
  8. Advertisement

  1. Image titled Write Electron Configurations for Atoms of Any Element Step 13

    1

    Understand the ADOMAH Periodic Table. This method of writing electron configurations doesn’t require memorization. However, it does require a rearranged periodic table, because in a traditional periodic table, beginning with 4th row, period numbers do not correspond to the electron shells. Find an ADOMAH Periodic Table, a special type of periodic table designed by scientist Valery Tsimmerman. It’s easily found via a quick online search.

    • In the ADOMAH Periodic Table, horizontal rows represent groups of elements, such as halogens, inert gases, alkali metals, alkaline earths, etc. Vertical columns correspond to electron shells and so called “cascades” (diagonal lines connecting s,p,d and f blocks) correspond to periods.
    • Helium is moved next to Hydrogen, since both of them are characterized by the 1s orbital. Blocks of periods (s,p,d and f) are shown on the right side and shell numbers are shown at the base. Elements are presented in rectangular boxes that are numbered from 1 to 120. These numbers are normal atomic numbers that represent total number of electrons in a neutral atom.
  2. Image titled Write Electron Configurations for Atoms of Any Element Step 14

    2

    Find your atom in the ADOMAH table. To write electron configuration of an element, locate its symbol in ADOMAH Periodic Table and cross out all elements that have higher atomic numbers. For example, if you need to write electron configuration of Erbium (68), cross out elements 69 through 120.

    • Notice numbers 1 through 8 at the base of the table. These are electron shell numbers, or column numbers. Ignore columns which contain only crossed out elements. For Erbium, remaining columns are 1,2,3,4,5 and 6.
  3. Image titled Write Electron Configurations for Atoms of Any Element Step 15

    3

    Count orbital sets up to your atom. Looking at the block symbols shown on the right side of the table (s, p, d, and f) and at the column numbers shown at the base and ignoring diagonal lines between the blocks, break up columns into column-blocks and list them in order from the bottom up. Again, ignore column blocks where all elements are crossed out. Write down the column-blocks beginning with the column number followed by the block symbol, like this: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 6s (in case of Erbium).

    • Note: The above electron configuration of Er is written in the order of ascending shell numbers. It could also be written in the order of orbital filling. Just follow cascades from top to bottom instead of columns when you write down the column-blocks: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f12.
  4. Image titled Write Electron Configurations for Atoms of Any Element Step 16

    4

    Count electrons for each orbital set. Count elements that were not crossed out in each block-column, assigning 1 electron per element, and write down their quantity next to the block symbols for each block-column, like this: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f12 5s2 5p6 6s2. In our example, this is the electron configuration of Erbium.

  5. Image titled Write Electron Configurations for Atoms of Any Element Step 17

    5

    Know irregular electron configurations. There are eighteen common exceptions to electron configurations for atoms in the lowest energy state, also called the ground state. They deviate from the general rule only by last 2 to 3 electron positions. In these cases, the actual electron configuration keeps the electrons in a lower-energy state than in a standard configuration for the atom. The irregular atoms are:

    • Cr (…, 3d5, 4s1); Cu (…, 3d10, 4s1); Nb (…, 4d4, 5s1); Mo (…, 4d5, 5s1); Ru (…, 4d7, 5s1); Rh (…, 4d8, 5s1); Pd (…, 4d10, 5s0); Ag (…, 4d10, 5s1); La (…, 5d1, 6s2); Ce (…, 4f1, 5d1, 6s2); Gd (…, 4f7, 5d1, 6s2); Au (…, 5d10, 6s1); Ac (…, 6d1, 7s2); Th (…, 6d2, 7s2); Pa (…, 5f2, 6d1, 7s2); U (…, 5f3, 6d1, 7s2); Np (…, 5f4, 6d1, 7s2) and Cm (…, 5f7, 6d1, 7s2).
  6. Advertisement

  1. Image titled Write Electron Configurations for Atoms of Any Element Step 18

    1

    Notating cations: When you’re dealing with cations, it’s very similar to neutral atoms in a grounded state. Start by removing electrons in the outermost p orbital, then the s orbital, then the d orbital.[14]

