Как написать координаты точек на луче

На рисунке изображён луч (OE), который разбит на деления, как линейка.

koord.luc16.png

Точка (O) — начало луча, и этой точке соответствует число (0).

Эта точка — начало отсчёта.

Точке (E) соответствует число (1), а длина отрезка (OE) принята за единицу длины и называется единичным отрезком.

Единичный отрезок может содержать разное число клеток.

Каждая следующая точка отстоит от предыдущей на расстояние, равное единице длины.

Луч (OE) с началом отсчёта в точке (O),  на котором указаны единичный отрезок и направление, называют координатным лучом.

Число, соответствующее точке координатного луча, называется координатой этой точки.

Пример:

точке (A) соответствует число (3).

koord.luc17.png

Значит, координата точки (A) равна (3).

Записывается так (A)((3)).

Читается: точка (A) с координатой (3).

Для любого числа можно указать соответствующую ему точку, т. к. луч можно продолжить бесконечно.

На рисунке изображён луч OE, который разбит на деления, как линейка.

Координатный луч

Координатный луч

Точка O — начало луча, и этой точке соответствует число 0.
Эта точка — начало отсчёта.

Точке E соответствует число 1, а длина отрезка OE принята за единицу длины и называется единичным отрезком.

Единичный отрезок может содержать разное число клеток.
Каждая следующая точка отстоит от предыдущей на расстояние, равное единице длины.

Луч OE с началом отсчёта в точке O , на котором указаны единичный отрезок и направление, называют координатным лучом.

Число, соответствующее точке координатного луча, называется координатой этой точки.

Пример. Точке A соответствует число 3.

Точка А на координатном луче

Точка А на координатном луче

Значит, координата точки A равна 3. Записывается так A (3). Читается: точка A с координатой 3.
Для любого числа можно указать соответствующую ему точку, т. к. луч можно продолжить бесконечно.

Пример #1. Можно ли назвать изображённый луч координатным лучом?

Луч АВ

Луч АВ


Пример #2. Можно ли назвать изображённый луч координатным лучом?

Луч МР

Луч МР


Пример #3. Определи координату точки C.


Пример #4. Запиши число, стоящее у конца стрелки на рисунке.

Координаты точки

Координаты точки


Пример #5. Какую температуру показывает термометр, изображённый на рисунке? Какую температуру покажет этот термометр, если столбик опустится на 3 деления?

Определение температуры по термометру

Определение температуры по термометру


Пример #6. Запиши наибольшее число единичных отрезков, соответствующих одному делению координатного луча, чтобы можно было отметить числа: 20, 30, 40, 50, 80, 90.

Скольким делениям соответствует число 50?


Пример #7. Определи координату точки B, изображённой на рисунке. Если координата точки O(0), а координата точки C(60).

Определение цены одного деления

Определение цены одного деления


Пример #8. Определи координаты точек C и B:

Работа с координатным лучом

Работа с координатным лучом


Пример #9. Запиши координаты точек A, B и C.

Координаты трёх точек на координатном луче

Координаты трёх точек на координатном луче


Пример #10. Запиши точку, которой соответствует начало координатного луча на данном рисунке.

Начало координатного луча

Начало координатного луча

Если известно, что координата точки H(35), координата точки L(45) и координата точки N(55).


Пример #11. Составь числовое выражение для координаты точки B и найди его значение:

Составь числовое выражение для координаты точки B

Составь числовое выражение для координаты точки B


Пример #12. Изобрази координатный луч, считая, что единичный отрезок равен 2 клеткам тетради. Отметь на нём точку A (2). Скольким клеткам тетради соответствует отмеченная точка?


Пример #13. На рисунке изображена шкала. Какое число соответствует точке D?

Шкала

Шкала






Для определения размера какой-либо величины (длина, вес, температура и т.д.) мы используем измерительные приборы и инструменты со шкалами для отображения результата.

Шкала – это расположенный в определенной последовательности ряд отметок, которые соответствуют числовому значению измеряемой величины.

