Как написать нормальное уравнение прямой

В данной статье рассмотрим нормальное уравнение прямой на заданной плоскости. Получим нормальное уравнение, покажем не примере, дадим определение нормирующего множителя и разберем приведение общего уравнения к нормальному виду. Заключительной части посвятим основному приложению нормального уравнения прямой, то есть нахождение расстояние от точки до прямой на плоскости.

Нормальное уравнение прямой – описание и пример

Рассмотрим выведение нормального уравнения.

Фиксируем на плоскости систему координат Оху, где задаем прямую с точкой, через которую она проходит с нормальным вектором прямой. Нормальному вектору прямой дадим обозначение n→. Его начало обозначено точкой O. координатами являются cos α и cos β, углы которых расположены между вектором n→ и положительными осями Оx и Oy. Это запишется так: n→=(cos α, cos β). Прямая проходит через точку A с расстоянием равным p, где p≥0 от начальной точки O при положительном направлении вектора n→. Если р=0, тогда A считается совпадающей с точкой координат. Отсюда имеем, что OA=p. Получаем уравнение, при помощи которого  задается прямая.

Имеем, что точка с координатами M (x, y) расположена на прямой тогда и только тогда, когда числовая проекция вектора  OM→ по направлению вектора n→ равняется p, значит при выполнении условия npn→OM→=p.

Нормальное уравнение прямой – описание и пример

OM→ является радиус-вектором точки с координатами M (x, y), значит OM→=(x, y).

Применив определение скалярного произведения векторов, получим равенство вида: n→, OM→=n→·npn→OM→=1·npn→OM→=npn→OM→=p

Тогда это же произведение будет иметь вид в координатной форме: n→, OM→=cos α·x+cos β·y

Отсюда cos α·x+cos β·y=p или cos α·x+cos β·y-p=0. Было выведено нормальное уравнение прямой.

Определение 1

Уравнение вида cos α·x+cos β·y-p=0 называется нормальным уравнением прямой или нормированным уравнением прямой. Иначе говоря, уравнение прямой в нормальном виде.

Понятно, что такое уравнение представляет собой общее уравнение прямой Ax+By+C=0, где A и B имеют значения, при которых длина вектора n→=(A, B) равна 1, а C является неотрицательным числом.

Теперь рассмотрим его геометрический смысл. Нормальное уравнение прямой вида cos α·x+cos β·y-p=0 задает в системе координат Оху на плоскости прямую с наличием нормального вектора единичной длины n→=(cos α, cos β), которая располагается на расстоянии равном p от начала координат по положительному направлению вектора n→.

Если дано уравнение прямой вида -12·x+32·y-3=0, то на плоскости задается прямая, у которой нормальный вектор  с координатами -12, 32. Удаление прямой от начала координат идет по направлению, совпадающему с направлением нормального вектора n→=-12, 32.

Нормальное уравнение прямой – описание и пример

Приведение общего уравнения прямой к нормальному виду

Часто решение задач подразумевает использование нормального уравнения прямой, но само оно не дается в нормальном виде, поэтому необходимо для начала приводить к нормальному виду, после чего выполнять необходимые вычисления.

Нормальное уравнение получают из общего уравнения прямой. Когда на плоскости задается другим уравнением, то необходимо привести его к общему виду, после чего возможно приведение к нормальному. Если рассмотреть на примере, то это будет выглядеть так.

Для приведения общего уравнения прямой Ax+Bx+C=0 к нормальному  необходимо обе части умножить на нормирующий множитель, который  имеет значение ±1A2+B2. Его знак определяется при помощи противоположности знака слагаемого C. При С=0 знак выбирается произвольно.

Пример 1

Привести уравнение прямой 3x-4y-16=0 к нормальному виду.

Решение

Из общего уравнения видно, что А=3, В=-4, С=-16. Так как значение C отрицательное, необходимо брать положительный знак для формулы. Перейдем к вычислению нормирующего множителя:

1A2+B2=132+(-4)2=15

Теперь необходимо умножить обе части уравнения на одну пятую. Получим, что 15·(3x-4y-16)=0⇔35·x-45·y-165=0.

Нормальное уравнение по заданной прямой найдено.

Ответ: 35·x-45·y-165=0.

Пример 2

Получить нормальное уравнение прямой y=13x.