  2. Image titled Write Electron Configurations for Atoms of Any Element Step 19

    2

    Notating anions: When you notate an anion, you have to use the Aufbau Principle, which states that electrons fill the lowest available energy levels first before moving onto higher ones. So, you’d add electrons to the outermost energy level (or the lowest), before moving inwards to add more.[15]

  3. Image titled Write Electron Configurations for Atoms of Any Element Step 20

    3

    Chromium and Copper: As with every rule, there are exceptions. Although most elements follow the Aufbau Principle, these elements do not. Instead of going to the lowest energy state, these electrons are added to the level that will make them the most stable. It may be helpful to memorize the notation for these 2 elements, since they defy the rule.[16]

  4. Advertisement

Add New Question

  • Question

    In some elements, I have seen beside the electronic configuration, it is written [He], [Ne], etc. What is that supposed to be?

    wikiHow Staff Editor

    This answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.

    wikiHow Staff Editor

    wikiHow Staff Editor

    Staff Answer

    It’s a shorthand notation for the noble gas that comes before the element. It’s basically a way of skipping a step when you write out your notation so you don’t have to spend as much time on it.

  • Question

    What is an electron configuration?

    Community Answer

    An electron configuration is the arrangement of electron of an atom or a molecule in an atomic or molecular orbital.

  • Question

    What is the electron configuration of CH4?

    Community Answer

    CH4 isn’t an atom, but a composite substance. You can only tell the electron configuration of an atom.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

  • You can also write an element’s electron configuration by just writing the valence configuration, which is the last s and p orbital set. So, the valence configuration of an antimony atom would be 5s2 5p3.

  • There are also many electron figuration calculators you can use for free online by typing in the element name. However, they won’t usually show their work.

Advertisement

About This Article

Article SummaryX

If you need to write the electron configurations for atoms of any element, find the atom’s atomic number. If you’re working with a charged atom, add one electron for each negative charge and subtract one for each positive charge. Write the electron configuration to display the number of electrons in the atom, divided into orbital sets. The orbital sets go in a predetermined order and have a set number of electrons per set, so fill in the orbitals according to the number of electrons in your atom. If you want to learn how to find an electron configuration using an ADOMAH periodic table, keep reading!

Did this summary help you?

Thanks to all authors for creating a page that has been read 2,687,426 times.

Did this article help you?

Электронные формулы химических элементов


Электронные формулы химических элементов

4.6

Средняя оценка: 4.6

Всего получено оценок: 614.

4.6

Средняя оценка: 4.6

Всего получено оценок: 614.

Расположение электронов на энергетических оболочках или уровнях записывают с помощью электронных формул химических элементов. Электронные формулы или конфигурации помогают представить структуру атома элемента.

Строение атома

Чтобы читать электронные формулы, необходимо понять строение атома.

Атомы всех элементов состоят из положительно заряженного ядра и отрицательно заряженных электронов, которые располагаются вокруг ядра.

Электроны находятся на разных энергетических уровнях. Чем дальше электрон находится от ядра, тем большей энергией он обладает. Размер энергетического уровня определяется размером атомной орбитали или орбитального облака. Это пространство, в котором движется электрон.

Общее строение атома

Рис. 1. Общее строение атома.

Орбитали могут иметь разную геометрическую конфигурацию:

  • s-орбитали – сферические;
  • р-, d и f-орбитали – гантелеобразные, лежащие в разных плоскостях.

На первом энергетическом уровне любого атома всегда располагается s-орбиталь с двумя электронами (исключение – водород). Начиная со второго уровня, на одном уровне находятся s- и р-орбитали.

s-, р-, d и f-орбитали

Рис. 2. s-, р-, d и f-орбитали.

Орбитали существуют вне зависимости от нахождения на них электронов и могут быть заполненными или вакантными.

Запись формулы

Электронные конфигурации атомов химических элементов записываются по следующим принципам:

  • каждому энергетическому уровню соответствует порядковый номер, обозначаемый арабской цифрой;
  • за номером следует буква, означающая орбиталь;
  • над буквой пишется верхний индекс, соответствующий количеству электронов на орбитали.

