Как написать графическую формулу вещества

Как составлять графические формулы

В графических (структурных) формулах электронная пара, образующая связь между атомами, обозначается черточкой. Графические формулы дают наглядное представление о порядке связей между атомами вещества и особенно широко используются в органической химии. Углеводороды при одинаковом наборе атомов могут сильно отличаться по строению молекул. Эти различия хорошо отражают структурные формулы.

Как составлять графические формулы

Инструкция

Рассмотрите порядок составления графической формулы на примере фосфата магния. Его химическая формула – Mg3(PO4)2. Сначала нарисуйте структурную формулу для ортофосфорной кислоты, которая образовала эту соль. Для этого определите валентность фосфора в H3PO4. Водород является донором электронов, он одновалентен. Кислород – акцептор электронов, у него валентность равна 2. Значит, четыре молекулы кислорода присоединяют восемь электронов. Три из них дает водород, остальные пять – фосфор. Следовательно, фосфор пятивалентен.

Напишите символ фосфора. От него нужно нарисовать пять черточек, обозначающих электронные связи. Три из них забирают группы –OH. Остаются еще две черточки и один атом кислорода, с которым фосфор и соединяется двойной связью.

Как составлять графические <strong>формулы</strong>

Затем составьте графическую формулу фосфата магния. В молекуле соли три атома металла связаны с двумя кислотными остатками. Запишите в строку три символа, обозначающих магний. Магний двухвалентен — от каждого символа должны отходить по две черточки-связи. В молекуле соли магний вытесняет из кислоты водород и встает на его место. Каждый кислотный остаток забирает по три связи. Чтобы проверить себя, сосчитайте количество атомов в получившейся структурной формуле. Оно должно совпасть с числом атомов в химической формуле.

Как составлять графические <strong>формулы</strong>

В органической химии при написании графических формул принято не обозначать связь с атомами водорода. На рисунке показаны примеры таких структурных формул органических соединений.

Как составлять графические <strong>формулы</strong>

Видео по теме

Источники:

  • графические формулы атомов

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

При
графическом изображении формул веществ указывается последовательность расположения
атомов в молекуле с помощью, так называемых валентных штрихов (термин
«валентный штрих» предложил в 1858 г. А. Купер для обозначения химических сил
сцепления атомов), иначе называемых валентной чертой (каждая валентная черта,
или валентный штрих, эквивалентны одной паре электронов в ковалентных
соединениях или одному электрону, участвующему в образовании ионной связи).
Часто неправильно принимают графическое изображение формул за структурные
формулы, приемлемые только для соединений с ковалентной связью и показывающие
взаимное расположение атомов в молекуле.

Так, формула Nа—СL не является структурной, так как NаСI — ионное соединение, в его
кристаллической решетке отсутствуют молекулы (молекулы
NаСL существуют только в газовой фазе).
В узлах кристаллической решетки
NаСI
находятся ионы, причем каждый
Nа+
окружен шестью хлорид-ионами. Это графическое изображение формулы вещества,
показывающее, что ионы натрия не связаны между собой, а с хлорид-ионами. Не
соединяются между собой и хлорид-ионы, они соединены с ионами натрия.

Покажем
это на примерах. Мысленно предварительно «разбиваем» лист бумаги на несколько
столбцов и выполняем действия согласно алгоритмам по графическому изображению
формул оксидов, оснований, кислот, солей в следующем порядке.

Графическое
изображение формул оксидов
(например, А
l2O3)

                                                                
                       
III II

1. Определяем
валентность атомов элементов в А
l2O3

2.
Записываем химические знаки атомов металлов на первое место (первый столбец).
Если атомов металлов больше одного, то записываем и в один столбец и обозначаем
валентность (число связей между атомами) валентными штрихами

З.
Второе место (столбец), тоже в один столбец, занимают химические знаки атомов
кислорода, причем к каждому атому кислорода должно подходить по два валентных
штриха, так как кислород двухвалентен

                                                                        
                             
lll   ll  l

Графическое изображение формул оснований (например Fе(ОН)3)

1.
Определяем валентность атомов элементов
Fе(ОН)3

2.
На первом месте (первый столбец) пишем химические знаки атомов металла,
обозначаем их валентность
Fе

З.
Второе место (столбец) занимают химические знаки атомов кислорода, которые
присоединяются одной связью к атому металла, вторая связь пока «свободна»

  

4.
Третье место (столбец) занимают химические знаки атомов водорода,
присоединяющихся на  «свободную»
валентность атомов кислорода

Графическое
изображение формул кислот
(например, Н2
SO4)

                                                  
                                   
l  Vl  ll

1. Определяем
валентность атомов элементов Н2
SO4.

2.
На первом месте (первый столбец) пишем химические знаки атомов водорода в один
столбец с обозначением валентности

Н—

Н—

З.
Второе место (столбец) занимают атомы кислорода, присоединяясь одной валентной
связью к атому водорода, при этом вторая валентность каждого атома кислорода
пока «свободна»

Н—
О —

Н—
О —

4.
Третье место (столбец) занимают химические знаки атомов кислотообразователя с
обозначением валентности

5.
На «свободные» валентности атома кислотообразователя присоединяются атомы
кислорода согласно правилу валентности

Графическое
изображение формул солей

Средние
соли

(например,
Fe2SO4)3) В средних солях все
атомы водорода кислоты замещены на атомы металла, поэтому при графическом
изображении их формул первое место (первый столбец) занимают химические знаки
атомов металла с обозначением валентности, а далее — как в кислотах, то есть
второе место (столбец) занимают химические знаки атомов кислорода, третье место
(столбец) — химические знаки атомов кислотообразователя, их три и они присоединяются
к шести атомам кислорода. На «свободные» валентности кислотообразователя присоединяются
атомы кислорода согласно правилу валентности

Кислые
соли (
например, Ва(Н2
PO4)2) Кислые соли можно рассматривать
как продукты частичного замещения атомов водорода в кислоте атомами металла,
поэтому при составлении графических формул кислых солей на первое место (первый
столбец) записывают химические знаки атомов металла и водорода с обозначением
валентности

Н—

Н—

Ва
=

Н—

Н—

Второе
место (столбец) занимают химические знаки атомов кислорода

Третье
место (столбец) — химические знаки атомов кислотообразователя,  на «свободные» 
валентности кислотообразователя присоединяются атомы кислорода согласно
правилу валентности

Основные
соли

(например, А1ОН
SO4) Основные соли определяем, чем как
продукт частичного замещения группы ОН основания на кислотный остаток. При
составлении графических формул основных солей первое место (столбец) занимают
химические знаки атомов металлов с обозначением валентности, второе (столбец) —
химические знаки атомов металлов кислорода, третье — химические знаки атомов
водорода и кислотообразователя с обозначением соответствующей валентности. На
«свободные»  валентности атома
кислотообразователя присоединяются атомы кислорода согласно правилу валентности

По
графическому изображению формул веществ можно судить об их свойствах,
определяют истинную степень окисления, например,
Na+1–О-1 –О-1Na+1   
или в органических соединениях 


Структурная формула  Фосфата кальция

Ca3(PO4)2      Ca+23(P+5O-24)2

Эмпирические
формулы дают информацию о качественном
и количественном составе соединений.
Взаимное расположение атомов в молекуле
вещества отражают структурно-графические
формулы, однако они не показывают
пространственное расположение атомов.

При
составлении структурно-графических
формул можно руководствоваться
следующими правилами:

1.
Элементы соединяются в соответствии с
их валентностью.

2.
Черточка в формуле обозначает единичную
химическую связь, количество черточек
соответствует валентности, например:

K2O
записывается так: K‑O
‑K
.

3.
Состав кислот и оснований следует
начинать изображать с центрального
атома,

например
Ca(OH)2

H4SiO4

4.
Если в молекуле кислоты содержится
больше атомов кислорода, чем водорода,
то «избыточные» атомы кислорода соединены
с центральным атомом двойной связью,

например:
HClO4

5.
При написании графических формул солей
исходят из графических формул кислот,
заменяя атомы водорода на атомы металла,
учитывая его валентность, например:

Na3PO4

Fe2(SO4)3

KHCO3

CaOHNO3

Структурно-графические
формулы некоторых кислот приведены в
табл. 5.

2.4. Общие химические свойства основных классов неорганических веществ

Оксиды

вещества, состоящие из атомов двух
элементов, один из которых – кислород
в степени окисления (–2). По
химическим свойствам их подразделяют
на индифферентные, или несолеобразующие
(CO,
NO),
и солеобразующие, которые бывают
основными, кислотными и амфотерными.

Химические
свойства основных оксидов

1.
Взаимодействуют с кислотами с образованием
соли и воды, например:

MgO
+ 2HCl
= MgCl2
+ H2O.

2.
Взаимодействие с кислотными оксидами
с образованием солей:

CaO
+ CO2
= CaCO3.

3.
Оксиды щелочных и щелочноземельных
металлов взаимодействуют с водой с
образованием растворимых в воде
оснований – щелочей:

K2O
+ H2O
= 2KOH.

Химические
свойства кислотных оксидов

1.
Общим свойством всех кислотных оксидов
является их способность взаимодействовать
с основаниями с образованием соли и
воды:

СО2
+ 2NaOH
= Na2CO3
+ Н2О.

2.
Кислотные оксиды взаимодействуют с
основными оксидами с образованием
солей.

3.
Большинство кислотных оксидов
взаимодействует с водой с образованием
кислот:

3
+ Н2О
= H2SO4.

Очень
немногие кислотные оксиды не взаимодействуют
с водой. Наиболее известный из них оксид
кремния (SiO2).

Химические
свойства амфотерных оксидов

1.
Амфотерные оксиды взаимодействуют с
кислотами с образованием солей и воды.

ZnO
+ 2HNO3
= Zn(NO3)2
+ 2Н2О.

В
этих реакциях амфотерные оксиды играют
роль основных.

2.
Амфотерные оксиды взаимодействуют с
щелочами с образованием солей и воды.

ZnO
+ 2КОН

K2ZnO2
+ Н2О,

ZnO
+ 2КОН + H2O

K2[Zn(OH)4].