Решение

По условию имеем, что общее уравнение прямой 13x-y=0. Очевидно, что С=0, значит знак нормирующего множителя не имеет значения. Выбираем со знаком «+». Тогда выражение примет вид:

1A2+B2=1132+(-1)2=310

Обе части умножаем на нормированный множитель, получаем, что нормальное уравнение прямой имеет вид 110x-310y=0.

Ответ: 110x-310y=0.

Нахождение расстояния от точки до прямой на плоскости

В данном пункте рассмотрим важное приложение нормального уравнения прямой – нахождение расстояния от заданной точки до заданной прямой на плоскости.

Расстояние от точки M0(x0, y0) до прямой  с нормальным уравнением cos α·x+cos β·y-p=0 задается буквой p. Вычисление расстояния р производится по формуле p=cos α·x0+cos β·y0-p. Для того, чтобы найти расстояние от точки до прямой, нужно сделать подстановку координат этой точки в левую часть уравнения и работать с абсолютной величиной полученного значения. С подробным выводом формулы можно ознакомиться  в статье нахождения расстояния от точки до прямой. Имеется альтернативный способ его вычисления.

Пример 3

Найти расстояния от точки с координатами M0(-2, 1) к прямой с нормальным уравнением 23x-52y-1=0.

Решение

По условию имеем, что x0=-2, y0=1, cos α=23, cos β=-53, p=1.

Применим формулу для вычисления расстояния от точки до прямой. Получим, что:

p=cos α·x0+cos β·y0-p=23·-2-53·1-1=-7+53=7+53

Ответ: 7+53.

Пример 4

Вычислить расстояние от точки с координатами M0(-2, -3) до прямой x-1-2=y+33.

Решение

Начнем решение с приведения уравнения заданной прямой к нормальному виду. Для начала необходимо привести к общему виду. Получим:

x-1-2=y+33⇔3·(x-1)=-2·(y+3)⇔3x+2y+3=0

Проведем вычисление нормирующего множителя по формуле: -1A2+B2=-132+22=-113.

Следующим действием будет умножение обоих частей уравнения 3x+2y+3=0 на нормирующий множитель.

Получаем: -313·x-213·y-313=0

Было произведено получение нормального уравнения прямой. Чтобы найти расстояние, необходимо использовать абсолютную величину и подставить в формулу для нахождения искомого значения.

Тогда p=-313·(-2)-213·(-3)-313=913=913.

Ответ: 913.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Нормальное уравнение прямой

В данной статье мы рассмотрим нормальное уравнение прямой на плоскости. Приведем примеры построения нормального уравнения прямой по углу наклона нормального вектора прямой от оси Ox и по расстоянию от начала координат до прямой. Представим метод приведения общего уравнения прямой к нормальному виду. Рассмотрим численные примеры.

Пусть на плоскости задана декартова прямоугольная система координат. Тогда нормальное уравнение прямой L на плоскости представляется следующей формулой:

где r− расстояние от начала координат до прямой L, а φ− это угол между нормальным вектором n прямой L и осью Ox. (Если r>0, то нормальный вектор n направлен в сторону прямой L).

Выведем формулу (1). Пусть на плоскости задана декартова прямоугольная система координат и прямая L (Рис.1). Проведем через начало координат прямую Q, перпендикулярную прямой L, и точку пересечения обозначим через R. На этой прямой выделим единичный вектор n, с направлением, совпадающим с вектором . (Если точки O и R совпадают, то направление n можно взять произвольным).

Выразим уравнение прямой L через два параметра: длину отрезка и угол φ между вектором n и осью Ox.

Так как вектор n является единичным вектором, то его проекции на Ox и Oy будут иметь следующие координаты:

Обозначим через r расстояние от начала координат до точки R. Рассмотрим, теперь, точку M(x,y). Точка M лежит на прямой L тогда и только тогда, когда проекция вектора на прямую R равна r, т.е.

(3)

Скалярное произведение векторов n и имеет следующий вид:

, (4)

где − обозначен скалярное произведение векторов n и , а | · |− норма (длина) вектора, α−угол между векторами n и .

Поскольку n единичный вектор, то (4) можно записать так:

. (5)

Учитывая, что n=<cosφ, sinφ>, , мы получим:

. (6)

Тогда из уравнений (3), (5), (6) следует:

Мы получили нормальное уравнение прямой L. Уравнение (7) (или (1)) называется также нормированным уравнением прямой .