Примеры записи:

  • кальций –

    1s22s22p63s23p64s2;

  • кислород –

    1s22s22p4;

  • углерод –

Записать электронную формулу помогает таблица Менделеева. Количеству энергетических уровней соответствует номер периода. На заряд атома и количество электронов указывает порядковый номер элемента. Номер группы показывает, сколько валентных электронов находится на внешнем уровне.

Для примера возьмём Na. Натрий находится в первой группе, в третьем периоде, под 11 номером. Это значит, что атом натрия имеет положительно заряженное ядро (содержит 11 протонов), вокруг которого на трёх энергетических уровнях располагается 11 электронов. На внешнем уровне находится один электрон.

Вспомним, что первый энергетический уровень содержит s-орбиталь с двумя электронами, а второй – s- и р-орбитали. Остаётся заполнить уровни и получить полную запись:

+11 Na )2)8)1 или 1s22s22p63s1.

Для удобства созданы специальные таблицы электронных формул элемента. В длинной периодической таблице формулы также указываются в каждой клетке элемента.

Таблица электронных формул

Рис. 3. Таблица электронных формул.

Для краткости в квадратных скобках записаны элементы, электронная формула которых совпадает с началом формулы элемента. Например, электронная формула магния – [Ne]3s2, неона – 1s22s22p6. Следовательно, полная формула магния – 1s22s22p63s2.

Заключение

Что мы узнали?

Электронные формулы элементов отражают расположение электронов в атоме на разных орбиталях. Количество электронов равно порядковому номеру элемента, количество уровней – номеру периода. На последнем уровне находятся валентные электроны, соответствующие номеру группы элемента. Цифры в электронной формуле показывают уровень, буквы – орбиталь, индексы – количество электронов на уровне.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Александр Котков

    5/5

  • Александр Котков

    5/5

  • Александр Котков

    5/5

Оценка доклада

4.6

Средняя оценка: 4.6

Всего получено оценок: 614.


А какая ваша оценка?

Темы кодификатора ЕГЭ: Строение электронных оболочек атомов элементов первых четырех периодов: s-, p- и d-элементы. Электронная конфигурация атомов и ионов. Основное и возбужденное состояние атомов.

Тренировочные тесты в формате ЕГЭ по теме «Строение атома» (задание 1 ЕГЭ по химии) ( с ответами)

Одну из первых моделей строения атома — «пудинговую модель» — разработал Д.Д. Томсон в 1904 году. Томсон открыл существование электронов, за что и получил Нобелевскую премию. Однако наука на тот момент не могла объяснить существование этих самых электронов в пространстве. Томсон предположил, что атом состоит из отрицательных электронов, помещенных в равномерно заряженный положительно «суп», который компенсирует заряд электронов (еще одна аналогия — изюм в пудинге). Модель, конечно, оригинальная, но неверная. Зато модель Томсона стала отличным стартом для дальнейших работ в этой области.

И дальнейшая работа оказалась эффективной. Ученик Томсона, Эрнест Резерфорд, на основании опытов по рассеянию альфа-частиц на золотой фольге предложил новую, планетарную модель строения атома.

Согласно модели Резерфорда, атом состоит из массивного, положительно заряженного ядра и частиц с небольшой массой — электронов, которые, как планеты вокруг Солнца, летают вокруг ядра, и на него не падают.

Модель Резерфорда оказалась следующим шагом в изучении строения атома. Однако современная наука использует более совершенную модель, предложенную Нильсом Бором в 1913 году. На ней мы и остановимся подробнее.

Атом — это мельчайшая, электронейтральная, химически неделимая частица вещества, состоящая из положительно заряженного ядра и отрицательно заряженной электронной оболочки.

При этом электроны двигаются не по определенной орбите, как предполагал Резерфорд, а довольно хаотично. Совокупность электронов, которые двигаются вокруг ядра, называется электронной оболочкой.