В
этих реакциях амфотерные оксиды играют
роль кислотных.

3.
Амфотерные оксиды при нагревании
взаимодействуют с кислотными оксидами
с образованием солей:

ZnO
+ CO2
= ZnCO3.

4.
Амфотерные оксиды при нагревании
взаимодействуют с основными оксидами
с образованием солей:

ZnO
+ Na2O
= Na2ZnO2.

Получение
оксидов

Оксиды
могут быть получены различными способами:

1.
Взаимодействием простых веществ с
кислородом:

2Mg
+ О2
= 2MgO;

2.
Разложением некоторых оксокислот:

H2SO3
=
SO2
+ Н2О.

3.
Разложением нерастворимых оснований:

Сu(OH)2CuO
+
H2O.

4.
Разложением некоторых солей:

СаСО3

СаО + СО2.

Основания


сложные
вещества, при диссоциации которых в
воде образуются гидроксид-ионы и никаких
других анионов.

По
растворимости в воде основания делятся
на две группы: нерастворимые [Fe(OH)3,
Си(ОН)2
и др.] и растворимые в воде [КОН, NaOH,
Са(ОН)2,
Ва(ОН)2
], или щелочи.

Химические
свойства оснований

Общие
свойства оснований объясняются наличием
в растворах анионов ОН,
которые образуются в результате
электролитической диссоциации молекул
оснований:

NaOHNa+
+ OH.

1.
Водные растворы щелочей изменяют окраску
индикаторов.

Таблица
6 ‑ Изменение
цвета индикаторов в растворах

щелочей
и кислот

Индикатор

Цвет
индикатора

Цвет
индикатора в растворе щелочи (рН >
7)

Цвет
индикатора в растворе кислоты (рН <
7)

Лакмус

Фиолетовый

Синий

Красный

Фенолфталеин

Бесцветный

Малиновый

Бесцветный

Метилоранж

Оранжевый

Желтый

Красный

2.
Основания взаимодействуют с кислотами
с образованием соли и воды (реакция
нейтрализации). Например:

КОН
+ НС1= КС1 + Н2О;

Fe(OH)2
+2HNO3
= Fe(NO3)2
+ 2Н2О.

3.
Щелочи взаимодействуют с кислотными
оксидами с образованием соли и воды:

Са(ОН)2
+ СО2
= СаСО2
+ Н2О.

4.
Растворы щелочей взаимодействуют с
растворами солей, если в результате
образуется нерастворимое основание
или нерастворимая соль. Например:

2NaOH
+ CuSO4
= Cu(OH)2
+ Na2SO4;

Ва(ОН)2
+ Na2SO4
= 2NaOH
+ BaSO4↓.

5.
Нерастворимые основания при нагревании
разлагаются на основный оксид и воду.

2Fе(ОН)3


2О3
+ ЗН2О.

6.
Растворы щелочей взаимодействуют с
металлами, которые образуют амфотерные
оксиды и гидроксиды (Zn,

Al
и др.).

2AI
+ 2КОН + 6Н2О
= 2K[A1(OH)4]
+ 3H2↑.

Получение
оснований

  1. Получение
    растворимых
    оснований
    :

а)
взаимодействием щелочных и щелочноземельных
металлов с водой:

2Na
+ 2Н2О
= 2NaOH
+ Н2↑;

б)
взаимодействием оксидов щелочных и
щелочноземельных металлов с

водой:

Na2O
+ Н2О
= 2NaOH.

2.
Получение нерастворимых
оснований

действием щелочей на растворимые соли
металлов:

2NaOH
+
FeSO4
= Fe(OH)2
+ Na2SO4.

Кислоты
‑ сложные вещества, при диссоциации
которых в воде, образуются ионы водорода
(гидроксония) и никаких других катионов.

Химические
свойства

Общие
свойства кислот в водных растворах
обусловлены присутствием ионов Н+
(вернее H3O+),
которые образуются в результате
электролитической диссоциации молекул
кислот:

1.
Кислоты одинаково изменяют цвет
индикаторов (табл. 7).

2.
Кислоты взаимодействуют с основаниями.
Например:

Н3РО4
+ 3NaOH=Na3PO4+ЗН2О;

Н3РО4
+ 2NaOH
= Na2HPO4
+ 2Н2О;

Н3РО4
+ NaOH
= NaH2PO4
+ Н2О;

2НС1
+ Сu(ОН)2
= СuС12
+ 2Н2О;

НС1
+ Сu(ОН)2
= СuОНСl
+ Н2О.

3.
Кислоты взаимодействуют с основными
оксидам:

2НСl
+ СаО = СаС12
+ Н2О;

H2SO4
+Fe2O3=Fe2(SO4)3+
ЗН2О.

4.
Кислоты взаимодействуют с амфотерными
оксидами:

2HNO3
+ ZnO
= Zn(NO3)2
+ Н2О.

5.
Кислоты взаимодействуют с некоторыми
средними солями с образованием новой
соли и новой кислоты, реакции возможны
в том случае, если в результате образуется
нерастворимая соль или более слабая
(или более летучая) кислота, чем исходная.
Например:

2НС1+Na2CO3=2NaCl+H2CO3;

NaCl
+ H2SO4

= HCl + Na2SO4.

6.
Кислоты взаимодействуют с металлами.
Характер продуктов этих реакций зависит
от природы и концентрации кислоты и от
активности металла. Например, разбавленная
серная кислота, хлороводородная кислота
и другие кислоты‑неокислители
взаимодействуют с металлами, которые
находятся в электрохимическом ряду
напряжения левее водорода. В результате
реакции образуются соль и газообразный
водород:

H2SO4
(разб))

+ Zn
= ZnSO4
+ Н2↑;

НС1
+ Mg
= MgО
+ H2↑.

Кислоты-окислители
(концентрированная серная кислота,
азотная кислота HNO3
любой концентрации) взаимодействуют и
с металлами, стоящими в ряду напряжения
после водорода с образованием соли и
продукта восстановления кислоты.
Например:

2H2SO4
(
конц)
+ Zn = ZnSO4
+SO2↑+
2H2O;

Получение
кислот

1.
Бескислородные кислоты получают путем
синтеза из простых веществ и последующим
растворением продукта в воде.

S
+ Н2
= Н2S.

2.
Оксокислоты получают взаимодействием
кислотных оксидов с водой.

SO3
+ Н2О
= H24.

3.
Большинство кислот можно получить
взаимодействием солей с кислотами.

Na2SiО3
+ H2SO4
= H2SiО3
+ Na2SO4.

Амфотерные
гидроксиды

1.
В нейтральной среде (чистая вода)
амфотерные гидроксиды практически не
растворяются и не диссоциируют на
ионы.
Они растворяются в кислотах и щелочах.
Диссоциацию амфотерных гидроксидов в
кислой и щелочной средах можно выразить
следующими уравнениями:

Zn
+ OH


Zn(OH)
H+
+ ZnO

А13+
+ ЗОН


Al(OH)3


H+
+ AlO+
H2O

2.
Амфотерные гидроксиды взаимодействуют
как с кислотами, так и со щелочами,
образуя соль и воду.

Взаимодействие
амфотерных гидроксидов с кислотам:

Zn(OH)2
+ 2НCl
+ ZnCl2
+ 2Н2О;
Sn(OH)2+
H2SO4
= SnSO4
+ 2Н2О.

Взаимодействие
амфотерных гидроксидов со щелочами:

Zn(OH)2
+ 2NaOH

Na2ZnO2
+ 2H2O;

А1(ОН)3
+ NaOH


NаАlO2
+ 2Н2О;

Zn(OH)2
+ 2NaOH

Na2[Zn(OH)4];

Pb(OH)2
+ 2NaOH
Na2[Pb(OH)4].

Соли

продукты замещения атомов водорода в
молекуле кислоты на атомы металла или
замещения гидроксид-иона в молекуле
основания кислотными остатками.

Общие химические
свойства солей

1. Соли в водных
растворах диссоциируют на ионы:

а)
средние соли диссоциируют на катионы
металлов и анионы кислотных остатков:

NaCN
=Na++СN
;

Ва(СН3СОО)2
= Ва2+
+ 2(СН3СОО)
.

6)
кислые
соли диссоциируют на катионы металла
и сложные
анионы:

KHSО3
= К+
+ HSO32-;

NaH2PO4
=
Na+
+ Н2РО4.

в)
основные соли диссоциируют на сложные
катионы и анионы кислотных остатков:

АlОН(СН3СОО)2
=
АlОН2+
+ 2СН3СОО.

2.
Соли взаимодействуют с металлами с
образованием новой соли и нового металла.
Данный металл может вытеснять из
растворов солей только те металлы,
которые находятся правее его в
электрохимическом ряду напряжения:

CuSO4
+
Fe
= FeSO4
+ Сu.

3.
Растворимые соли взаимодействуют со
щелочами с образованием новой соли и
нового основания. Реакция возможна,
если образующееся основание или соль
выпадают в осадок. Например:

FeCl3+3КОН=Fe(OH)3↓+3КС1;

К2СО3+Ba(OH)2=ВаCO3↓+
2КОН.

4. Соли взаимодействуют
с кислотами с образованием новой более
слабой кислоты или новой нерастворимой
соли:

Na2CO3
+ 2HC1 = 2NaCl + CO2
+ H2O.

При
взаимодействии соли с кислотой, образующей
данную соль, получается кислая соль
(это возможно в том случае, если соль
образована многоосновной кислотой).
Например:

Na2S
+ H2S
= 2NaHS;
CaCO3
+ CO2+
H2O
= Ca(HCО3)2
.

5.
Соли могут взаимодействовать между
собой с образованием новых солей, если
одна из солей выпадает в осадок:

AgNO3
+ KC1
= AgCl↓
+ KNO3.

6. Многие соли
разлагаются при нагревании:

MgCО3


MgO
+
2↑;

2NaNO3


2NaNO2
+ O2↑.

7.
Основные соли взаимодействуют с кислотами
с образованием средних солей и воды:

Fe(OH)2NO3+HNO3=FeOH(NO3)2+H2O;
FeOH(NO3)2+HNO3=Fe(NO3)3
+ H2O.