Пример 1. Построить нормальное уравнение прямой, нормальный вектор которого с осью Ox имеет угол φ=60°, а расстояние от начала координат до прямой составляет 4.

Решение. Имеем: φ=60°, r=4. Вычисляем:

Подставляя вычисленные значения в (7) получим:

.

.

Приведение общего уравнения прямой на плоскости к нормальному виду

Так как уравнения (1) и (8) должны определять одну и ту же прямую (Замечание 1 статьи «Общее уравнение прямой на плоскости»), то существует такое число t, что

tAx=cosφ, tB=sinφ, tC=−r. (9)

Возвышая в квадрат первые два равенства в (9) и складывая их, получим:

(tA) 2 +(tB) 2 =cos 2 φ+sin 2 φ=1. (10)

Упростим выражение и найдем t:

t 2 A 2 +t 2 B 2 =t 2 (A 2 +B 2 )=1,

. (11)

Знаменатель в (11) отличен от нуля, т.к. хотя бы один из коэффициентов A, B не равен нулю (в противном случае (8) не представлял бы уравнение прямой).

Выясним, какой знак имеет t. Обратим внимание на третье равенство в (9). Так как r−это расстояние от начала координат до прямой, то r≥0. Тогда произведение tC должна иметь отрицательный знак. Т.е. знак t в (11) должен быть противоположным знаку C.

Подставляя в (1) вместо cosφ, sinφ, и −r значения из (9), получим tAx+tBy+tC=0. Т.е. для приведения общего уравенения прямой к нормальному виду, нужно заданное уравнение умножить на множитель (11). Множитель (11) называется нормирующим множителем .

Пример 2. Задано общее уравнение прямой

Построить нормальное уравнение прямой.

Решение. Из уравнения (12) можно записать: A=2, B=−3, C=4. Вычислим t из равенства (11):

Так как C>0, то знак t отрицательный:

Умножим уравнение (12) на t:

Ответ. Нормальное уравнение прямой (12) имеет следующий вид:

Отметим, что число является расстоянием от начала координат до прямой (12).

Нормальное уравнение прямой на плоскости, расстояние от точки до прямой

Пусть дана некоторая прямая L. Проведём через начало координат прямую n, перпендикулярно данной и назовём её нормалью к прямой L. Буквой N отметим точку, в которой нормаль пересекает прямую L. На нормали введём направление от точки O к точке N.

Обозначим через угол, на которой нужно повернуть против часовой стрелки ось Ox до совмещения её положительного направления с направлением нормали, через p длину отрезка ON.

. (1)

будет нормальным уравнением прямой.

С помощью нормального уравнения прямой можно определить расстояние от данной точки плоскости до прямой. Пусть — точка, не лежащая на прямой, заданной нормальным уравнением. Требуется определить расстояние d от точки до прямой. Это расстояние определяется по формуле

. (2)

Общее уравнение прямой можно привести к нормальному виду. Пусть

— общее уравнение прямой, а

— её нормальное уравнение.

Так как оба уравнения определяют одну и ту же прямую, их коэффициенты пропорциональны.

Очевидно, для получения нормального уравнения следует все члены общего уравнения умножить на постоянный множитель , вычисляемый по формуле

. (3)

В этой формуле берётся знак, противоположный знаку C в общем уравнении прямой.

Таким образом, получаем уравнение

, (4)

которое и будет нормальным уравнением прямой на плоскости.

Пример 1. Привести общее уравнение прямой к нормальному виду.

Решение. Вычисляем нормирующий множитель:

(знак, противоположный C).

Умножаем все члены общего уравнения на нормирующий множитель и получаем:

.

Пример 2. Привести общее уравнение прямой к нормальному виду.

Решение. Вычисляем нормирующий множитель:

(знак, противоположный C).

Умножаем все члены общего уравнения на нормирующий множитель и получаем:

.

Пример 3. Найти расстояние от точки до прямой .

Решение. Приведём данное уравнение к нормальному виду. Вычисляем нормирующий множитель:

(знак, противоположный C).

Умножаем все члены общего уравнения на нормирующий множитель и получаем нормальное уравнение:

.

По формуле (2) находим искомое расстояние:

.