Атомное ядро, как доказал Резерфорд — массивное и положительно заряженное, расположено в центральной части атома. Структура ядра довольно сложна, и изучается в ядерной физике. Основные частицы, из которых оно состоит — протоны и нейтроны. Они связаны ядерными силами (сильное взаимодействие).

Рассмотрим основные характеристики протонов, нейтронов и электронов:

Протон Нейтрон Электрон
Масса 1,00728 а.е.м. 1,00867 а.е.м. 1/1960 а.е.м.
Заряд + 1 элементарный заряд 0 — 1 элементарный заряд

1 а.е.м. (атомная единица массы) = 1,66054·10-27 кг

1 элементарный заряд = 1,60219·10-19 Кл

И — самое главное. Периодическая система химических элементов, структурированная Дмитрием Ивановичем Менделеевым, подчиняется простой и понятной логике: номер атома — это число протонов в ядре этого атома. Причем ни о каких протонах Дмитрий Иванович в XIX веке не слышал. Тем гениальнее его открытие и способности, и научное чутье, которое позволило перешагнуть на полтора столетия вперёд  в науке.

Следовательно, заряд ядра Z равен числу протонов, т.е. номеру атома в Периодической системе химических элементов. 

Атом — это электронейтральная частица, следовательно, число протонов равно числу электронов: Ne = Np = Z.

Масса атома (массовое число A) примерно равна суммарной массе крупных частиц, которые входят в состав атома — протонов и нейтронов. Поскольку масса протона и нейтрона примерно равна 1 атомной единице массы, можно использовать формулу:

M = Np + Nn

Массовое число указано в Периодической системе химических элементов в ячейке каждого элемента.

Обратите внимание! При решении задач ЕГЭ массовое число всех атомов, кроме хлора, округляется до целого по правилам математики. Массовое число атома хлора в ЕГЭ принято считать равным 35,5.

Таким образом, рассчитать число нейтронов в атоме можно, вычтя из массового числа номер атома: Nn = M – Z.

В Периодической системе собраны химические элементы — атомы с одинаковым зарядом ядра. Однако, может ли меняться у этих атомов число остальных частиц? Вполне. Например, атомы с разным числом нейтронов называют изотопами данного химического элемента. У одного и того же элемента может быть несколько изотопов.

Попробуйте ответить на вопросы. Ответы на них — в конце статьи:

  1. У изотопов одного элемента массовое число одинаковое или разное?
  2. У изотопов одно элемента число протонов одинаковое или разное?

Химические свойства атомов определяются строением электронной оболочки и зарядом ядра. Таким образом, химические свойства изотопов одного элемента практически не отличаются.

Поскольку атомы одного элемента могут существовать в форме разных изотопов, в названии часто указывается массовое число, например, хлор-35, и принята такая форма записи атомов:

Еще немного вопросов:

3. Определите количество нейтронов, протонов и электронов в изотопе брома-81.

4. Определите число нейтронов в изотопе хлора-37.

Строение  электронной оболочки

Согласно квантовой модели строение атома Нильса Бора, электроны в атоме могут двигаться только по определенным (стационарным) орбитам, удаленным от ядра на определенное расстояние и характеризующиеся определенной энергией. Другое название стационарны орбит — электронные слои или энергетические уровни.

Электронные уровни можно обозначать цифрами — 1, 2, 3, …, n. Номер слоя увеличивается мере удаления его от ядра. Номер уровня соответствует главному квантовому числу n.

В одном слое электроны могут двигаться по разным траекториям. Траекторию орбиты характеризует электронный подуровень. Тип подуровня характеризует орбитальное квантовое число l = 0,1, 2, 3 …, либо соответствующие буквы — s, p, d, g и др.

В рамках одного подуровня (электронных орбиталей одного типа) возможны варианты расположения орбиталей в пространстве. Чем сложнее геометрия орбиталей данного подуровня, тем больше вариантов их расположения в пространстве. Общее число орбиталей подуровня данного типа l можно определить по формуле: 2l+1. На каждой орбитали может находиться не более двух электронов.