8.
Кислые соли взаимодействуют с щелочами
с образованием средних солей и воды:

NaHSO4
+ NaOH
= Na2SO3
+ H2O;

КН2РО4
+ КОН = К2НРО4
+ Н2О.

Получение солей

Все
способы получения солей основаны на
химических свойствах важнейших классов
неорганических соединений. Десять
классических способов получения солей
представлены в табл. 8. Кроме общих
способов получения солей, возможны и
некоторые частные способы:

1.
Взаимодействие металлов, оксиды и
гидроксиды которых являются амфотерными,
с щелочами.

2. Сплавление солей
с некоторыми кислотными оксидами.

K2CO3
+ SiO2


K2SiO3
+ CO2↑.

3. Взаимодействие
щелочей с галогенами:

2КОН
+Сl2

KCl
+KClO
+ H2O;

4. Взаимодействие
галогенидов с галогенами:

2КВг
+ Cl2
= 2КС1 +Вг2

Таблица
8 ‑ Основные
способы получения солей

Неметалл

Кислотный
оксид

Кислота

Соль

Металл

Соль

Соль + …

Соль +металл

Основный
оксид

Соль

Соль
+
вода

Основание

Соль + вода

Соль + вода

Соль
+ основание

Соль

Соль
+ кислота

Соль + соль


CharChem
:

Система описания химических формул для WEB.

Химические формулы для «чайников»

Научно-популярная статья о химических формулах.
Обсуждаются структурные развёрнутые, упрощенные и скелетные формулы. А так же истинные и рациональные формулы.

Изначально сайт был задуман, как ресурс для профессиональных химиков.
Но в реальности из поисковых систем происходит очень много обращений от людей, только начинающих изучать химию.
Специально для них создан этот раздел, чтобы в доступной форме рассказать о том, как составляются химические формулы.

Содержание

Структурные формулы — это просто!

Я думаю, что знакомство с формулами лучше всего начать со структурных формул органических веществ.
Считается, что они сложны для понимания, поэтому в школе их изучают в выпускных классах.
Но я уверен, что через 10 минут вы разберетесь, как легко составлять структурные формулы.

Перед нами структурная формула метана — самого простого органического вещества.

H-C-H;H|#2|H

Что мы видим? В центре латинская буква C, а от неё четыре палочки, на концах которых четыре латинских буквы H.
C означает углерод, а H — водород. Это два самых важных элемента, которые входят в состав любых органических веществ.
А что означают палочки? Это химические связи. В них кроется практически весь секрет органической химии.
Фокус в том, что валентность углерода равна 4. Поэтому у каждой буквы C должно быть 4 палочки.
А валентность водорода равна 1, поэтому у него палочка должна быть только одна.
По-моему, палочки отлично демонстрируют такие «страшные» понятия, как химические связи и валентность.

Структурные формулы могут слегка менять свой внешний вид.
В них главное — количество элементов и наличие нужных связей.
Например, формула метана может иметь и такой вид:

H-C-H; H|#2|H =
$slope(45)H/C/H;H#CH$slope() = HC/H; H/#CH =
C<_(x-1.5,y1)H><_(x-.5,y1)H><_(x.5,y1)H>_(x1.5,y1)H

Все эти картинки означают одно и то же. И считаются одинаковыми формулами.

В общем, структурные формулы не являются какими-то жесткими конструкциями.
Если вдруг Вам захотелось бы сделать модель молекулы из подручных материалов,
то для этого лучше всего подошли бы шарики, соединённые пружинками или резинками.
Под шариками я конечно подразумеваю атомы, а резинки — химические связи.

Но в химии приняты не только структурные формулы. И здесь мы познакомимся с некоторыми из них.
Достаточно распространены так называемые истинные формулы.
Для метана истинная формула записывается так:

CH4

Палочки исчезли, а вместо четырёх букв H осталась одна, но с маленькой цифрой 4, которая указывает количество атомов.
Иногда такие формулы называют брутто-формулами.
Мне почему-то такое название нравится больше, поэтому я буду чаще пользоваться именно таким термином.

Обе формулы — структурная и истинная — означают одно и то же вещество.
Структурная конечно более понятна, но брутто-формула проще записывается.

Стоит упомянуть, что метан — это природный газ, который знаком всем, у кого есть газовая плита.
Но не будем на нём долго задерживаться. Пора посмотреть, какие ещё бывают варианты органических структур.

Углеводороды

Прежде, чем мы начнём знакомство с многочисленными органическими соединениями, хочу напомнить —
мы здесь изучаем химические формулы. А все упоминаемые вещества служат для иллюстрации.

Вещество Развёрнутая структурная формула Упрощенная структурная формула Брутто-формула
Этан H-C-C-H; H|#2|H; H|#3|H CH3-CH3
Пропан H-C-C-C-H; H|#2|H; H|#3|H; H|#4|H CH3-CH2-CH3
Бутан H-C-C-C-C-H; H|#2|H; H|#3|H; H|#4|H; H|#5|H CH3-CH2-CH2-CH3
Пентан H-C-C-C-C-C-H;H|#2|H;H|#3|H;H|#4|H;H|#5|H;H|#6|H CH3-CH2-CH2-CH2-CH3
Гексан H-C-C-C-C-C-C-H;H|#2|H;H|#3|H;H|#4|H;H|#5|H;H|#6|H;H|#7|H

CH3-CH2-CH2-CH2-CH2-CH3

или то же самое, но короче:

CH3-(CH2)4-CH3

C6H14

Здесь представлены органические вещества, называемые углеводородами.
Название означает, что они состоят только из углерода и водорода.
Эти вещества в различной мере входят в состав нефти. И это далеко не полный список.
Но сначала смотрим ту колонку, которая называется Развёрнутая структурная формула.
Мы видим уже знакомые буквы C и H, соединённые химическими связями — палочками.
Главное правило по-прежнему в силе: у каждой буквы C четыре палочки, а у каждой H — одна.
Что здесь нового? Появились химические связи между атомами углерода.
И в результате оказалось, что молекулы органических веществ могут строиться при помощи таких цепочек,
где звеньями являются атомы углерода с прилипшими к ними водородами.

Теперь посмотрим на колонку, где представлены упрощённые структурные формулы.
Несложно догадаться, что они призваны экономить время людей, которые постоянно пишут формулы.
Особенно, если эти формулы достаточно большие.
Правила здесь довольно простые — убираем палочки между углеродом и водородом и пишем число атомов водорода в виде числа.
Таким образом, звенья цепочки становятся видны гораздо более отчётливо. По-научному они называются функциональные группы.
Можно даже довольно быстро понять некоторые более хитрые закономерности.
Например, группа на конце цепочки записывается CH3,
а в середине цепочки — CH2.
А для ещё большей экономии повторяющиеся группы можно объединить в скобочках, подписав количество повторов.
Это показано в последней строке таблицы для формулы гексана: CH3-(CH2)4-CH3.

Некоторые функциональные группы получают собственные названия и даже специальные обозначения.
Например, группа CH3 называется метильная группа (от названия метана)
и имеет собственное обозначение: Me. Если Вам попадётся, к примеру, такая формула: {Me}-CH2-{Me},
то ничего страшного тут нет. Это то же самое, что CH3-CH2-CH3, то есть — пропан.

Двойные и тройные связи

Итак, за короткое время мы уже разобрались, что такое структурные формулы и выяснили, что они бывают развёрнутые и упрощённые.
Но пока что мы познакомились только с одинарными химическими связями.
Но на самом деле существуют двойные и даже тройные связи. Посмотрим на следующую таблицу.

Вещество Развёрнутая формула Упрощённая формула Брутто-фломула
Этен
(Этилен)
$slope(55)HC<`/H>_(x1,N2)C<H>/H CH2=CH2
Пропен
(Пропилен)
$slope(45)HC-C/C/H; H#-3H;H/#2-#3H CH2=CH-CH3
Бутен
(Бутилен)
HC<`/H>=C<|H>-C<`|H><|H>-C-H; H|#-3|H CH2=CH-CH2-CH3
Этин
(Ацетилен)
H-C%C-H CH%CH
Пропин
(Метилацетилен)
H-C%C-C-H; H|#-3|H CH%C-CH3
Бутин
(Этилацетилен)
H-C%C-C<`|H><|H>-C-H; H|#-3|H CH%C-CH2-CH3

Представленные здесь вещества тоже относятся к углеводородам.
Если хорошенько присмотреться, то можно увидеть определённое сходство с веществами из первой таблицы.
Названия формируются заменой буквы в конце названия: этан — этен — этин или
пропан — пропен — пропин. Сходство не ограничивается названиями.
Главное — одинаковое количество атомов углерода. А значит — одинаковое количество звеньев в цепи.
Различие кроется в наличии двойных и тройных связей.
Углеводороды в первой таблице называются предельными.
Это означает, что к ним больше ничего нельзя добавить.
А во второй таблице представлены непредельные углеводороды.
То есть, при определённых условиях к ним можно добавить по парочке атомов водорода.

Кроме того, появились дополнительные названия. Тут тоже нет ничего страшного.
Верхние названия, которые без скобок — это научные названия.
А в скобках даны традиционные названия, которые тоже довольно часто употребляются как в научной литературе, так и в быту.

Циклические углеводороды

Продолжим знакомство с формулами углеводородов. Они ещё не раскрыли нам всех своих секретов.
Оказывается, что цепочки могут быть замкнутыми. То есть, атомы углерода соединяются друг с другом циклически.