Нормальное (нормированное) уравнение прямой: описание, примеры, решение задач

В данной статье рассмотрим нормальное уравнение прямой на заданной плоскости. Получим нормальное уравнение, покажем не примере, дадим определение нормирующего множителя и разберем приведение общего уравнения к нормальному виду. Заключительной части посвятим основному приложению нормального уравнения прямой, то есть нахождение расстояние от точки до прямой на плоскости.

Нормальное уравнение прямой – описание и пример

Рассмотрим выведение нормального уравнения.

Фиксируем на плоскости систему координат О х у , где задаем прямую с точкой, через которую она проходит с нормальным вектором прямой. Нормальному вектору прямой дадим обозначение n → . Его начало обозначено точкой O . координатами являются cos α и cos β , углы которых расположены между вектором n → и положительными осями О x и O y . Это запишется так: n → = ( cos α , cos β ) . Прямая проходит через точку A с расстоянием равным p , где p ≥ 0 от начальной точки O при положительном направлении вектора n → . Если р = 0 , тогда A считается совпадающей с точкой координат. Отсюда имеем, что O A = p . Получаем уравнение, при помощи которого задается прямая.

Имеем, что точка с координатами M ( x , y ) расположена на прямой тогда и только тогда, когда числовая проекция вектора O M → по направлению вектора n → равняется p , значит при выполнении условия n p n → O M → = p .

O M → является радиус-вектором точки с координатами M ( x , y ) , значит O M → = ( x , y ) .

Применив определение скалярного произведения векторов, получим равенство вида: n → , O M → = n → · n p n → O M → = 1 · n p n → O M → = n p n → O M → = p

Тогда это же произведение будет иметь вид в координатной форме: n → , O M → = cos α · x + cos β · y

Отсюда cos α · x + cos β · y = p или cos α · x + cos β · y — p = 0 . Было выведено нормальное уравнение прямой.

Уравнение вида cos α · x + cos β · y — p = 0 называется нормальным уравнением прямой или нормированным уравнением прямой. Иначе говоря, уравнение прямой в нормальном виде.

Понятно, что такое уравнение представляет собой общее уравнение прямой A x + B y + C = 0 , где A и B имеют значения, при которых длина вектора n → = ( A , B ) равна 1 , а C является неотрицательным числом.

Теперь рассмотрим его геометрический смысл. Нормальное уравнение прямой вида cos α · x + cos β · y — p = 0 задает в системе координат О х у на плоскости прямую с наличием нормального вектора единичной длины n → = ( cos α , cos β ) , которая располагается на расстоянии равном p от начала координат по положительному направлению вектора n → .

Если дано уравнение прямой вида — 1 2 · x + 3 2 · y — 3 = 0 , то на плоскости задается прямая, у которой нормальный вектор с координатами — 1 2 , 3 2 . Удаление прямой от начала координат идет по направлению, совпадающему с направлением нормального вектора n → = — 1 2 , 3 2 .

Приведение общего уравнения прямой к нормальному виду

Часто решение задач подразумевает использование нормального уравнения прямой, но само оно не дается в нормальном виде, поэтому необходимо для начала приводить к нормальному виду, после чего выполнять необходимые вычисления.

Нормальное уравнение получают из общего уравнения прямой. Когда на плоскости задается другим уравнением, то необходимо привести его к общему виду, после чего возможно приведение к нормальному. Если рассмотреть на примере, то это будет выглядеть так.

Для приведения общего уравнения прямой A x + B x + C = 0 к нормальному необходимо обе части умножить на нормирующий множитель, который имеет значение ± 1 A 2 + B 2 . Его знак определяется при помощи противоположности знака слагаемого C . При С = 0 знак выбирается произвольно.

Привести уравнение прямой 3 x — 4 y — 16 = 0 к нормальному виду.

Из общего уравнения видно, что А = 3 , В = — 4 , С = — 16 . Так как значение C отрицательное, необходимо брать положительный знак для формулы. Перейдем к вычислению нормирующего множителя:

1 A 2 + B 2 = 1 3 2 + ( — 4 ) 2 = 1 5

Теперь необходимо умножить обе части уравнения на одну пятую. Получим, что 1 5 · ( 3 x — 4 y — 16 ) = 0 ⇔ 3 5 · x — 4 5 · y — 16 5 = 0 .

Нормальное уравнение по заданной прямой найдено.

Ответ: 3 5 · x — 4 5 · y — 16 5 = 0 .