Тип орбитали s p d f g
Значение орбитального квантового числа l 0 1 2 3 4
Число атомных орбиталей данного типа 2l+1 1 3 5 7 9
Максимальное количество электронов на орбиталях данного типа 2 6 10 14 18

Получаем сводную таблицу:

Номер уровня, n

Подуровень Число

АО

Максимальное количество электронов
1 1s 1   2
2 2s 1     2
2p 3   6

3

3s 1   2
3p 3   6
3d 5  10

4

4s 1    2
4p 3     6
4d 5 10
4f 7

 14

Заполнение электронами энергетических орбиталей происходит согласно некоторым основным правилам. Давайте остановимся на них подробно.

Принцип Паули (запрет Паули): на одной атомной орбитали могут находиться не более двух электронов с противоположными спинами (спин — это квантовомеханическая характеристика движения электрона).

Правило Хунда. На атомных орбиталях с одинаковой энергией электроны располагаются по одному с параллельными спинами. Т.е. орбитали одного подуровня заполняются так: сначала на каждую орбиталь распределяется по одному электрону. Только когда во всех орбиталях данного подуровня распределено по одному электрону, занимаем орбитали вторыми электронами, с противоположными спинами.

Таким образом, сумма спиновых квантовых чисел таких электронов на одном энергетическом подуровне (оболочке) будет максимальной.

Например, заполнение 2р-орбитали тремя электронами будет происходить так: , а не так: 

Принцип минимума энергии. Электроны заполняют сначала орбитали с наименьшей энергией. Энергия атомной орбитали эквивалентна сумме главного и орбитального квантовых чисел: n + l. Если сумма одинаковая, то заполняется первой та орбиталь, у которой меньше главное квантовое число n.

АО 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g
n 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5
l 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4
n + l 1 2 3 3 4 5 4 5 6 7 5 6 7 8 9

Таким образом, энергетический ряд орбиталей выглядит так:

1s < 2s < 2 p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f~5d < 6p < 7s <5f~6

Электронную структуру атома можно представлять в разных формах — энергетическая диаграмма, электронная формула и др. Разберем основные.

Энергетическая диаграмма атома — это схематическое изображение орбиталей с учетом их энергии. Диаграмма показывает расположение электронов на энергетических уровнях и подуровнях. Заполнение орбиталей происходит согласно квантовым принципам.

Например, энергетическая диаграмма для атома углерода:

Электронная формула — это запись распределения электронов по орбиталям атома или иона. Сначала указывается номер уровня, затем тип орбитали. Верхний индекс справа от буквы показывает число электронов на орбитали. Орбитали указываются в порядке заполнения. Запись 1s2 означает, что на 1 уровне s-подуровне расположено 2 электрона.

Например, электронная формула углерода выглядит так: 1s22s22p2.

Для краткости записи, вместо энергетических орбиталей, полностью заполненных электронами, иногда используют символ ближайшего благородного газа (элемента VIIIА группы), имеющего соответствующую  электронную конфигурацию.

Например, электронную формулу азота можно записать так: 1s22s22p3 или так: [He]2s22p3.

1s2 = [He]

1s22s22p6 = [Ne]

1s22s22p63s23p= [Ar] и так далее.

Электронные формулы элементов первых четырех периодов

Рассмотрим заполнение электронами оболочки элементов первых четырех периодов. У водорода заполняется самый первый энергетический уровень, s-подуровень, на нем расположен 1 электрон:

+1H 1s1      1s 

У гелия 1s-орбиталь полностью заполнена:

+2He 1s2      1s  

Поскольку первый энергетический уровень вмещает максимально 2 электрона, у лития начинается заполнение второго энергетического уровня, начиная с орбитали с минимальной энергией — 2s. При этом сначала заполняется первый энергетический уровень:

+3Li 1s22s1      1s     2s 

У бериллия 2s-подуровень заполнен:

+4Be 1s22s2      1s    2s 

Далее, у бора заполняется p-подуровень второго уровня:

+5B 1s22s22p1      1s    2s     2p 

У следующего элемента, углерода, очередной электрон, согласно правилу Хунда, заполняет вакантную орбиталь, а не заполняет частично занятую:

+6C 1s22s22p2      1s    2s     2p 

Попробуйте составить электронную и электронно-графическую формулы для следующих элементов, а затем можете проверить себя  по ответам конце статьи:

5. Азот

6. Кислород

7. Фтор

У неона завершено заполнение второго энергетического уровня: 

+10Ne 1s22s22p6      1s    2s     2p 

У натрия начинается заполнение третьего энергетического уровня:

+11Na 1s22s22p63s1      1s    2s     2p      3s 

От натрия до аргона заполнение 3-го уровня происходит в том же порядке, что и заполнение 2-го энергетического уровня. Предлагаю составить электронные формулы элементов от магния до аргона самостоятельно, проверить по ответам.

8. Магний

9. Алюминий

10. Кремний

11. Фосфор

12. Сера

13. Хлор

14. Аргон

А вот начиная с 19-го элемента, калия, иногда начинается путаница — заполняется не 3d-орбиталь, а 4s. Ранее мы упоминали в этой статье, что заполнение энергетических уровней и подуровней электронами происходит по энергетическому ряду орбиталей, а не по порядку. Рекомендую повторить его еще раз. Таким образом, формула калия:

+19K 1s22s22p63s23p64s11s 2s 2p3s 3p4s

Для записи дальнейших электронных формул в статье будем использовать сокращенную форму:

 +19K   [Ar]4s1    [Ar] 4s 

У кальция 4s-подуровень заполнен:

+20Ca   [Ar]4s2    [Ar] 4s

У элемента 21, скандия, согласно энергетическому ряду орбиталей, начинается заполнение 3d-подуровня:

+21Sc   [Ar]3d14s2    [Ar] 4s    3d 

Дальнейшее заполнение 3d-подуровня происходит согласно квантовым правилам, от титана до ванадия:

+22Ti   [Ar]3d24s2    [Ar] 4s    3d

+23V   [Ar]3d34s2      [Ar] 4s    3d 

Однако, у следующего элемента порядок заполнения орбиталей нарушается. Электронная конфигурация хрома такая:

+24Cr   [Ar]3d54s1      [Ar] 4s  3d 

В чём же дело? А дело в том, что при «традиционном» порядке заполнения орбиталей (соответственно, неверном в данном случае — 3d44s2) ровно одна ячейка в d-подуровне оставалась бы незаполненной. Оказалось, что такое заполнение энергетически менее выгодно. А более выгодно, когда d-орбиталь заполнена полностью, хотя бы единичными электронами. Этот лишний электрон переходит с 4s-подуровня. И небольшие затраты энергии на перескок электрона с 4s-подуровня с лихвой покрывает энергетический эффект от заполнения всех 3d-орбиталей. Этот эффект так и называется — «провал» или «проскок» электрона. И наблюдается он, когда d-орбиталь недозаполнена на 1 электрон (по одному электрону в ячейке или по два).

У следующих элементов «традиционный» порядок заполнения орбиталей снова возвращается. Конфигурация марганца:

+25Mn   [Ar]3d54s2

Аналогично у кобальта и никеля. А вот у меди мы снова наблюдаем провал (проскок) электрона — электрон опять проскакивает с 4s-подуровня на 3d-подуровень:

+29Cu   [Ar]3d104s1

На цинке завершается заполнение 3d-подуровня:

+30Zn   [Ar]3d104s2

У следующих элементов, от галлия до криптона, происходит заполнение 4p-подуровня по квантовым правилам. Например, электронная формула галлия:

+31Ga   [Ar]3d104s24p1

Формулы остальных элементов мы приводить не будем, можете составить их самостоятельно.

Некоторые важные понятия:

Внешний энергетический уровень — это энергетический уровень в атоме с максимальным номером, на котором есть электроны.

Например, у меди   ([Ar]3d104s1) внешний энергетический уровень — четвёртый.

Валентные электроны — электроны в атоме, которые могут участвовать в образовании химической связи. Например, у хрома (+24Cr   [Ar]3d54s1) валентными являются не только электроны внешнего энергетического уровня (4s1), но и неспаренные электроны на 3d-подуровне, т.к. они могут образовывать химические связи.