Вещество Развёрнутая формула Упрощённая формула Брутто-формула
Циклопропан $slope(60)H`/C`/C:a`/H; H#CC:bH; H-#a-#b-H H2C_(x1.4)CH2_q3CH2_q3
Циклобутан H|C|C|H; H|C|C|H; H-#2-#6-H; H-#3-#7-H H2C-CH2`|CH2`-H2C_#1
Циклопентан C_(x1.1)C@:H2()<_(a24)H><_(a84)H>@()_qC@H2()_qC@H2()_qC@H2()_q@H2() H2C_(x1.4)CH2_qCH2_qCH2_qH2C_q
Циклогексан CC@:H2()<_(a-30)H><_(a-90)H>@()|C@H2()`/C@H2()`C@H2()`|C@H2()/@H2() $L(1.3)CH2CH2|CH2`/CH2`H2C`|H2C/

Изомеры

До сих пор мы не особенно обращали внимания на последнюю колонку, где выведены брутто-формулы.
Но может возникнуть вполне законный вопрос: зачем вообще нужны структурные формулы?
Ведь брутто-формулы гораздо проще записывать. Может быть, достаточно было бы пользоваться только ими?
Но оказывается, что без структурных формул обойтись не получится.
Например, если сравнить брутто-формулы из двух предыдущих таблиц, то мы увидим,
что циклопропан имеет абсолютно тот же состав, что и пропен (C3H6).
А брутто-формула циклобутана совпадает с бутеном (C4H8).
Но это разные вещества! И разница заключается в структуре.
То есть, имеет большое значение, в каком порядке элементы соединены друг с другом.
А значит, именно структурные формулы позволяют точно описать нужное вещество.

В химии существует такое понятие как изомеры.
Так называют разные вещества, которые имеют одинаковый состав. Это не редкость.
И в этом нет ничего странного. Ведь бывают же совершенно разные слова, состоящие из одинаковых букв.

Классическими изомерами среди углеводородов можно назвать бутан и изобутан. Посмотрим на их формулы:

Вещество Развёрнутая структурная формула Упрощенная структурная формула Брутто-формула
Бутан H-C-C-C-C-H; H|#2|H; H|#3|H; H|#4|H; H|#5|H CH3-CH2-CH2-CH3
Метилпропан
(Изобутан)
HCC/C/H; H|#2`/H; H|#4H; H|#3|C|H; H/#-3H CH3-CH<|CH3>-CH3

Изобутан является изомером бутана. Обратите внимание, что брутто-формулы одинаковы.
Но хотя они близки по свойствам, это разные вещества.

Как видно, разнообразие углеводородов не перестаёт удивлять.
Оказывается, они могут состоять не только из линейных цепочек, но могут образовывать разветвлённые структуры.
И чем длиннее исходная цепочка, тем больше вариантов.
Если у бутана возможны только два изомера, то у пентана их уже три:

Вещество Упрощённая формула Брутто-формула
Пентан CH3-CH2-CH2-CH2-CH3
2-метилбутан
(Изопентан)
CH3-CH<`|CH3>-CH2-CH3
2,2-диметилпропан
(Неопентан)
CH3-C<`|CH3><|CH3>-CH3

А у вещества декан, имеющего формулу C10H22, существует 75 изомеров.
Но мы не будем их здесь рассматривать.

Обратите внимание, что научное название зависит от числа звеньев в прямой цепочке,
а традиционное название просто учитывает количество атомов углерода в молекуле.
Так получилось из-за того, что химики, которые только начинали исследовать углеводороды,
первым делом научились определять состав веществ.
То есть, сначала люди смогли получить лишь брутто-формулы.
А из них невозможно понять, какова длина самой длинной цепочки. Поэтому названия учитывали общее число атомов углерода.
Затем наука дошла до того, что люди смогли исследовать структуру молекул, придумали структурные формулы
и переименовали уже известные вещества в соответствии с новыми знаниями.
Но старые названия уже успели прижиться и существуют до сих пор.

Бензол и скелетные формулы

Думаю, что пора познакомиться ещё с одним весьма примечательным представителем углеводородов.
Это вещество называется бензол. Вот его формулы:

Развёрнутая формула Упрощённая формула Скелетная формула Брутто-формула
H|CC|C<H>`//C<|H>`C<`/H>`||C<`H>//H H_(y.5)C\CH|CH`//C<_(y.5)H>`HC`||HC/ \|`//«||/

Чем же этот бензол так примечателен? Дело в том, что это шестиугольное колечко входит в состав огромного
числа органических веществ.
И вот на примере бензола предлагаю ознакомиться с ещё одним очень важным способом записи структурных формул — скелетными формулами.
Как видно из таблицы, скелетная формула бензола представляет собой правильный шестиугольник без каких-либо букв,
зато изображения химических связей выглядят одинаково.
В общем, правила составления скелетных формул отличаются от уже знакомых нам развёрнутых всего двумя особенностями:

  • Буквы C не пишутся. Предполагается, что каждый угол изображаемой геометрической фигуры содержит атом углерода.
  • Буквы H тоже не пишутся. Если в углу сходятся меньше четырёх линий, то это означает, что все оставшиеся заняты водородом.

Конечно, скелетные формулы не так просты, как развёрнутые, но зато их гораздо легче записывать.
Поэтому в органической химии это самый популярный вид формул. И мне кажется, Вам тоже будет несложно к ним привыкнуть.

Давайте посмотрим, как выглядят формулы других веществ, производных от бензола.

Вещество Развёрнутая формула Скелетная формула Смешанный вариант Брутто-формула
Нафталин C/C<`|H>\C</H>|C<H>`//C<|H>`C`|`\C<`|H>`/C<`H>||C<`/H>C/`/|H /\|`//«|`\`/||// C10H8
Толуол H|C|CC|C<H>`//C<|H>`C<`/H>`||C<`H>//H; H-#2-H |\|`//«||/ CH3|\|`//«||/
Кумол HCC/C/H; H|#2|H; H|#4|H; H|#3|CC|C<H>`//C<|H>`C<`/H>`||C<`H>//H </>|\|`//«||/ H3C</CH3>|\|`//«||/

Как видите, появился ещё и смешанный вариант. Опять какой-то новый вид формул? На этот раз уже нет.
Просто иногда внутри одной формулы удобно сочетать различные способы.

А вот скелетная формула углеводорода, который называется коронен. Причём, другие варианты здесь уже использовать нет смысла.

|/`/|«/|`|«|/`/«||/\/\|||`/|`//«/`\`|/`/«||/

Впечатляет? Но это далеко не самая сложная структура для органического вещества.
Так что теперь Вы понимаете, почему скелетные формулы так популярны….

Скелетные формулы существуют не только для циклических молекул.
Понятно, что метан и этан имеют слишком мало узлов, поэтому для них не стоит пытаться использовать скелетные формулы.
А вот какая-нибудь длинная молекула изображается довольно легко.
Только не в виде прямой цепочки, а при помощи ломаной линии, ведь атомы углерода изображаются углами.

Бутан Бутен Изобутан Гексан
// /// |`|0/ ///

Трехмерные изображения

Иногда плоского изображения становится недостаточно.
Поэтому для изображения трехмерных структурных формул используют особое изображение для химических связей:

{A}<`wB><|wB>/wB Такая химическая связь означает, что А находится в плоскости листа, а В расположено ближе к наблюдателю.
{A}<`dB><|dB>/dB а здесь В расположено от наблюдателя дальше, чем плоскость листа. То есть, А ближе, чем В

В качестве примера посмотрим на формулы уже известных нам углеводородов:

Метан Пропан Циклопропан Циклопентан
H|C<`/H><_(A65,w+)H>_(A20,d+)H $slope(45)H|C<_(A170,d+)H><`/wH>C<`/wH><dH>/C<wH><_(A10,d+)H>`|H C_(x1.3)C_q3C_q3; H_(A-20,w-)#1_(A110,d+)H; H_(A-160,w-)#2_(A80,d+)H; H_(A65,w-)#3_(A-65,d+)H _(x1,y.5,W+)_(x1.5)_(x.5,y-1.5,W-)_(x-1.3,y1.1)_#1; $slope(60)H#1`/H; H#2`/H; H_(A140)#3H; H|#4-H; H#5_(y1.2)H

Конечно, здесь потребуется включать воображение, чтобы представить трёхмерную структуру.
Но зато теперь Вы не растеряетесь, увидев подобную запись.

Формулы с окружностью

Думаю, что стоит упомянуть ещё одну интересную конструкцию, которая нередко встречается при изображении циклических структур.
Вот перед Вами несколько скелетных формул уже известного нам бензола:

/\|`//«|| <-> /=`//`-`\ <-> //||`/`\`| <-> /|`/«|_o <-> H|</H>|<H>`/<|H>`<`/H>`|<`H>/_o

Само собой, все они означают одно и то же. Но первые три отличаются только поворотом вокруг собственного центра.
Тут нет ничего необычного, ведь молекулы не стоят на одном месте.
А вот дальше мы видим кружок вместо трёх двойных связей.
Причём, я намеренно изобразил все атомы водорода в последней формуле.
Чтобы было хорошо видно, что каждый угол фактически лишился одной чёрточки. Их заменил кружок.
Он как бы означает, что все двойные связи равномерно распределены внутри кольца.

Формулы бензола, где используется чередование одинарных и двойных связей называются формулами Кекуле в честь немецкого учёного,
который внёс значительный вклад в исследование структуры бензола.

На самом деле, среди химиков нет единого мнения по поводу того, насколько правильно использование формул с кружком.
Некоторые авторы категорически против. Но есть масса публикаций, где такая запись широко употребляется.
Моя задача состоит в том, чтобы Вы узнали о существовании подобных формул и не удивлялись, увидев их.

Вот пара примеров записи уже для уже знакомых нам веществ:

Нафталин: /|`/«|_o«/|/_o Толуол: `/`-`/-_o-CH3

Знакомство с кислородом. Спирты

До сих пор мы знакомились со структурными формулами углеводородов, которые состоят только из углерода и водорода.
Думаю, пора познакомиться с новым элементом — кислородом. Он обозначается латинской буквой O.
Его валентнсть равна 2. То есть, каждая буква O в структурных формулах должна снабжаться двумя палочками.