источники:

http://function-x.ru/line6.html

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/normalnoe-normirovannoe-uravnenie-prjamoj/

Нормальное уравнение прямой

В данной статье мы рассмотрим нормальное уравнение прямой на плоскости. Приведем примеры построения нормального уравнения прямой по углу наклона нормального вектора прямой от оси Ox и по расстоянию от начала координат до прямой. Представим метод приведения общего уравнения прямой к нормальному виду. Рассмотрим численные примеры.

Пусть на плоскости задана декартова прямоугольная система координат. Тогда нормальное уравнение прямой L на плоскости представляется следующей формулой:

где r− расстояние от начала координат до прямой L, а φ− это угол между нормальным вектором n прямой L и осью Ox. (Если r>0, то нормальный вектор n направлен в сторону прямой L).

Выведем формулу (1). Пусть на плоскости задана декартова прямоугольная система координат и прямая L (Рис.1). Проведем через начало координат прямую Q, перпендикулярную прямой L, и точку пересечения обозначим через R. На этой прямой выделим единичный вектор n, с направлением, совпадающим с вектором . (Если точки O и R совпадают, то направление n можно взять произвольным).

Выразим уравнение прямой L через два параметра: длину отрезка и угол φ между вектором n и осью Ox.

Так как вектор n является единичным вектором, то его проекции на Ox и Oy будут иметь следующие координаты:

Обозначим через r расстояние от начала координат до точки R. Рассмотрим, теперь, точку M(x,y). Точка M лежит на прямой L тогда и только тогда, когда проекция вектора на прямую R равна r, т.е.

Скалярное произведение векторов n и имеет следующий вид:

где − обозначен скалярное произведение векторов n и , а | · |− норма (длина) вектора, α−угол между векторами n и .

Поскольку n единичный вектор, то (4) можно записать так:

Учитывая, что n={cosφ, sinφ}, , мы получим:

Тогда из уравнений (3), (5), (6) следует:

или

Мы получили нормальное уравнение прямой L. Уравнение (7) (или (1)) называется также нормированным уравнением прямой.

Пример 1. Построить нормальное уравнение прямой, нормальный вектор которого с осью Ox имеет угол φ=60°, а расстояние от начала координат до прямой составляет 4.

Решение. Имеем: φ=60°, r=4. Вычисляем:

Подставляя вычисленные значения в (7) получим:

Ответ:

Приведение общего уравнения прямой на плоскости к нормальному виду

Пусть на плоскости задано уравнение прямой в общем виде:

Так как уравнения (1) и (8) должны определять одну и ту же прямую (Замечание 1 статьи «Общее уравнение прямой на плоскости»), то существует такое число t, что

Возвышая в квадрат первые два равенства в (9) и складывая их, получим:

Упростим выражение и найдем t:

Знаменатель в (11) отличен от нуля, т.к. хотя бы один из коэффициентов A, B не равен нулю (в противном случае (8) не представлял бы уравнение прямой).

Выясним, какой знак имеет t. Обратим внимание на третье равенство в (9). Так как r−это расстояние от начала координат до прямой, то r≥0. Тогда произведение tC должна иметь отрицательный знак. Т.е. знак t в (11) должен быть противоположным знаку C.

Подставляя в (1) вместо cosφ, sinφ, и −r значения из (9), получим tAx+tBy+tC=0. Т.е. для приведения общего уравенения прямой к нормальному виду, нужно заданное уравнение умножить на множитель (11). Множитель (11) называется нормирующим множителем.

Пример 2. Задано общее уравнение прямой

Построить нормальное уравнение прямой.

Решение. Из уравнения (12) можно записать: A=2, B=−3, C=4. Вычислим t из равенства (11):

Так как C>0, то знак t отрицательный:

Умножим уравнение (12) на t:

Ответ. Нормальное уравнение прямой (12) имеет следующий вид:

Отметим, что число является расстоянием от начала координат до прямой (12).

Пусть

– фиксированная точка плоскости,

– вектор, заданный своими направляющими
косинусами, тогда уравнение вида

задает прямую на плоскости, проходящую
через точку

перпендикулярно вектору

,
который называется нормальным
вектором этой прямой. Запишем скалярное
произведение вектора

и вектора

в координатной форме:

(8)

Теперь, введя
обозначение

получим нормальное уравнение прямой:

(9)

Рис. 3

где

– угол наклона перпендикуляра,
опущенного из начала координат на
данную прямую, к оси Ох;

– угол наклона этого перпендикуляра
к оси Оу
(рис. 3).