Основное и возбужденное состояние атома

Электронные формулы, которые мы составляли до этого, соответствуют основному энергетическому состоянию атома. Это наиболее выгодное энергетически состояние атома.

Однако, чтобы образовывать химические связи, атому в большинстве ситуаций необходимо наличие неспаренных (одиночных) электронов.  А химические связи энергетически очень для атома выгодны. Следовательно, чем больше в атоме неспаренных электронов  — тем больше связей он может образовать, и, как следствие, перейдёт в более выгодное энергетическое состояние.

Поэтому при наличии свободных энергетических орбиталей на данном уровне спаренные пары  электронов могут распариваться, и один из электронов спаренной пары может переходить на вакантную орбиталь. Таким образом число неспаренных электронов увеличивается, и атом может образовать больше химических связей, что очень выгодно с точки зрения энергии. Такое состояние атома называют возбуждённым и обозначают звёздочкой.

Например, в основном состоянии бор имеет следующую конфигурацию энергетического уровня:

+5B 1s22s22p1      1s    2s     2p 

На втором уровне (внешнем) одна спаренная электронная пара, один одиночный электрон и пара свободных (вакантных) орбиталей. Следовательно, есть возможность для перехода электрона из пары на вакантную орбиталь, получаем возбуждённое состояние атома бора (обозначается звёздочкой):

+5B* 1s22s12p2      1s    2s     2p

Попробуйте самостоятельно составить электронную формулу, соответствующую возбуждённому состоянию атомов. Не забываем проверять себя по ответам!

15. Углерода

16. Бериллия

17. Кислорода

Электронные формулы ионов

Атомы могут отдавать и принимать электроны. Отдавая или принимая электроны, они превращаются в ионы.

Ионы — это заряженные частицы. Избыточный заряд обозначается индексом в правом верхнем углу.

Если атом отдаёт электроны, то общий заряд образовавшейся частицы будет положительный (вспомним, что число протонов в атоме равно числу электронов, а при отдаче электронов число протонов будет больше числа электронов). Положительно заряженные ионы — это катионы. Например: катион натрия образуется так:

+11Na 1s22s22p63s1      -1е = +11Na+ 1s22s22p63s0

Если атом принимает электроны, то приобретает отрицательный заряд. Отрицательно заряженные частицы — это анионыНапример, анион хлора образуется так:

+17Cl 1s22s22p63s23p5   +1e = +17Cl 1s22s22p63s23p6

Таким образом, электронные формулы ионов можно получить добавив или отняв электроны у атома. Обратите внимание, при образовании катионов электроны уходят с внешнего энергетического уровня. При образовании анионов электроны приходят на внешний энергетический уровень.

Попробуйте составить самостоятельно электронный формулы ионов. Не забывайте проверять себя по ключам!

18. Ион Са2+

19. Ион S2-

20. Ион Ni2+

В некоторых случаях совершенно разные атомы образуют ионы с одинаковой электронной конфигурацией. Частицы с одинаковой электронной конфигурацией и одинаковым числом электронов называют изоэлектронными частицами.

Например, ионы Na+ и F.

Электронная формула катиона натрия: Na+   1s22s22p6, всего 10 электронов.

Электронная формула аниона фтора: F   1s22s22p6, всего 10 электронов.

Таким образом, ионы Na+ и F — изоэлектронные. Также они изоэлектронны атому неона.

Тренажер по теме «Строение атома» — 10 вопросов, при каждом прохождении новые.

232

Создан на
03 января, 2022 От Admin

Тренировочный тест «Строение атома»

Тренировочный тест по теме «Строение атома»

1 / 10

1) Si       2) Br      3) Fe      4) N    5) Al

Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют на внешнем энергетическом уровне один неспаренный электрон.

2 / 10

1) Cl   2) Zn   3) N   4) S   5) Mg

Определите элементы, атомы которых имеют одинаковое число электронов во внешнем слое.

3 / 10

1) C   2) Mg   3) Sc   4) Pb   5) Si

Определите, атомы каких из указанных в ряду элементов в основном состоянии не имеют на внешнем энергетическом уровне неспаренных электронов.

4 / 10

1) S   2) Cu   3) Cl   4) Si   5) Mg

Определите элементы, атомы которых в основном состоянии содержат один неспаренный электрон.

5 / 10

1) Sn   2) Fe   3) C    4) Pb   5) Cr

Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют валентные электроны как на s-, так и на d-подуровнях.

6 / 10

1) Fe   2) B   3) Li   4) C   5) He

Определите элементы, атомы которых в основном состоянии имеют электронную формулу внешнего энергетического уровня ns2.

7 / 10

1) Ca   2) S   3) Na   4) F   5) Mn

Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют одинаковое число электронов во внешнем слое.

8 / 10

1) Al   2) N   3) P   4) B   5) S

Определите, атомы каких из указанных в ряду элементов в основном состоянии содержат три неспаренных электрона.

9 / 10

1) O   2) P   3) Si   4) Cr   5) S

Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют электронную конфигурацию внешнего энергетического уровня ns2np4.

10 / 10

1) As   2) P   3) Al   4) B   5) Na

Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют электронную конфигурацию внешнего энергетического уровня ns2np3.

Ваша оценка

The average score is 32%

Ответы на вопросы:

1. У изотопов одного химического элемента массовое число всегда разное, т.к. массовое число складывается из числа протонов и нейтронов. А у изотопов различается число нейтронов.

2. У изотопов одного элемента число протонов всегда одинаковое, т.к. число протонов характеризует химический элемент.

3. Массовое число изотопа брома-81 равно 81. Атомный номер = заряд ядра брома = число протонов в ядре = 35. Вычитаем из массового числа число протонов, получаем 81-35=46 нейтронов.

4. Массовое число изотопа хлора равно 37. Атомный номер, заряд ядра и число протонов в ядре равно 17. Получаем число нейтронов = 37-17 =20.

5. Электронная формула азота:

+7N 1s22s22p3      1s    2s     2p 

6. Электронная формула кислорода:

+8О 1s22s22p1s  2s  2p 

7. Электронная формула фтора:

8. Электронная формула магния:

+12Mg 1s22s22p63s2      1s    2s     2p      3s

9. Электронная формула алюминия:

+13Al 1s22s22p63s23p1     1s    2s   2p    3s   3p 

10. Электронная формула кремния:

+14Si 1s22s22p63s23p2     1s    2s   2p    3s   3p

11. Электронная формула фосфора:

+15P 1s22s22p63s23p3     1s    2s   2p    3s   3p

12. Электронная формула серы:

+16S 1s22s22p63s23p4     1s    2s   2p    3s   3p

13. Электронная формула хлора:

14. Электронная формула аргона:

+18Ar 1s22s22p63s23p6     1s    2s   2p    3s   3p

15. Электронная формула углерода в возбуждённом состоянии:

+6C* 1s22s12p3   1s    2s     2p

16. Электронная формула бериллия в возбуждённом состоянии:

+4Be 1s22s12p1      1s    2s    2p 

17. Электронная формула кислорода в возбуждённом энергетическом состоянии соответствует формуле кислорода в основном энергетическом состоянии, т.к. нет условий для перехода электрона — отсутствуют вакантные энергетические орбитали.

18. Электронная формула иона кальция Са2++20Ca2+   1s22s22p63s23p6 

19. Электронная формула аниона серы S2-+16S2- 1s22s22p63s23p6

20. Электронная формула катиона никеля Ni2++28Ni2+  1s22s22p63s23p63d84s0. Обратите внимание! Атомы отдают электроны всегда сначала с внешнего энергетического уровня. Поэтому никель отдаёт электроны сначала с внешнего 4s-подуровня.

Тренировочные тесты в формате ЕГЭ по теме «Строение атома» (задание 1 ЕГЭ по химии) ( с ответами)

Понравилась статья? Поделить с друзьями:
  • Как написать эпическое фэнтези
  • Как написать электронное письмо путину владимиру владимировичу официальный сайт
  • Как написать эпитет
  • Как написать электронное письмо преподавателю
  • Как написать эпитафию