Кислород — очень распространённый элемент на нашей планете.
Он входит в состав большого количества органических и неорганических веществ.
Но мы начнём знакомство с группы веществ, называемых спиртами:

Вещество Развёрнутая структурная формула Упрощенная структурная формула Скелетная формула Брутто-формула
Метанол
(метиловый спирт)
H-C-O-H; H|#C|H CH3-OH OH
Этанол
(этиловый спирт)
H-C-C-O-H; H|#2|H; H|#3|H CH3-CH2-OH /OH
1-Пропанол
(пропиловый спирт)
H-C-C-C-O-H; H|#2|H; H|#3|H; H|#4|H CH3-CH2-CH2-OH //OH
2-Пропанол
(изопропиловый спирт)
H-C-C-C-H; H|#2|H; H|#3|O|H; H|#4|H CH3-CH<|OH>-CH3 <|OH>/

Не правда ли, что в этом есть что-то знакомое? Метан — метанол, этан — этанол, пропан — пропанол.
Да, можно сказать, что спирт получается из углеводорода, если заменить один атом -H на группу -O-H
(или -OH в упрощенных структурных формулах).
Химики называют её: гидроксильная группа, по латинским названиям водорода и кислорода.
А иногда она даже называется спиртовой группой.

Все спирты можно описать в виде обобщённой формулы {R}-OH,
где OH — гидроксильная группа, а R — остальная часть молекулы органического вещества.

Конечно же стоит упомянуть, что этанол — это тот самый спирт, который входит в состав алкогольных напитков.
Другие представленные здесь спирты по запаху, цвету и даже вкусу довольно похожи на этиловый спирт.
Но они очень вредны для здоровья человка. Например, один глоток метанола может оставить человека слепым на всю жизнь.
А если выпить больше, то это можеть оказаться фатальным для жизни.

Ещё здесь из четырёх спиртов есть два изомера: 1-пропанол и 2-пропанол.
У них одинаковые брутто-формулы, хотя вещества это разные.
Их молекулы отличаются номером углеродного атома, к которому крепится группа OH.
Возможно, Вы спросите, почему у 1-пропанола гидроксильная группа присоединена к третьему, а не к первому атому углерода?
Тут следует вспомнить, что молекулы не находятся в одном положении. Они постоянно крутятся. И вполне могут развернуться как угодно:

CH3-CH2-CH2-OH = $slope(45)CH3CH2CH2OH = CH3|CH2|CH2|OH = HO/CH2/CH2/CH3 =
HO-CH2-CH2-CH3; @:Cx(n,t)#&n_(y.7,N0)$itemColor1(gray)»&t»@(2,1); @Cx(3,2); @Cx(4,3)

Поэтому первый номер — тот, который ближе к гидроксильной группе.

Все спирты, с которыми мы уже успели познакомиться, имеют в своём составе одну гидроксильную группу.
Химики называют их одноатомные спирты. Но существуют вещества с различным количеством гидроксильных групп.
Они соответственно называются двухатомные спирты, трёхатомные спирты и так далее…
В качестве примера трёхатомного спирта можно привести достаточно известное вещество — глицерин:

Развёрнутая формула Упрощённая формула Скелетная формула Брутто-формула
H-C-C-C-H; $slope(45)H`/O|#2|H; H`/O|#3|H; H`/O|#4|H OH|CH2-CH<`|OH>-CH2`|OH HO/<`|OH>/OH

Ну и чтобы завершить знакомство со спиртами, приведу ещё формулу другого известного вещества — холестерина.
Далеко не все знают, что он является одноатомным спиртом!

|`/`\`|<`|w>«/|<`/w$color(red)HO$color()>/`|0/`|/<`|w>|_q_q_q<-dH>:a_q|0<|dH>`/<`|wH>`|dH;
#a_(A-72)<_(A-120,d+)>-/-/<->`

Гидроксильную группу в нём я обозначил красным цветом.

Карбоновые кислоты

Любой винодел знает, что вино должно храниться без доступа воздуха. Иначе оно скиснет.
Но химики знают причину — если к спирту присоединить ещё один атом кислорода, то получится кислота.

Посмотрим на формулы кислот, которые получаются из уже знакомых нам спиртов:

Вещество Развёрнутая структурная формула Упрощенная структурная формула Скелетная формула Брутто-формула
Метановая кислота
(муравьиная кислота)
H/C`|O|OH HCOOH O//OH
Этановая кислота
(уксусная кислота)
H-C-C<//O>O-H; H|#C|H CH3-COOH /`|O|OH
Пропановая кислота
(метилуксусная кислота)
H-C-C-C<//O>O-H; H|#2|H; H|#3|H CH3-CH2-COOH /`|O|OH
Бутановая кислота
(масляная кислота)
H-C-C-C-C<//O>O-H; H|#2|H; H|#3|H; H|#4|H CH3-CH2-CH2-COOH //`|O|OH
Обобщённая формула {R}-C<//O>O-H {R}-COOH или {R}-CO2H {R}/`|O|OH

Отличительной особенностью органических кислот является наличие карбоксильной группы (COOH),
которая и придаёт таким веществам кислотные свойства.

Все, кто пробовал уксус, знают что он весьма кислый. Причиной этого является наличие в нём уксусной кислоты.
Обычно столовый уксус содержит от 3 до 15% уксусной кислоты, а остальное (по большей части) — вода.
Употребление в пищу уксусной кислоты в неразбавленном виде представляет опасность для жизни.

Карбоновые кислоты могут иметь несколько карбоксильных групп.
В этом случае они называются: двухосновная, трёхосновная и т.д…

В пищевых продуктах содержится немало других органических кислот. Вот только некоторые из них:

Щавелевая кислота Молочная кислота Яблочная кислота Лимонная кислота
HOOC-COOH H3C<|OH>/COOH HOOC/<`|OH>COOH HOOC/<`|COOH><|OH>/COOH
двухосновная карбоновая кислота оксикарбоновая кислота Двухосновная оксикарбоновая кислота Трёхосновная оксикарбоновая кислота

Название этих кислот соответствует тем пищевым продуктам, в которых они содержатся.
Кстати, обратите внимание, что здесь встречаются кислоты, имеющие и гидроксильную группу, характерную для спиртов.
Такие вещества называются оксикарбоновыми кислотами (или оксикислотами).
Внизу под каждой из кислот подписано, уточняющее название той группы органических веществ, к которой она относится.

Радикалы

Радикалы — это ещё одно понятие, которое оказало влияние на химические формулы.
Само слово наверняка всем известно, но в химии радикалы не имеют ничего общего с политиками, бунтовщиками и прочими гражданами с активной позицией.
Здесь это всего лишь фрагменты молекул. И сейчас мы разберёмся, в чём их особенность и познакомимся с новым способом записи химических формул.

Выше по тексту уже несколько раз упоминались обобщённые формулы: спирты — {R}-OH и
карбоновые кислоты — {R}-COOH. Напомню, что -OH и -COOH — это функциональные группы.
А вот R — это и есть радикал. Не зря он изображается в виде буквы R.

Если выражаться более определённо, то одновалентным радикалом называется часть молекулы, лишённая одного атома водорода.
Ну а если отнять два атома водорода, то получится двухвалентный радикал.

Радикалы в химии получили собственные названия.
Некоторые из них получили даже латинские обозначения, похожие на обозначения элементов.
И кроме того, иногда в формулах радикалы могут быть указаны в сокращённом виде, больше напоминающем брутто-формулы.
Всё это демонстрируется в следующей таблице.

Название Структурная формула Обозначение Краткая формула Пример спирта
Метил CH3-{} Me CH3 {Me}-OH CH3OH
Этил CH3-CH2-{} Et C2H5 {Et}-OH C2H5OH
Пропил CH3-CH2-CH2-{} Pr C3H7 {Pr}-OH C3H7OH
Изопропил H3CCH(*`/H3C*)-{} i-Pr C3H7 {i-Pr}-OH (CH3)2CHOH
Фенил `/`=`//-\-{} Ph C6H5 {Ph}-OH C6H5OH

Думаю, что здесь всё понятно. Хочу только обратить внимание на колонку, где приводятся примеры спиртов.
Некоторые радикалы записываются в виде, напоминающем брутто-формулу, но функциональная группа записывается отдельно.
Например, CH3-CH2-OH превращается в C2H5OH.
А для разветвлённых цепочек вроде изопропила применяются конструкции со скобочками.

Существует ещё такое явление, как свободные радикалы.
Это радикалы, которые по каким-то причинам отделились от функциональных групп.
При этом нарушается одно из тех правил, с которых мы начали изучение формул:
число химических связей уже не соответствует валентности одного из атомов.
Ну или можно сказать, что одна из связей становится незакрытой с одного конца.
Обычно свободные радикалы живут короткое время, ведь молекулы стремятся вернуться в стабильное состояние.

Знакомство с азотом. Амины

Предлагаю познакомиться с ещё одним элементом, который входит в состав многих органических соединений. Это азот.
Он обозначается латинской буквой N и имеет валентность, равную трём.

Посмотрим, какие вещества получаются, если к знакомым нам углеводородам присоединить азот:

Вещество Развёрнутая структурная формула Упрощенная структурная формула Скелетная формула Брутто-формула
Аминометан
(метиламин)
H-C-N</H>H;H|#C|H CH3-NH2 NH2
Аминоэтан
(этиламин)
H-C-C-N</H>H;H|#C|H;H|#3|H CH3-CH2-NH2 /NH2
Диметиламин H-C-N<`|H>-C-H; H|#-3|H; H|#2|H $L(1.3)H/N<_(A80,w+)CH3>dCH3 /N<_(y-.5)H>
Аминобензол
(Анилин)
HN</H>|C\C</H>|C<H>`//C<|H>`C<`/H>`||C<`H>/ NH2|C\CH|CH`//C<_(y.5)H>`HC`||HC/ NH2||`/«|/_o
Триэтиламин $slope(45)H-C-C/NC-C-H;H|#2|H; H|#3|H; H|#5|H;H|#6|H; #N`|C<`-H><-H>`|C<`-H><-H>`|H CH3-CH2-N<`|CH2-CH3>-CH2-CH3 /N<`|/>|

Как Вы уже наверное догадались из названий, все эти вещества объединяются под общим названием амины.
Функциональная группа {}-NH2 называется аминогруппой.
Вот несколько обобщающих формул аминов:

По числу замещённых атомов водорода По числу аминогрупп в молекуле
Первичный амин {R}-NH2 Моноамин {R}-NH2
Вторичный амин {R1}-NH-{R2} Диамин H2N-{R}-NH2
Третичный амин {R1}-N<`|{R3}>-{R2} Триамин H2N-{R}(*`|NH2*)-NH2

В общем, никаких особых новшеств здесь нет.
Если эти формулы Вам понятны, то можете смело заниматься дальнейшим изучением органической химии,
используя какой-нибудь учебник или интернет.
Но мне бы хотелось ещё рассказать о формулах в неорганической химии.
Вы убедитесь, как их легко будет понять после изучения строения органических молекул.

Рациональные формулы

Не следует делать вывод о том, что неорганическая химия проще, чем органическая.
Конечно, неорганические молекулы обычно выглядят гораздо проще, потому что они не склонны к образованию таких сложных структур, как углеводороды.
Но зато приходится изучать более сотни элементов, входящих в состав таблицы Менделеева.
А элементы эти имеют склонность объединяться по химическим свойствам, но с многочисленными исключениями.

Так вот, ничего этого я рассказывать не буду. Тема моей статьи — химические формулы.
А с ними как раз всё относительно просто.
Наиболее часто в неорганической химии употребляются рациональные формулы.
И мы сейчас разберёмся, чем же они отличаются от уже знакомых нам.

Для начала, познакомимся с ещё одним элементом — кальцием. Это тоже весьма распространённый элемент.
Обозначается он Ca и имеет валентность, равную двум.
Посмотрим, какие соединения он образует с известными нам углеродом, кислородом и водородом.

Вещество Структурная формула Рациональная формула Брутто-формула
Оксид кальция Ca=O CaO
Гидроксид кальция H-O-Ca-O-H Ca(OH)2
Карбонат кальция $slope(45)Ca`/OC|O`|/O`#1 CaCO3
Гидрокарбонат кальция HO/`|O|O/CaO/`|O|OH Ca(HCO3)2
Угольная кислота H|OC|O`|/O`|H H2CO3

При первом взгляде можно заметить, что рациональная формула является чем то средним между структурной и брутто-формулой.
Но пока что не очень понятно, как они получаются.
Чтобы понять смысл этих формул, нужно рассмотреть химические реакции, в которых участвуют вещества.

Кальций в чистом виде — это мягкий белый металл. В природе он не встречается.
Но его вполне возможно купить в магазине химреактивов. Он обычно хранится в специальных баночках без доступа воздуха.
Потому что на воздухе он вступает в реакцию с кислородом. Собственно, поэтому он и не встречается в природе.
Итак, реакция кальция с кислородом:

2Ca + O2 -> 2CaO

Цифра 2 перед формулой вещества означает, что в реакции участвуют 2 молекулы.
Из кальция и кислорода получается оксид кальция.
Это вещество тоже не встречается в природе потому что он вступает в реакцию с водой:

CaO + H2O -> Ca(OH2)

Получается гидроксид кальция. Если присмотреться к его структурной формуле (в предыдущей таблице), то видно,
что она образована одним атомом кальция и двумя гидроксильными группами, с которыми мы уже знакомы.
Таковы законы химии: если гидроксильная группа присоединяется к органическому веществу, получается спирт,
а если к металлу — то гидроксид.

Но и гидроксид кальция не встречается в природе из-за наличия в воздухе углекислого газа.
Думаю, что все слыхали про этот газ. Он образуется при дыхании людей и животных, сгорании угля и нефтепродуктов,
при пожарах и извержениях вулканов.
Поэтому он всегда присутствует в воздухе. Но ещё он довольно хорошо растворяется в воде, образуя угольную кислоту:

CO2 + H2O <=> H2CO3

Знак <=> говорит о том, что реакция может проходить в обе стороны при одинаковых условиях.

Таким образом, гидроксид кальция, растворённый в воде, вступает в реакцию с угольной кислотой
и превращается в малорастворимый карбонат кальция:

Ca(OH)2 + H2CO3 -> CaCO3″|v» + 2H2O

Стрелка вниз означает, что в результате реакции вещество выпадает в осадок.
При дальнейшем контакте карбоната кальция с углекислым газом в присутствии воды происходит обратимая
реакция образования кислой соли — гидрокарбоната кальция, который хорошо растворим в воде

CaCO3 + CO2 + H2O <=> Ca(HCO3)2

Этот процесс влияет на жесткость воды.
При повышении температуры гидрокарбонат обратно превращается в карбонат.
Поэтому в регионах с жесткой водой в чайниках образуется накипь.

Из карбоната кальция в значительной степени состоят мел, известняк, мрамор, туф и многие другие минералы.
Так же он входит в состав кораллов, раковин моллюсков, костей животных и т.д…
Но если карбонат кальция раскалить на очень сильном огне, то он превратится в оксид кальция и углекислый газ.

Этот небольшой рассказ о круговороте кальция в природе должен пояснить, для чего нужны рациональные формулы.
Так вот, рациональные формулы записываются так, чтобы были видны функциональные группы. В нашем случае это:

OH Гидроксильная группа
CO3 Карбонат — соль угольной кислоты
HCO3 Гидрокарбонат — кислая соль угольной кислоты

Кроме того, отдельные элементы — Ca, H, O(в оксидах) — тоже являются самостоятельными группами.

Ионы

Думаю, что пора знакомиться с ионами. Это слово наверняка всем знакомо.
А после изучения функциональных групп, нам ничего не стоит разобраться, что же представляют собой эти ионы.

В общем, природа химических связей обычно заключается в том, что одни элементы отдают электроны, а другие их получают.
Электроны — это частицы с отрицательным зарядом. Элемент с полным набором электронов имеет нулевой заряд.
Если он отдал электрон, то его заряд становится положительным, а если принял — то отрицатеньным.
Например, водород имеет всего один электрон, который он достаточно легко отдаёт, превращаясь в положительный ион.
Для этого существует специальная запись в химических формулах:

H2O <=> H^+ + OH^-

Здесь мы видим, что в результате электролитической диссоциации вода распадается на положительно заряженный
ион водорода и отрицательно заряженную группу OH.
Ион OH^- называется гидроксид-ион.
Не следует его путать с гидроксильной группой, которая является не ионом, а частью какой-то молекулы.
Знак + или — в верхнем правом углу демонстрирует заряд иона.
А вот угольная кислота никогда не существует в виде самостоятельного вещества.
Фактически, она является смесью ионов водорода и карбонат-ионов (или гидрокарбонат-ионов):

H2CO3 = H^+ + HCO3^- <=> 2H^+ + CO3^2-

Карбонат-ион имеет заряд 2-. Это означает, что к нему присоединились два электрона.

Отрицательно заряженные ионы называются анионы. Обычно к ним относятся кислотные остатки.
Положительно заряженные ионы — катионы. Чаще всего это водород и металлы.

И вот здесь наверное можно полностью понять смысл рациональных формул. В них сначала записывается катион, а за ним — анион.
Даже если формула не содержит никаких зарядов.

Вы наверное уже догадываетесь, что ионы можно описывать не только рациональными формулами.
Вот скелетная формула гидрокарбонат-аниона:

O^-|O`|/OH

Здесь заряд указан непосредственно возле атома кислорода, который получил лишний электрон, и поэтому лишился одной чёрточки.
Проще говоря, каждый лишний электрон уменьшает количество химических связей, изображаемых в структурной формуле.
С другой стороны, если у какого-то узла структурной формулы стоит знак +, то у него появляется дополнительная палочка.
Как всегда, подобный факт нужно продемонстрировать на примере.
Но среди знакомых нам веществ не встречается ни одного катиона, который состоял бы из нескольких атомов.
А таким веществом является аммиак. Его водный раствор часто называется нашатырный спирт и входит в состав любой аптечки.
Аммиак является соединением водорода и азота и имеет рациональную формулу NH3.
Рассмотрим химическую реакцию, которая происходит при растворении аммиака в воде:

NH3 + H2O <=> NH4^+ + OH^-

То же самое, но с использованием структурных формул:

H|N<`/H>H + H-O-H <=> H|N^+<_(A75,w+)H><_(A15,d+)H>`/H + O`^-# -H

В правой части мы видим два иона.
Они образовались в результате того, что один атом водорода переместился из молекулы воды в молекулу аммиака.
Но этот атом переместился без своего электрона. Анион нам уже знаком — это гидроксид-ион.
А катион называется аммоний. Он проявляет свойства, схожие с металлами.
Например, он может объединиться с кислотным остатком.
Вещество, образованное соединением аммония с карбонат-анионом называется карбонат аммония:
(NH4)2CO3.
Вот уравнение реакции взаимодействия аммония с карбонат-анионом, записанное в виде структурных формул:

2H|N^+<`/H><_(A75,w+)H>_(A15,d+)H + O^-C|O`|/O^- <=>
H|N^+<`/H><_(A75,w+)H>_(A15,d+)H`|0O^-C|O`|/O^-|0H_(A-15,d-)N^+<_(A105,w+)H><H>`|H

Но в таком виде уравнение реакции дано в демонстрационных целях.
Обычно уравнения используют рациональные формулы:

2NH4^+ + CO3^2- <=> (NH4)2CO3

Система Хилла

Итак, можно считать, что мы уже изучили структурные и рациональные формулы.
Но есть ещё один вопрос, который стоит рассмотреть подробнее.
Чем же всё-таки отличаются брутто-формулы от рациональных?
Мы знаем почему рациональная формула угольной кислоты записывается H2CO3, а не как-то иначе.
(Сначала идут два катиона водорода, а за ними карбонат-анион).
Но почему брутто-формула записывается CH2O3 ?

В принципе, рациональная формула угольной кислоты вполне может считаться истинной формулой,
ведь в ней нет повторяющихся элементов. В отличие от NH4OH или
Ca(OH)2.
Но к брутто-формулам очень часто применяется дополнительное правило, определяющее порядок следования элементов.
Правило довольно простое: сначала ставится углерод, затем водород, а дальше остальные элементы в алфавитном порядке.
Вот и выходит CH2O3 — углерод, водород, кислород.
Это называется системой Хилла. Она используется практически во всех химических справочниках. И в этой статье тоже.

Вместо заключения мне хотелось бы рассказать о системе CharChem.
Она разработана для того, чтобы все те формулы, которые мы тут обсуждали,
можно было легко вставить в текст.
Собственно, все формулы в этой статье нарисованы при помощи CharChem.

Зачем вообще нужна какая-то система для вывода формул?
Всё дело в том, что стандартный способ отображения информации в интернет-браузерах — это язык гипертекстовой разметки (HTML).
Он ориентирован на обработку текстовой информации.

Рациональные и брутто-формулы вполне можно изобразить при помощи текста.
Даже некоторые упрощённые структурные формулы тоже могут быть записаны текстом,
например спирт CH3-CH2-OH.
Хотя для этого пришлось бы в HTML использовать такую запись:
CH<sub>3</sub>-CH<sub>2</sub>-OH.
Это конечно создаёт некоторые трудности, но с ними можно смириться. Но как изобразить структурную формулу?
В принципе, можно использовать моноширинный шрифт:

    H H
    | |
  H-C-C-O-H
    | |
    H H

Выглядит конечно не очень красиво, но тоже осуществимо.

Настоящая проблема возникает при попытке изобразить бензольные кольца и при использовании скелетных формул.
Здесь не остаётся иного пути, кроме подключения растрового изображения.
Растры хранятся в отдельных файлах. Браузеры могут подключать изображения в формате gif, png или jpeg.
Для создания таких файлов требуется графический редактор. Например, Фотошоп.
Но я более 10 лет знаком с Фотошопом и могу сказать точно, что он очень плохо подходит для изображения химических формул.
Гораздо лучше с этой задачей справляются
молекулярные редакторы.
Но при большом количестве формул, каждая из которых хранится в отдельном файле, довольно легко в них запутаться.
Например, число формул в этой статье равно .
Из них выведены виде графических изображений (остальные при помощи средств HTML).

Система CharChem позволяет хранить все формулы прямо в HTML-документе в текстовом виде. По-моему, это очень удобно.
Кроме того, брутто-формулы в этой статье вычисляются автоматически.
Потому что CharChem работает в два этапа: сначала текстовое описание преобразуется в информационную структуру (граф),
а затем с этой структурой можно выполнять различные действия.
Среди них можно отметить следующие функции: вычисление молекулярной массы, преобразование в брутто-формулу,
проверка на возможность вывода в виде текста, графическая и текстовая отрисовка.

Таким образом, для подготовки этой статьи я пользовался только текстовым редактором.
Причём, мне не пришлось думать, какая из формул будет графической, а какая — текстовой.

Вот несколько примеров, раскрывающих секрет подготовки текста статьи:

Текстовое описание CharChem Выводимый результат Сгенерированная брутто-формула
(NH4)2CO3 (NH4)2CO3
H-C-C-O-H; H|#2|H; H|#3|H H-C-C-O-H; H|#2|H; H|#3|H
CH3|\|`//«||/ CH3|\|`//«||/

Описания из левого столбца автоматически превращаются в формулы во втором столбце.
В первой строчке описание рациональной формулы очень похоже на отображаемый результат.
Разница только в том, что числовые коэффициенты выводятся подстрочником.
Во второй строке развёрнутая формула задана в виде трёх отдельных цепочек, разделённых символом ;
Я думаю, нетрудно заметить, что текстовое описание во многом напоминает те действия,
которые потребовались бы для изображения формулы карандашом на бумаге.
В третьей строке демонстрируется использование наклонных линий при помощи символов и /.
Значок ` (обратный апостроф) означает, что линия проводится справа налево (или снизу вверх).

Здесь есть гораздо более подробная документация по использованию системы CharChem.

На этом разрешите закончить статью и пожелать удачи в изучении химии.

Краткий толковый словарь использованных в статье терминов

Углеводороды
Вещества, состоящие из углерода и водорода. Отличаются друг от друга структурой молекул.
Структурные формулы
схематические изображения молекул, где атомы обозначаются латинскими буквами, а химические связи — чёрточками.
Структурные формулы бывают развёрнутыми, упрощёнными и скелетными.
Развёрнутые структурные формулы
— такие структурные формулы, где каждый атом представлен в виде отдельного узла.
Упрощённые структурные формулы
— такие структурные формулы, где атомы водорода записаны рядом с тем элементом,
с которым они связаны. А если к одному атому крепится больше одного водорода, то количество записывается в виде числа.
Так же можно сказать, что в качестве узлов в упрощённых формулах выступают группы.
Скелетные формулы
— структурные формулы, где атомы углерода изображаются в виде пустых узлов.
Число атомов водорода, связанных с каждым атомом углерода равно 4 минус число связей, которые сходятся в узле.
Для узлов, образованных не углеродом, применяются правила упрощённых формул.
Брутто-формула
(она же истинная формула) — список всех химических элементов,
которые входят в состав молекулы, с указанием количества атомов в виде числа (если атом один, то единица не пишется)
Система Хилла
— правило, определяющее порядок следования атомов в брутто-формуле:
первым ставится углерод, затем водород, а далее остальные элементы в алфавитном порядке.
Это а система используется очень часто. И все брутто-формулы в этой статье записаны по системе Хилла.
Функциональные группы
Устойчивые сочетания атомов, которые сохраняются в процессе химических реакций.
Часто функциональные группы имеют собственные названия, влияют на химические свойства и научное название вещества

Химические формула – это изображение качественного и количественного состава вещества с помощью символов химических элементов.


Знаки химических элементов

Химический знак или химический символ элемента – это первая или две первые буквы от латинского названия этого элемента.

Например: Ferrum – Fe, Cuprum – Cu,  Oxygenium – O и т.д.

Таблица 1: Информация, которую дает химический знак

Сведения На примере Cl
Название элемента Хлор
Принадлежность элемента к данному классу химических элементов Неметалл, галоген
Один атом элемента 1 атом хлора
Относительная атомная масса (Ar) данного элемента Ar(Cl) = 35,5
Абсолютная атомная масса химического элемента

m = Ar · 1,66·10-24г = Ar · 1,66 · 10-27кг

M(Cl) = 35,5 · 1,66 · 10-24 = 58,9 · 10-24г

Название химического знака в большинстве случаев читается как название химического элемента. Например, К – калий, Са – кальций, Mg – магний, Mn – марганец.

Случаи, когда название химического знака читается иначе, приведены в таблице 2:

Название химического элемента Химический знак Название химического знака

(произношение)

Азот N Эн
Водород H Аш
Железо Fe Феррум
Золото Au Аурум
Кислород O О
Кремний Si Силициум
Медь Cu Купрум
Олово Sn Станум
Ртуть Hg Гидраргиум
Свинец Pb Плюмбум
Сера S Эс
Серебро Ag Аргентум
Углерод C Цэ
Фосфор P Пэ

Химические формулы простых веществ

Химическими формулами большинства простых веществ (всех металлов и многих неметаллов) являются знаки соответствующих химических элементов.

Так вещество железо и химический элемент железо обозначаются одинаково – Fe.

Если простое вещество имеет молекулярную структуру (существует в виде молекул, то его формулой является химический знак элемента с индексом внизу справа, указывающим число атомов в молекуле: H2, O2, O3, N2, F2, Cl2, Br2, P4, S8.

Таблица 3: Информация, которую дает химический знак

Сведения На примере C
Название вещества Углерод (алмаз, графит, графен, карбин)
Принадлежность элемента к данному классу химических элементов Неметалл
Один атом элемента 1 атом углерода
Относительная атомная масса (Ar) элемента, образующего вещество Ar(C) = 12
Абсолютная атомная масса M(C) = 12 · 1,66 · 10-24 = 19,93 · 10-24г
Один моль вещества 1 моль углерода, т.е. 6,02 · 1023 атомов углерода
Молярная масса вещества M(C) = Ar(C) = 12 г/моль

Химические формулы сложных веществ

Формулу сложного вещества составляют путем записи знаков химических элементов, из которых это вещество состоит, с указанием числа атомов каждого элемента в молекуле. При этом, как правило, химические элементы записывают в порядке увеличения их электроотрицательности в соответствии со следующим практическим рядом:

Me, Si, B, Te, H, P, As, I, Se, C, S, Br, Cl, N, O, F

Например, H2O, CaSO4, Al2O3, CS2, OF2, NaH.

Исключение составляют:

  • некоторые соединения азота с водородом (например, аммиак NH3, гидразин N2H4);
  • соли органических кислот (например, формиат натрия HCOONa, ацетат кальция (CH3COO)2Ca);
  • углеводороды (CH4, C2H4, C2H2).

Химические формулы веществ, существующих в виде димеров (NO2, P2O3, P2O5, соли одновалентной ртути, например: HgCl, HgNO3 и др.), записывают в виде N2O4, P4O6, P4O10, Hg2Cl2, Hg2(NO3)2.

Число атомов химического элемента в молекуле и сложном ионе определяется на основании понятия валентности или степени окисления и записывается индексом внизу справа от знака каждого элемента (индекс 1 опускается). При этом исходят из правила:

алгебраическая сумма степеней окисления всех атомов в молекуле должна быть равной нулю (молекулы электронейтральны), а в сложном ионе – заряду иона.

Например:

2Al3+ +3SO42- =Al2(SO4)3

Этим же правилом пользуются при определении степени окисления химического элемента по формуле вещества или сложного иона. Обычно это элемент, имеющий несколько степеней окисления. Степени окисления остальных элементов, образующих молекулу или ион должны быть известны.

Заряд сложного иона – это алгебраическая сумма степеней окисления всех атомов, образующих ион. Поэтому при определении степени окисления химического элемента в сложном ионе сам ион заключается в скобки, а его заряд выносится за скобки.

При составлении формул по валентности вещество представляют, как соединение, состоящее из двух частиц различного типа, валентности которых известны. Далее пользуются правилом:

в молекуле произведение валентности на число частиц одного типа должно быть равным произведению валентности на число частиц другого типа.

Например:заряд и степень окисления в формуле иона

Цифра, стоящая перед формулой в уравнении реакции, называется коэффициентом. Она указывает либо число молекул, либо число молей вещества.

Коэффициент, стоящий перед химическим знаком, указывает число атомов данного химического элемента, а в случае, когда знак является формулой простого вещества, коэффициент указывает либо число атомов, либо число молей этого вещества.

Например:

  • 3Fe – три атома железа, 3 моль атомов железа,
  • 2H – два атома водорода, 2 моль атомов водорода,
  • H2 – одна молекула водорода, 1 моль водорода.

Химические формулы многих веществ были определены опытным путем, поэтому их называют «эмпирическими».

Таблица 4: Информация, которую дает химическая формула сложного вещества

Сведения На примере CaCO3
Название вещества Карбонат кальция
Принадлежность элемента к определенному классу веществ Средняя (нормальная) соль
Одна молекула вещества 1 молекула карбоната кальция
Один моль вещества 6,02 · 1023 молекул CaCO3
Относительная молекулярная масса вещества (Мr) Мr(CaCO3) = Ar(Ca)+Ar(C) +3Ar(O)=100
Молярная масса вещества (M) М(CaCO3) = 100 г/моль
Абсолютная молекулярная масса вещества (m) M(CaCO3) = Mr(CaCO3) · 1,66 · 10-24г = 1,66 · 10-22 г
Качественный состав (какие химические элементы образуют вещество) кальций, углерод, кислород
Количественный состав вещества:
Число атомов каждого элемента в одной молекуле вещества: молекула карбоната кальция состоит из 1 атома кальция, 1 атома углерода и 3 атомов кислорода.
Число молей каждого элемента в 1 моле вещества:  В 1 моль СаСО3 (6,02 ·1023 молекулах) содержится 1 моль (6,02 ·1023 атомов) кальция, 1 моль (6,02 ·1023 атомов) углерода и 3 моль (3·6,02·1023 атомов) химического элемента кислорода)
Массовый состав вещества:
Масса каждого элемента в 1 моле вещества: 1 моль карбоната кальция (100г) содержит химических элементов: 40г кальция12г углерода48г кислорода.
Массовые доли химических элементов в веществе (состав вещества в процентах по массе): Состав карбоната кальция по массе:

W(Ca) = (n(Ca)·Ar(Ca))/Mr(CaCO3) = (1·40)/100= 0,4 (40%)

W(C) = (n(Ca) ·Ar(Ca))/Mr(CaCO3) = (1·12)/100= 0,12 (12%)

W(О) = (n(Ca) ·Ar(Ca))/Mr(CaCO3) = (3·16)/100= 0,48 (48%)

Для вещества с ионной структурой (соли, кислоты, основания) – формула вещества дает информацию  о числе ионов каждого вида в молекуле, их количестве и массе ионов в 1 моль вещества:  Молекула СаСО3  состоит  из иона Са2+ и иона СО32-

 1 моль (6,02·1023 молекул) СаСО3 содержит 1 моль ионов Са2+и 1 моль ионов СО32-;

1 моль (100г) карбоната кальция содержит 40г ионов Са2+ и 60г ионов СО32- 

Молярный объем вещества при нормальных условиях (только для газов)

Графические формулы

Для получения более полной информации о веществе пользуются графическими формулами, которые указывают порядок соединения атомов в молекуле и валентность каждого элемента.

Графические формулы веществ, состоящих из молекул, иногда, в той или иной степени, отражают и строение (структуру) этих молекул, в этих случаях их можно назвать структурными.

Для составления графической (структурной) формулы вещества необходимо:

  • Определить валентность всех химических элементов, образующих вещество.
  • Записать знаки всех химических элементов, образующих вещество, каждый в количестве, равном числу атомов данного элемента в молекуле.
  • Соединить знаки химических элементов черточками. Каждая черточка обозначает электронную пару, осуществляющую связь между химическими элементами и поэтому одинаково принадлежит обоим элементам.
  • Число черточек, окружающих знак химического элемента, должно соответствовать валентности этого химического элемента.
  • При составлении формул кислородсодержащих кислот и их солей атомы водорода и атомы металлов связываются с кислотообразующим элементом через атом кислорода.
  • Атомы кислорода соединяют друг с другом только при составлении формул пероксидов.

Примеры графических формул:графические формулы


Автор:
Источник: Метельский А.В., Химия в Экзаменационных вопросах и ответах, Минск, изд. «Беларуская энцыклапедыя», 1999 год
Дата в источнике: 1999 год

химическая формула

Одной из самых главных задач в химии является правильное составление химических формул. Химическая формула – это письменное представление состава химического вещества с помощью латинского обозначения элемента и индексов. Для правильного составления формулы нам обязательно понадобится таблица Менделеева и знание простых правил. Они достаточно простые и запомнить их смогут даже дети.

Как составлять химические формулы

Основным понятием при составлении химических формул является “валентность“. Валентность – это свойство одного элемента удерживать определенное число атомов в соединении. Валентность химического элемента можно посмотреть в таблице Менделеева, а также нужно помнить и уметь применять простые общие правила.

  • Валентность металла всегда равна номеру группы, при условии, что он находится в главной подгруппе. Например, калий имеет валентность 1, а кальций – 2.
  • С неметаллами немного сложнее. Неметалл может иметь высшую и низшую валентности. Высшая валентность равна номеру группы. Низшую валентность можно определить вычтя номер группы элемента из восьми. При соединении с металлами неметаллы всегда имеют низшую валентность. Кислород всегда имеет валентность 2.
  • В соединении двух неметаллов низшую валентность имеет тот химический элемент, который находится в таблице Менделеева правее и выше. Однако, фтор всегда имеет валентность 1.
  • И еще одно важное правило при расстановке коэффициентов! Общее число валентностей одного элемента всегда должно быть равно общему количеству валентностей другого элемента!

Закрепим полученные знания на примере соединения лития и азота. Металл литий имеет валентность, равную 1. Неметалл азот располагается в 5 группе и имеет высшую валентность 5 и низшую – 3. Как мы уже знаем, в соединениях с металлами неметаллы всегда имеют низшую валентность, поэтому азот в данном случае будет иметь валентность равную трем. Расставляем коэффициенты и получаем искомую формулу: Li3N.

Вот так, достаточно просто, мы научились составлять химические формулы! А для лучшего запоминания алгоритма составления формул мы подготовили его графическое представление.

Составление химических формул: алгоритм

Алгоритм составления химических формул

ГРАФИЧЕСКИЕ ФОРМУЛЫ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Очень часто формулы молекул оксидов, оснований, кислот, амфотерных гидроксидов и солей изображают графически. Для этого необходимо знать валентность каждого элемента, входящего в состав молекулы. Валентность элементов изображается черточками. Число черточек, отходящих от химического знака элементов, равно его валентности, например, Н , О =, Al и т.д.

Так как в молекуле свободные валентности отсутствуют, то надо так составить формулу, чтобы число черточек одного элемента соответствовало числу черточек другого элемента. Валентность разных атомов в молекуле взаимонасыщенна (отсутствуют свободные черточки), например, оксид натрия Na2O, в котором натрий одновалентен, а кислород двухвалентен.

Тогда графическая формула оксида имеет вид:

NaONa

От атома кислорода отходят две черточки, от каждого атома натрия – по одной.

Графическая формула оксида алюминия Al2O3 имеет вид:

O = AlOAl = O

Алюминий трехвалентен, а кислород двухвалентен. От каждого атома алюминия отходят три черточки, от атома кислорода – две.

Графические формулы оснований

KOH H – O – BaOH H – O – Al – О – Н

׀

O – H

KOH Ba(OH)2 Al(OH)3

гидроксид калия гидроксид бария гидроксид алюминия

В молекуле оснований атомы водорода связаны с кислородом.

Графические формулы кислот

В молекулах кислородосодержащих кислот атомы водорода, способные замещаться металлом, связаны с атомом неметалла через кислород:

HO

Н – ON = О Н – О – C – О – Н H – О – P = O

H – O ׀׀ ׀׀

O О

HNO3 H2CO3 H3PO4

азотная кислота угольная кислота ортофосфорная кислота

В состав уксусной кислоты СН3СООН входят четыре атома водорода, но только один из них связан с кислородом, поэтому в уксусной кислоте только один атом водорода, соединенный с атомом кислорода, способен замещаться атомом металла:

Н О

׀ ׀׀

Н – С – С – О – Н

׀

Н

Графические изображения солей

Графическое изображение формул средних и особенно кислых солей часто вызывает затруднения. При их составлении нужно сначала написать графическое изображение формулы кислоты и затем заменить в ней полностью (нормальная соль) или частично (кислая соль) атомы водорода атомами металла. Если в молекулу соли входит несколько кислотных остатков, например, Mg(NO3)2, то нужно писать рядом столько формул кислоты, сколько кислотных остатков входит в молекулу соли, и заменить в них полностью атомы водорода атомами металла.

Графическая формула средней (нормальной) соли Mg(NO3)2 имеет вид:

HNO3 Mg(NO3)2

азотная кислота нитрат магния

O

׀׀

O – N = O

Mg

O – N = O

׀׀

O

O

׀׀

H – O – N = O

Mg

H – O – N = O

׀׀

O

Графическая формула кислой соли КHCO3 имеет вид:

Н2СО3 КНCO3

угольная кислота гидрокарбонат калия

К H – O – С – O – Н

׀׀

O

К – O – С – O – Н

׀׀

O

При составлении основных солей нужно сначала написать графическую формулу основания и затем заменить в ней частично гидроксогруппы ОН кислотными остатками. Например, в основной соли MgOHNO3 гидроксогруппа ОН замещена кислотным остатком NO.

Графическая формула основной соли MgOHNO3 имеет вид:

Mg(OH)2 HNO3 MgOHNO3

гидроксид магния азотная кислота гидроксонитрат магния

O

׀׀

H – O – Mg – O – N = O

O

׀׀

HOMgOH H – O – N = O

Понравилась статья? Поделить с друзьями:
  • Как написать графический интерфейс на java
  • Как написать графический диктант
  • Как написать грантовую заявку
  • Как написать грант на социальный проект образец заполнения
  • Как написать грант на сельское хозяйство