Общее уравнение
прямой Ax
+
By
+
C
=
0
может быть
приведено к нормальному виду при
умножении его на нормирующий множитель


взятый со знаком,
противоположным знаку свободного члена.

1.10. Полярные параметры прямой

Полярными
параметрами можно задать положение
всякой прямой на плоскости.

Рис.
4

Полярным
расстоянием прямой (рис. 4) называется
длина p
перпендикуляра ОК,
опущенного на прямую из начала координат
О.
Полярное расстояние может быть
положительным или равным нулю (
).
Полярным углом прямой называется
угол

между положительным направлением

оси Ох и
перпендикуляром, опущенным на прямую
из начала координат. Полярное расстояние
и полярный угол называются полярными
параметрами прямой
. При этом нормальное
уравнение прямой можно записать в виде:

(10)

2. Прямые на плоскости: взаимное расположение

Утверждение 2.
Пусть на
плоскости заданы две прямые:

и

В этом случае выполняется одно и только
одно из трех условий:

1) прямые не имеют
общих точек

при этом система линейных алгебраических
уравнений

несовместна (имеет пустое множество
решений);

2) прямые имеют
единственную общую точку

при этом система линейных алгебраических
уравнений

имеет единственное решение

которое может быть найдено, например,
по формулам Крамера:

(11)

(12)

3) прямые совпадают

при этом система линейных алгебраических
уравнений

не определена (имеет бесконечно много
решений).

2.1. Условие, при котором три точки лежат на одной прямой

Три точки

,

,

лежат на одной прямой тогда и только
тогда, когда определитель


.

(13)

Равенство нулю
определителя (13) означает, что площадь
«треугольника»

равна нулю.

2.2. Взаимное расположение прямой и пары точек

Пусть заданы точки

и общее уравнение некоторой прямой: Ax
+
By + C
=
0. Вычислим значения величин

и

по формулам:

(14)

(15)

Взаимное расположение
точек

и

относительно заданной прямой можно
определить по следующим признакам:

1) числа

и

имеют одинаковые знаки, в этом случае
точки

и

лежат по одну сторону от прямой;

2) числа

и

имеют противоположные знаки, в этом
случае точки

и

лежат по разные стороны от прямой;

3) одно из чисел

,

равно нулю (или оба равны нулю), в этом
случае точка

или

соответственно (или обе) принадлежит
прямой.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Прямая имеет несколько видов задающих ее уравнений. Рассмотрим некоторые из них и разберем примеры.

Здесь будет калькулятор

Уравнение прямой с угловым коэффициентом

Уравнение прямой с угловым коэффициентом

y=kx+by=kx+b,

где kk — угловой коэффициент, а bb — свободный коэффициент.

Уравнения данного вида составляются следующим образом по формуле:

y−y0=k(x−x0)y-y_0=k(x-x_0),

где (x0;y0)(x_0; y_0) — координаты любой точки, лежащей на данной прямой.

Задача 1

Составить уравнение прямой, если координаты точки, принадлежащей данной прямой, таковы: x0=1,y0=2x_0=1, y_0=2. Угловой коэффициент принять равным 11.

Решение

Подставляем значения в формулу:

y−y0=k(x−x0)y-y_0=k(x-x_0)

y−2=1⋅(x−1)y-2=1cdot(x-1)

Приводим подобные слагаемые:

y=x+1y=x+1

Ответ

y=x+1y=x+1

Общее уравнение прямой

Для приведения прямой к такому виду из предыдущего вида достаточно просто перенести все слагаемые в одну часть. Возьмем уравнение прямой из предыдущей задачи y=x+1y=x+1. Тогда общее уравнение этой прямой запишется в виде:

y−x−1=0y-x-1=0

Уравнение прямой по двум точкам

Если в задаче даны координаты двух точек и необходимо составить уравнение прямой, то это делается при помощи такой формулы:

Уравнение прямой по двум точкам

x−x2x1−x2=y−y2y1−y2frac{x-x_2}{x_1-x_2}=frac{y-y_2}{y_1-y_2},

где (x1;y1),(x2;y2)(x_1; y_1), (x_2; y_2) — координаты двух точек, через которые проходит данная прямая.

Задача 2

Найти уравнение прямой, если координаты точек имеют значения: (2;3)(2;3) и (4;−1)(4;-1).