Например, в школьном курсе математики и геометрии для измерения длины геометрического объекта, в частности отрезка, используется линейка (рисунок 1).

Шкалы и координаты

Рисунок 1. Измерительная линейка.

Из урока Измерение величин вы уже знаете, что такое единица измерения, а их соотношения можете посмотреть в справочном разделе.

Деления шкалы – это равные части, на которые она разбита. Каждое деление шкалы обозначается отметками (черточками).

Нулевая отметка шкалы – это отметка, которая соответствует нулевому значению измеряемой нами величины.

Цена деления шкалы – это величина значения одного деления шкалы. То есть, это величина значения между двумя соседними отметками на шкале.

Чтобы узнать цену деления шкалы, нужно:
1. взять любые два значения на шкале (лучше брать соседние, обозначенные числами),
2. найти разность между ними,
3. посчитать количество делений шкалы, которые находятся между выбранными нами значениями,
4. результат деления числа, полученного в пункте 2, на число, полученной в пункте 3, и будет ценой деления данной шкалы.

Как мы видим на рисунке 1, деления, обозначенные большими черточками, пронумерованы, и значение каждого такого деления равно 1 см. В этом легко убедиться, если найти разницу между значениями каждого из соседних делений: 1-0=1, 2-1=3, …, 9-8=1, 10-9=1.
Но каждое из больших делений разделено девятью маленькими черточками на 10 делений. Мы знаем, что в 1 см содержится 10 мм, поэтому разделив эти 10 мм на 10 делений, мы получим цену деления линейки, равную 1 мм.

Цена деления может отличаться не только у разных же измерительных приборов, но и у одних и тех же.

Шкалы и координаты

Рисунок 2 Цена деления шкалы

Например, на рисунке 2 изображены два термометра. Как вы думаете, они показывают одинаковую температуру, или нет?

Конечно же разную! Хоть столбик этих двух термометров и находится на высоте двух делений над значением 20, цена этих делений разная. Левый термометр показывает температуру 22°C (читается как двадцать два градуса Цельсия), а правый — 24°C.

Давайте посмотрим, так ли это? На левом термометре разница между двумя соседними пронумерованными отметками равна 10°C: 10-0=10, 20-10=10, и т.д. На правом же термометре эта разница равняется уже 20°C: 20-0=20, 40-20=20, и т.д. На обоих термометрах маленькие черточки делят одно большое пронумерованное деление на 10 частей. Разделив разницу между значениями пронумерованных отметок (10 и 20 соответственно) на количество делений между ними (10), мы получим цену деления каждого из термометров:

  • левый термометр – 10:10=1°C;
  • правый термометр – 20:10=2°C.

Итак, оба термометра показывают 20°C и еще два деления. Но на левом термометре это означает 20°C и еще два раза по 1°C, то есть, 20+2=22°C, а на правом – 20°C и еще два раза по 2°C, то есть, 20+4=24°C.

Координатный луч, единичный отрезок, координаты точки

Различные прямые линии со шкалами играют важную роль в школьной математике. Сейчас я познакомлю вас с одной из них.

Нарисуем точку O и проведем от нее направо луч. Обозначим направление луча стрелкой.

Координатный луч

Рис. 3. Луч с началом в точке O

Отметим на этом луче отрезок произвольной длины OP. Справа от него отметим равный ему отрезок PR, и продолжим отмечать далее подобным образом отрезки, равные отрезку OP, до тех пор, пока не закончится нарисованный нами луч. В итоге у нас получится следующее.

Координатный луч

Рис. 4. Луч с равными отрезками

Поставим возле начала луча (точки O) число 0 (нуль). Возле второго конца отрезка OP (возле точки P) поставим число 1 (один). Таким образом мы обозначаем, что длина отрезка OP равна 1 (единице).

Отрезок OR у нас состоит из двух отрезков: OP и PR, то есть OR=OP+PR. А так как по условиям нашего построения PR=OP, то мы можем записать, что OR=OP+OP, или OR=1+1=2.

Поставим возле точки R найденное нами значение длины отрезка OR, то есть, число 2.

Аналогичным образом вы можете легко найти числа, соответствующей каждой поставленной нами на луче точке.

Координатный луч

Рис. 5. Луч с отрезками и цифрами

Покажу еще раз на примере точки S:

OS=OR+RS,

так как RS=OP (по условиям построения данных отрезков),

тогда OS=OR+OP;

подставив известные нам значения длины отрезков OR и OP, получим:

OS=2+1, или OS=3.

Значит, точке S на нашем лучу соответствует число 3.

Оставим на луче только числовые значения, а все буквы кроме O отбросим. В итоге у нас получился вот такой луч с отрезками и числами, которые соответствуют концам этих отрезков.

Координатный луч

Рис. 6. Координатный луч

Глядя на рисунок 6, легко заметить, что отрезки, лежащие на луче, это не что иное, как нанесенная на луч шкала. Действительно, смотрите сами.

Точка O с соответствующим ей числом 0 (нуль) называется точка отсчета, что аналогично нулевой отметке шкалы. Обычно этой буквой всегда помечают в рисунках точку отсчета.

Равные отрезки, на которые мы разбили луч, – это деления шкалы.

Единичный отрезок – это отрезок, длина которого принята нами за единицу длины и равна 1(единице). Точке, обозначающей правый конец единичного отрезка, соответствует число 1.

Другими словами, единичный отрезок можно назвать ценой деления.

Определение

Координатный луч – это луч с отмеченным на нем единичным отрезком, точкой начала отсчета, которой соответствует число 0 (нуль), и указанным направлением отсчета.
Координатный луч еще называют числовой луч.

Координатный луч — это не что иное, как бесконечная шкала.

Длина единичного отрезка может быть любой. Она выбирается каждый раз отдельно и при ее выборе ориентируются на то, чтобы на рисунке поместились все необходимые в данный момент числа. Например, на рисунке 7-а длина единичного отрезка составляет 5 см, а на рисунке 7-б всего 1 см.

Единичный отрезок, координатный луч

Рис. 7. Разные варианты единичного отрезка

Как вы заметили из предыдущего рисунка, для разметки луча отрезками можно вместо кружочков использовать штрихи везде, кроме точки O (начала отсчета). Кружочки рисуют поверх этих штрихов тогда, когда необходимо отметить на числовом луче какое-то натуральное число. В этом случае мы дополнительно обозначаем его заглавной (большой) буквой латинского алфавита (смотрите рисунок 8).

Координатный луч служит для наглядного отображения и сравнения чисел натурального ряда.

Действительно, длина каждого отрезка числового луча отличается от длины предыдущего на единицу, точно так же, как и каждый элемент числового ряда отличается от предыдущего.

На числовом луче можно отобразить какое угодно число n, принадлежащее натуральному ряду. Для этого на нем отмечают точку (к примеру, A) на расстоянии n единичных отрезков от точки отсчета O. При этом число n называют координатой точки A и записывают в виде A(n), что читается как «точка A с координатой n» .

Запомните

Координата точки числового луча – это число, которое соответствует поставленной на числовом луче точке.

Для примера отметим на координатном луче точки A, B, C и определим их координаты.

Координатный луч, координата точки

Рис. 8. Координаты точек

Точке A соответствует число 5 координатного луча, точке B – число 8, точке C – число 13. Запишем полученные координаты точек: A(5), B(8), C(13).

В отдельных случаях для обозначения на координатном луче больших натуральных чисел, допускается не отображать на рисунке точку отсчета и единичный отрезок, показывая только тот участок луча, на котором расположены данные числа.

Координатный луч

Рис. 9. Большие числа на координатном луче.

Математика

5 класс

Урок № 24

Представление натуральных чисел на координатном луче

Перечень рассматриваемых вопросов:

— изображение чисел точками на координатной прямой;

— нахождение координат отмеченной точки;

— сравнение натуральных чисел по их расположению на координатном луче.

Тезаурус

Луч – прямая линия, которая имеет начало, но не имеет конца.

Координатный луч – это луч, на котором задано направление, а также отмечены начало отсчёта и единичный отрезок.

Начало отсчёта – особая точка, обычно обозначаемая буквой О, которая используется как точка отсчёта для всех остальных точек.

Единичный отрезок – величина, принимаемая за единицу при геометрических построениях.

Обязательная литература

Никольский С. М. Математика. 5 класс. Учебник для общеобразовательных учреждений. // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017. – 272 с.

Дополнительная литература

1. Чулков П. В. Математика: тематические тесты. 5 класс. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. – М.: Просвещение, 2009. – 142 с.

2. Шарыгин И. Ф. Задачи на смекалку: 5-6 классы. // И. Ф. Шарыгин, А. В. Шевкин. – М.: Просвещение, 2014. – 95 с.

Теоретический материал для самостоятельного изучения

Как вы уже знаете, для пересчёта предметов используют натуральные числа. Сегодня мы будем представлять их на координатном луче.

Для начала рассмотрим, чем отличается координатный луч от луча.

Вспомним, что такое луч. Луч – это прямая линия, которая имеет начало, но не имеет конца. А теперь рассмотрим координатный луч. Для этого зададим луч. Начало луча обозначим точкой О сверху, а снизу под началом луча подпишем число 0. Точку О примем за начало отсчёта. Говорят, что точка О имеет координату 0 и пишут О(0). Далее на луче, начиная с точки О, отложим выбранный единичный отрезок ОА, под точкой А запишем число 1. Говорят, что точка А имеет координату 1. Отложим единичный отрезок от точки А вправо несколько раз и запишем, соответственно, числа 2, 3, 4 и так далее, обозначив эти точки буквами В, С, D и так далее. Говорят, что точка В имеет координату 2, С – координату 3…

Координатный луч мы будем чертить слева направо, выходящим из точки О в направлении, отмеченном стрелкой. Отмерим на координатном луче единичный отрезок, длину которого будем принимать за единицу при определении координат.

А теперь свяжем натуральные числа и координатный луч.

Известно, что ряд натуральных чисел начинается с единицы. За каждым натуральным числом в ряду следует ещё одно натуральное число, большее предшествующего на единицу. Такая же структура и у координатного луча. Поэтому числа удобно представлять в виде точек на координатном луче.

Обратите внимание, что координатный луч напоминает линейку, на которой отмечены числа 0, 1, 2, 3 и так далее – с той лишь разницей, что любая линейка ограничена (конечна), а координатный луч неограничен (бесконечен).

А теперь зададимся вопросом, как изобразить точку D с координатой 45?

Ответ прост: изменим масштаб координатного луча, например, так, чтобы один единичный отрезок соответствовал 10. Тогда точка D будет серединой отрезка с концами в точках с координатами 40 и 50.

Заметим, что если на координатном луче точка M лежит правее точки N, то она будет соответствовать большему числу. Так натуральные числа можно сравнивать при помощи координатного луча.

А теперь отметим точку Р, которая будет правее точки М. Следовательно, точка Р будет больше точек М и N.

Таким образом, мы получим иллюстрацию одного очень интересного свойства: если первое число меньше второго, а второе меньше третьего, то первое меньше третьего. Это свойство транзитивности натуральных чисел.

Итак, сегодня мы познакомились с понятием координатный луч и научились изображать числа точками на координатном луче.

Изображение точек на координатной прямой.

Начертим координатный луч, исходя из условия задания: точки О, С, А имеют следующие координаты: О(0), С(2) и А(5), отрезок СА = 6 см.

Решение: по условию задачи начертим координатный луч. Отметим на нём точку О(0) (с координатой). Далее следует задать единичный отрезок. Определим его следующим образом: от точки С до точки А умещается три единичных отрезка – это можно определить по координатам точек С и А.

5 – 2 = 3 (единичных отрезка)

Теперь найдём длину одного единичного отрезка. Для этого длину отрезка АС поделим на три единичных отрезка, входящих в отрезок АС.

6 см : 3 единичных отрезка = 2 см в единичном отрезке.

Назовём единичный отрезок ОМ = 2 см, следовательно, координаты точки – М(1).

Теперь изобразим полученный луч.

Тренировочные задания

№ 1. Выберите правильный ответ. Какая из точек – С(78), D(45), М (15), Р(24) – расположена правее других?

При выполнении данного задания нужно использовать правило сравнения чисел с помощью координатного луча. Чем большему числу соответствует координата точки, тем правее она будет расположена на координатном луче.

Правильный ответ: точка С.

№ 2. Напишите координаты точек D, Е, Т и К, отмеченных на координатном луче.

Каждая точка имеет координату, соответствующую натуральному числу, который отсчитывается от 0 по единичным отрезкам.

Таким образом, правильными ответами будут: Е(2); D(4); Т(10); К(12).

В прошлых уроках Вы узнали, что такое натуральные числа — это числа, используемые при счете предметов.

Также мы успели поговорить про шкалы — линии с отмеченными на них величинами, которые помогают нам определить ту или иную величину.

Эта информация доступна зарегистрированным пользователям

Сегодня мы рассмотрим в некотором смысле “шкалу” для натуральных чисел — координатный луч, узнаем, что скрывается за этим определением.

Ответим на вопрос, почему луч подходит больше всего для обозначения натуральных чисел, а также научимся определять с помощью него длины отрезков.

Луч- это часть прямой ограниченная с одной стороны точкой, называемой началом луча.

Начертим луч с началом в точке О так, чтобы он шел слева направо, и отметим на нем точку А не очень далеко от начала.

Эта информация доступна зарегистрированным пользователям

Отрезок ОА назовем единичным отрезком.

Далее отложим от точки А следующий отрезок АВ, равный отрезку ОА.

Затем отложим от точки В отрезок ВС, также равный единичному отрезку.

Продолжим процесс, уже не называя точки.

Эта информация доступна зарегистрированным пользователям

Теперь напишем над точкой O число 0, над точкой А число 1, над точкой В число 2, над С — 3 и так далее.

Эта информация доступна зарегистрированным пользователям

Так мы получили шкалу, которую называют координатным лучом.

В самом деле, для шкалы нам необходимы были такие объекты, как штрих, деление, цена деления, посмотрим, чем они представлены в данном случае.

В роли штрихов выступают точки.

Изображая координатный луч, можно точки обозначать как небольшие штрихи, это ничуть не делает рисунок менее точным.

Делением в данном случае является отрезок между любыми соседними точками.

Этот отрезок всегда равен единичному по построению, ведь мы всегда откладывали отрезок, равный единичному.

Ценой деления в данном случае является единица.

Может быть немного непривычно, что единица идет без наименования, ведь на других шкалах обычно цена деления 1 кг, 1 см, 1 км/ч.

Но здесь идет измерение натуральных чисел, поэтому просто единица.

Так что координатный луч вполне можно считать шкалой.

Если же говорить про более конкретное определение, то вот оно.

Координатный луч — луч с указанным для него единичным отрезком.

Нередко к этому определению добавляют помимо единичного отрезка еще два объекта: точку начала отсчета и направление увеличения чисел.

В сущности они не обязательны, ведь на луче уже есть точка — точка начала луча.

А на координатном луче точка начала отсчета и точка начала луча всегда совпадают.

Направление задавать тоже нет необходимости, ведь у луча только одно вполне определенное направление: от начала.

Единичный отрезок же необходим, ведь без него не будет одинакового расстояния между соседними точками и смысла в луче не будет.

Отметим важный момент: в одном координатном луче всегда один единичный отрезок.

Эта информация доступна зарегистрированным пользователям

Мы уже поговорили про координатный луч, но важно понять, почему он “координатный” и как определены координаты в данном случае.

Обычно можно услышать слово “координаты” в географическом контексте.

Когда мы узнаем координаты, а это два числа, то можем однозначно сказать, про какую точку на карте идет речь.

Другими словами, в географическом смысле, координаты являются числами, определяющими положение точки на карте.

В случае с координатным лучом все даже проще.

Ведь если карта — двумерный объект, то есть, если перед нами лежит карта, нам нужно одно число, чтобы определить, как высоко расположена точка, а второе число, чтобы определить насколько она смещена вправо или влево, то на луче точка может быть лишь дальше или ближе от его начала.

Координата точки на координатном луче соответствует количеству единичных отрезков между этой точкой и точкой начала отсчета.

Посмотрим еще раз на рисунок из прошлой главы:

Эта информация доступна зарегистрированным пользователям

Точка А находится на расстоянии одного единичного отрезка от точки начала отсчета.

Точке А соответствует число 1

Точка В находится на расстоянии двух единичных отрезков от точки начала отсчета.

И точке В соответствует число 2

Аналогично каждой следующей точке соответствует число на единицу больше.

Число, соответствующее точке на координатном луче, называют координатой этой точки.

Заметим теперь, как соответствуют друг другу натуральный ряд и координатный луч.

За исключением точки начала отсчета, каждой точке соответствует натуральное число.

Если смотреть от начала отсчета, то координата следующей точки после данной равна следующему натуральному числу после координаты данной точки.

На том же самом рисунке мы видим, что следующее число за координатой точка В (2) , за точкой В идет точка С и координата точки С (3)

Допустим мы знаем, что точки и — соседние, причем Q находится дальше от точки начала отсчета, чем P.

И также мы знаем, что координата точки равняется 276

Тогда мы сможем сказать координату точки Q, это будет следующее натуральное число после числа 276, то есть ответ: 277

Аналогичная логика работает и в другую сторону.

Координата точки, идущей перед данной, является предыдущим натуральным числом по отношению к координате данной точки.

Эта информация доступна зарегистрированным пользователям

Так, если координата точки В — это 2, то координата точки А будет числом, на единицу меньшим, чем 2, то есть единицей.

Допустим, точки и R соседние.

Также известно, что R находится дальше от точки начала отсчета, чем Е; а также известна координата точки R, она равна 315

Чтобы найти координату точки Е достаточно взять предыдущее натуральное число от числа 315, это будет число 314

Эти примеры показывают, как натуральный ряд ложится на координатный луч.

Отметим, что именно луч идеально соответствует натуральным числам, ведь и луч, и натуральный ряд ограничены с одной стороны (с начала), но продолжаются бесконечно.

Если же нам надо найти координату точки безотносительно соседних точек, то достаточно отсчитать количество единичных отрезков между данной точкой и точкой начала отсчета.

Эта информация доступна зарегистрированным пользователям

Найдем координату точки Н.

Между ей и точкой О (началом отсчета) 4 единичных отрезка, значит, координата точки Н равна 4

Эта информация доступна зарегистрированным пользователям

Только что в тесте было задание, в котором было необходимо найти разность координат двух точек.

Возможно, вы заметили некоторую закономерность, но если нет, сейчас разберем.

Эта информация доступна зарегистрированным пользователям

Посмотрим на разность координат точек D и C

Мы можем посчитать их координаты. В данном случае они сразу указаны, надо просто вычесть из большей меньшую.

Получится, что разность координат равна единице.

Также заметим, что между точками C и D один единичный отрезок.

Если рассмотрим разность координат точек D и В, то увидим, что разность координат равна 2, а также то, что между ними 2 единичных отрезка.

Правило: чтобы посчитать разность координат двух точек на координатном луче, достаточно посчитать, сколько между ними единичных отрезков.

Данное правило удобно, когда изначально координаты точек неизвестны, но при этом легко посчитать, сколько между ними единичных отрезков.

Теперь поговорим про измерение отрезков.

Допустим, требуется найти длину отрезка AD

Мы можем просто сосчитать количество единичных отрезков между точками А и D

Получится 3 отрезка, следовательно, длина равна 3.

Но можно сделать проще.

Правило: чтобы найти длину отрезка на координатном луче необходимо из координаты точки, дальней от точки начала отсчета, надо вычесть координаты ближней точки.

В случае с отрезком AD необходимо вычесть из координаты точки D (4) координату точки А (1)

Таким образом, длина отрезка AD равна ((mathbf{4-1=3}))

Эта информация доступна зарегистрированным пользователям

Интересно, что с математикой можно столкнуться не только в учебниках, но и в художественной литературе и даже в кинематографе.

Привычно видеть в роли главного героя в фильме какого-либо сильного человека, спортсмена, политика.

Но иногда главным харизматичным героем может быть математик, ученый.

Расскажу про одну достаточно интересную картину, повествующую о нестандартно мыслящемем математике.

А именно про “Человека, который изменил все”.

Эта информация доступна зарегистрированным пользователям

Данный фильм рассказывает про то, как менеджер одного из беднейших в американской лиге бейсбольных клубов “Окленд Атлетикс” нанимает к себе, казалось бы, далекого от спорта человека, похожего на типичного “ботаника”.

Этот человек оказывается выпускником экономического факультета, который решает отбирать игроков в клуб используя методы статистического анализа.

И здесь очень интересна концепция: нередко тот или иной клуб тратит большие деньги, чтобы нанять к себе успешного игрока.

Правда, после того как деньги потрачены, за новый клуб игрок может выступать уже не так хорошо.

Суть статистики заключалась в том, чтобы посмотреть данные множества игроков и начать выявлять таланты, которые еще не успели себя проявить.

Таким образом, клуб нанимает к себе игроков, которые в будущем становятся успешными, да еще и за не очень большие деньги.

Со статистикой можно даже идти дальше и просчитывать не только успехи отдельных игроков, но и всей команды в целом.

Так что данный фильм интересен той концепцией, которую он несет в массы.

Читайте также

Определение

Координатный луч — это луч, на котором задано начало отсчёта, направление отсчёта и единичный отрезок. На координатном луче нанесены штрихи. Они разбивают луч на равные части. Эти части называют делениями. В таких случаях говорят, что нанесена шкала с ценой деления.

Рассмотрим это на рисунке 1. Точкой О обозначено начало луча, направление показано стрелкой, на луче нанесены штрихи (деления), которые обозначены числами, эти числа и образуют шкалу. Цена деления в данном случае равна 1. Отрезки называют единичными.

Рисунок 1

Число, которое соответствует точке на координатном луче, называют координатой точки. Так, на рисунке 2 точка С имеет координату 2, а точка О имеет координату нуль. Записывают так: С(2), О(0).

Рисунок 2

Шкалу с разной ценой деления мы встречаем в жизни повсюду. Так, например, это может быть обычная метровая лента, спидометр автомобиля, термометр, мерный стаканчик и т.д. (рисунок 3).

Рисунок 3

Цена деления на шкале может быть равна не только единице. Рассмотрим это на рисунке 4. Так, видно, что цена деления тут равна 10, то есть каждый единичный отрезок равен 10, значит, координата точки А(10), точки С(50), точки В(90), F(125), D(140), E(190).

Рисунок 4

С помощью координатного луча можно сравнивать числа. Из двух натуральных чисел больше то, которое на координатном луче находится правее, и меньше то, которое на координатном луче находится левее. Это также можно проследить по рисунку 4, где, например, вино, что число 150 находится правее числа 120, следовательно, оно больше.

Даниил Романович | Просмотров: 505

Понравилась статья? Поделить с друзьями:
  • Как написать координаты окружности
  • Как написать коня маслом
  • Как написать комментарий на сайте воспитателя
  • Как написать концы волос
  • Как написать комментарий на пикабу