Решение

x1=2x_1=2
y1=3y_1=3
x2=4x_2=4
y2=−1y_2=-1

x−x2x1−x2=y−y2y1−y2frac{x-x_2}{x_1-x_2}=frac{y-y_2}{y_1-y_2}

x−42−4=y−(−1)3−(−1)frac{x-4}{2-4}=frac{y-(-1)}{3-(-1)}

x−4−2=y+14frac{x-4}{-2}=frac{y+1}{4}

x−4=−y−12x-4=frac{-y-1}{2}

y+1=2⋅(4−x)y+1=2cdot(4-x)

y=8−2x−1y=8-2x-1

y=−2x+7y=-2x+7

Ответ

y=−2x+7y=-2x+7

Уравнение прямой при помощи точки и вектора нормали

Уравнение прямой по точке и нормали

(x−x0)⋅n1+(y−y0)⋅n2=0(x-x_0)cdot n_1+(y-y_0)cdot n_2=0,

где (x0;y0)(x_0; y_0) — координаты точки, лежащей на данной прямой, а (n1;n2)(n_1; n_2) — координаты вектора нормали к этой прямой.

Задача 3

Составить уравнение прямой, если координаты нормального вектора — (1;−5)(1;-5), а точка, через которую проходит данная прямая имеет координаты (7;8)(7;8).

Решение

x0=7x_0=7
y0=8y_0=8
n1=1n_1=1
n2=−5n_2=-5

(x−x0)⋅n1+(y−y0)⋅n2=0(x-x_0)cdot n_1+(y-y_0)cdot n_2=0,

(x−7)⋅1+(y−8)⋅(−5)=0(x-7)cdot 1+(y-8)cdot (-5)=0,

x−7+40−5y=0x-7+40-5y=0

x−5y=−40+7x-5y=-40+7

x−5y=−33x-5y=-33

5y=x+335y=x+33

y=x5+335y=frac{x}{5}+frac{33}{5}

Проверка

Чтобы проверить правильность решения, достаточно подставить координаты точки в данное уравнение и, если оно будет верным, то задача решена верно.

8=75+3358=frac{7}{5}+frac{33}{5}

8=88=8 — верно, ответ правильный.

Ответ

y=x5+335y=frac{x}{5}+frac{33}{5}

Прямая в пространстве

Уравнение прямой, заданной в пространстве имеет такой вид:

Уравнение прямой в пространстве

x−x0ν1=y−y0ν2=z−z0ν3frac{x-x_0}{nu_1}=frac{y-y_0}{nu_2}=frac{z-z_0}{nu_3},

где (x0;y0;z0)(x_0;y_0;z_0) — координаты точки, через которую проходит прямая, а (ν1,ν2,ν3)(nu_1,nu_2,nu_3) — координаты напрявляющего вектора данной прямой.

Задача 4

Написать уравнение прямой по заданной точке (1;5;−23)(1;5;-23) и вектору направления (3;11;7)(3;11;7).

Решение

x0=1x_0=1
y0=5y_0=5
z0=−23z_0=-23
ν1=3nu_1=3
ν2=11nu_2=11
ν3=7nu_3=7

x−x0ν1=y−y0ν2=z−z0ν3frac{x-x_0}{nu_1}=frac{y-y_0}{nu_2}=frac{z-z_0}{nu_3}

x−13=y−511=z−(−23)7frac{x-1}{3}=frac{y-5}{11}=frac{z-(-23)}{7}

Проверка

Проверим, удовлетворяет ли это уравнение прямой точке (x0;y0;z0)(x_0;y_0;z_0). Для этого подставим в него координаты этой точки:

1−13=5−511=−23−(−23)7frac{1-1}{3}=frac{5-5}{11}=frac{-23-(-23)}{7} — верно, значит ответ правильный.

Такой вид уравнения прямой называется каноническим.

Ответ

x−13=y−511=z−(−23)7frac{x-1}{3}=frac{y-5}{11}=frac{z-(-23)}{7}

Тест по теме “Составление уравнения прямой”

Понравилась статья? Поделить с друзьями:

Не пропустите и эти статьи:

  • Как написать норкину андрею
  • Как написать нон стоп
  • Как написать номер школы на телефоне
  • Как написать номер школы на компьютере
  • Как написать номер школы на клавиатуре телефона

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии