Как написать уравнение плоскости проходящей через 2 точки перпендикулярно плоскости

Плоскость (рис. 165), проходящая через две точки перпендикулярно плоскости заданной уравнением представляется уравнением

Оно выражает компланарность векторов (§ 120)

Пример. Плоскость, проходящая через две точки перпендикулярно плоскости представляется уравнением

Замечание. В случае, когда прямая перпендикулярна плоскости плоскость неопределенна. В соответствии с этим уравнение (1) обращается в тождество.

Рис. 165

Задача 29252 5.2.20) Составить уравнение плоскости,…

Условие

5.2.20) Составить уравнение плоскости, проходящей через точки M1(4; 2; 3) и М2 (2; 0; 1) и перпендикулярной к плоскости х + 2у + 3z + 4 = 0.

математика ВУЗ
19229

Решение

Пусть M(x;y;z) произвольная точка плоскости
Значит векторы
vector{M_(1)M}=(x-4;y-2;z-3);
vector{M_(1)M_(2)}=(2-4;0-2;1-3)=(-2;-2;-2)
и нормальный вектор vector{n}=(1;2;3}
[b]компланарны [/b].

Условие [b]компланарности[/b] векторов, заданных
координатами — равенство нулю определителя третьего порядка,
составленного из координат векторов.

Вместо вектора vector{M_(1)M_(2)}=(-2;-2;-2) можно
можно взять коллинеарный ему вектор с координатами (1;1;1)

См. приложение.

О т в е т. х-2у+z-3=0

Все решения

Написать комментарий

Уравнение плоскости, проходящей через две точки перпендикулярно плоскости

Материал из Циклопедии

Перейти к навигации
Перейти к поиску

Уравнение плоскости, проходящей через две точки перпендикулярно плоскости, задаётся равенством нулю смешанного произведения векторов-разностей соответствующих радиусов-векторов точек и нормали к плоскости.

Обозначения[править]

Введём обозначения:

{displaystyle {bar {r}}=(x,y,z)} — радиус-вектор точки плоскости;

{displaystyle {bar {r}}_{1}=(x_{1},y_{1},z_{1})} — радиус-вектор первой точки;

{displaystyle {bar {r}}_{2}=(x_{2},y_{2},z_{2})} — радиус-вектор второй точки;

{displaystyle {bar {n}}_{3}=(A_{3},B_{3},C_{3})} — нормаль к плоскости;

{displaystyle A_{3}x+B_{3}y+C_{3}z+D_{3}=0} — уравнение плоскости.

Формулы:[править]

Векторная форма:

{displaystyle left({bar {r}}-{bar {r}}_{1}right)left({bar {r}}_{2}-{bar {r}}_{1}right){bar {n}}_{3}=0}

Координатная форма:

{displaystyle {begin{vmatrix}x-x_{1}&y-y_{1}&z-z_{1}\x_{2}-x_{1}&y_{2}-y_{1}&z_{2}-z_{1}\A_{3}&B_{3}&C_{3}end{vmatrix}}=0Leftrightarrow }
{displaystyle Leftrightarrow {begin{vmatrix}y_{2}-y_{1}&z_{2}-z_{1}\B_{3}&C_{3}end{vmatrix}}(x-x_{1})-{begin{vmatrix}x_{2}-x_{1}&z_{2}-z_{1}\A_{3}&C_{3}end{vmatrix}}(y-y_{1})+{begin{vmatrix}x_{2}-x_{1}&y_{2}-y_{1}\A_{3}&B_{3}end{vmatrix}}(z-z_{1})=0}

Уравнения плоскости:[править]

  • уравнение плоскости, проходящей через три точки;
  • уравнение плоскости, равноудалённой от двух точек;
  • уравнение плоскости, проходящей через две точки параллельно прямой;
  • уравнение плоскости, проходящей через две точки перпендикулярно плоскости;
  • уравнение плоскости, проходящей через точку и прямую;
  • уравнение плоскости, проходящей через точку перпендикулярно прямой;
  • уравнение плоскости, проходящей через точку параллельно плоскости;
  • уравнение плоскости, проходящей через точку параллельно двум прямым;
  • уравнение плоскости, проходящей через точку перпендикулярно двум плоскостям;
  • уравнение плоскости, проходящей через прямую параллельно прямой;
  • уравнение плоскости, проходящей через прямую перпендикулярно плоскости.

Литература[править]

  • Корн Г., Корн Т. Справочник по математике для научных работников и инженеров — М.: Наука, 1970.
  • Выгодский М. Я. Справочник по высшей математике — М.: Наука, 1964, стр.162.

Онлайн калькулятор. Уравнение плоскости

Предлагаю вам воспользоваться онлайн калькулятором чтобы найти уравнение плоскости.

Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения плоскости и закрепить пройденный материал.

Найти уравнение плоскости

Выберите метод решения исходя из имеющихся в задаче данных:

В задаче известны:

Ввод данных в калькулятор для составления уравнения плоскости

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора для вычисления уравнения плоскости

  • Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.

Теория. Уравнение плоскости.

Плоскость — поверхность, содержащая полностью каждую прямую, соединяющую любые её точки

В зависимости от условий задачи уравнение плоскости можно составить следующими способами:

    Если заданы координаты трех точек A( x 1, y 1, z 1), B( x 2, y 2, z 2) и C( x 3, y 3, z 3), лежащих на плоскости, то уравнение плоскости можно составить по следующей формуле
x — x 1 y — y 1 z — z 1 = 0
x 2 — x 1 y 2 — y 1 z 2 — z 1
x 3 — x 1 y 3 — y 1 z 3 — z 1

Если заданы координаты точки A( x 1, y 1, z 1) лежащей на плоскости и вектор нормали n = , то уравнение плоскости можно составить по следующей формуле:

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Уравнение плоскости онлайн

С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через три точки, и уравнение плоскости, проходящей через одну точку и имеющий заданный нормаль плоскости. Дается подробное решение с пояснениями. Для построения уравнения плоскости выберите вариант задания исходных данных, введите координаты точек в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение плоскости, проходящей через три точки

Рассмотрим цель − вывести уравнение плоскости, проходящей через три различные точки M1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3), не лежащие на одной прямой. Так как эти точки не лежат на одной прямой, векторы и не коллинеарны. Следовательно точка M(x, y, z) лежит в одной плоскости с точками M1, M2, M3 тогда и тольно тогда, когда векторы M1M2, M1M3 и компланарны. Но векторы M1M2, M1M3, M1M компланарны тогда и только тогда, когда их смешанное произведение равно нулю. Используя смешанное произведение векторов M1M2, M1M3, M1M в координатах, получим необходимое и достаточное условие принадлежности точки M(x, y, z) к указанной плоскости:

Разложив определитель в левой части выражения, например, по первому столбцу и упростив, получим уравнение плоскости в общей форме, проходящий по точкам M1, M2, M3:

Пример 1. Построить уравнение плоскости, проходящую через точки A(1, 2, 1), B(4, 5, -4), С(2, 1, 2).

(1)

Подставляя координаты точек A, B, C в (1), получим:

Разложим определитель по первому столбцу:

Уравнение плоскости, проходящей через точки A(1, 2, 1), B(4, 5, -4), С(2, 1, 2) имеет вид:

Уравнение плоскости, проходящей через одну точку и имеющий нормаль n

Пример 2. Построить плоскость, проходящую через точку M0(-1, 2, 1) и имеюший нормаль n(1, 4/5, 1).

(2)

Подставляя координаты векторов M0 и n в (2), получим:

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Составить уравнение плоскости

Этот калькулятор онлайн составляет (находит) уравнение плоскости по трем точкам, лежащим на плоскости или по нормали и одной точке лежащей на плоскости.

Онлайн калькулятор для нахождения уравнения плоскости не просто даёт ответ задачи, он приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5 или так 1,3

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: ( -frac<2> <3>)

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: -1&5/7
Результат: ( -1frac<5> <7>)

Составить уравнение плоскости

Немного теории.

Общее уравнение плоскости

Пусть заданы:
прямоугольная система координат Oxyz,
произвольная плоскость ( pi );
точка ( M_0(x_0;y_0;z_0) in pi );
вектор ( vec(A;B;C) ), перпендикулярный плоскости ( pi ) (смотри рисунок).

Рассмотрим произвольную точку М(х; у; z). Точка М лежит на плоскости ( pi ) тогда и только тогда, когда векторы ( vec ) и ( vec ) взаимно перпендикулярны. Так как координаты вектора ( vec ) равны ( x-x_0, ; y-y_0, ; z-z_0 ) , то в силу условия перпендикулярности двух векторов (скалярное произведение должно быть равно нулю) получаем, что точка М (х; у; z) лежит на плоскости ( pi ) тогда и только тогда, когда

Раскрывая скобки, приведем уравнение (1) к виду
( Ax+By+Cz+(-Ax_0-By_0-Cz_0)=0 )
Далее, обозначая число ( -Ax_0-By_0-Cz_0 ) через ( D ), получаем

Верно и обратное: всякое уравнение первой степени вида (2) определяет в заданной прямоугольной системе координат плоскость. Действительно, пусть заданы прямоугольная система координат Oxyz и уравнение ( Ax+By+Cz+D=0 ) с произвольными коэффициентами А, В, С и D, причем из коэффициентов А, В и С хотя бы один отличен от нуля. Данное уравнение заведомо имеет хотя бы одно решение ( x_0, ; y_0, ; z_0 ) ( если, например, ( C neq 0 ), то, взяв произвольные х0, и y0, из уравнения получим: ( z_0 = -fracx_0 — fracy_0-frac ) ).

Таким образом, существует хотя бы одна точка M0(x0; y0; z0), координаты которой удовлетворяют уравнению, т.е. Ax0+By0+Cz0+D=0. Вычитая это числовое равенство из уравнения Ax+By+Cz+D=0, получаем уравнение
A(x-x0) + B(y-y0) + C(z-z0) + D=0,
эквивалентное данному. Полученное уравнение (а стало быть, и уравнение Ax+By+Cz+D=0 ) совпадает с уравнением (1) и, значит, определяет плоскость ( pi ), проходящую через точку M0(x0 и перпендикулярную вектору ( vec(A;B;C) ).

Вектор ( vec(A;B;C) ), перпендикулярный плоскости, называется нормальным вектором или нормалью этой плоскости.

Теорема
Если два уравнения ( A_1x+B_1y+C_1z+D_1=0 ) и ( A_2x+B_2y+C_2z+D_2=0 ) определяют одну и ту же плоскость, то их коэффициенты пропорциональны, т.е. $$ frac = frac = frac = frac $$

Угол между двумя плоскостями

Рассмотрим две плоскости ( pi_1 ), и ( pi_2 ), заданные соответственно уравнениями

При любом расположении плоскостей ( pi_1 ), и ( pi_2 ) в пространстве один из углов ( varphi ) между ними равен углу между их нормалями ( vec(A_1;B_1;C_1) ) и ( vec(A_2;B_2;C_2) ) и вычисляется по следующей формуле:
$$ cos varphi = frac < veccdot vec>< |vec| |vec| > = frac <sqrt; sqrt > tag <3>$$

Второй угол равен ( 180^circ -cos varphi )

Условие параллельности плоскостей

Если плоскости ( pi_1 ) и ( pi_2 ) параллельны, то коллинеарны их нормали ( vec ) и ( vec ), и наоборот. Но тогда
$$ frac = frac = frac tag <4>$$
Условие (4) является условием параллельности плоскостей ( pi_1 ) и ( pi_2 )

Условие перпендикулярности плоскостей

Если плоскости ( pi_1 ) и ( pi_2 ) взаимно перпендикулярны, то их нормали ( vec ) и ( vec ) также перпендикулярны, и наоборот. Поэтому из формулы (3) непосредственно получаем условие перпендикулярности плоскостей ( pi_1 ) и ( pi_2 ):
( A_1 A_2 + B_1 B_2 + C_1 C_2 = 0 )

источники:

http://matworld.ru/analytic-geometry/uravnenie-ploskosti-online.php

http://www.math-solution.ru/math-task/lp-eqplain

Плоскость в пространстве, всевозможные уравнения, расстояние от точки до плоскости.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Существуют такие формы записи уравнения плоскости:

1) $Ax+By+Cz+D=0 -$ общее уравнение плоскости $P,$ где $overline{N}=(A, B, C) -$ нормальный вектор плоскости $P.$

ploskost1

2) $A(x-x_0)+B(y-y_0)+C(z-z_0)=0 -$  уравнение плоскости $P,$ которая проходит через точку $M(x_0, y_0, z_0)$ перпендикулярно вектору $overline{N}=(A, B, C).$ Вектор $overline N$ называется нормальным вектором плоскости.

ploskost2

3) $frac{x}{a}+frac{y}{b}+frac{z}{c}=1 -$  уравнение плоскости в отрезках на осях, где $a,$  $b$ и $c -$ величины отрезков, которые плоскость отсекает на осях координат.

ploskost3

4) $begin{vmatrix}x-x_1&y-y_1&z-z_1\x_2-x_1&y_2-y_1&z_2-z_1\x_3-x_1&x_2-x_1&x_3-x_1end{vmatrix}=0 — $ уравнение плоскости, которая проходит через три точки $A(x_1, y_1, z_1), B(x_2, y_2, z_2)$ и $C(x_3, y_3, z_3).$ 

ploskost4

5) $xcosalpha+ycosbeta+zcosgamma-p=0 -$ нормальное уравнение плоскости, где $cosalpha, cosbeta$ и $cosgamma -$ направляющие косинусы нормального вектора $overline{N},$ направленного из начала координат в сторону плоскости, а $p>0 -$ расстояние от начала координат до плоскости.

Общее уравнение плоскости приводится к нормальному, путем умножения на нормирующий множитель $mu=-frac{sgn D}{sqrt{A^2+B^2+C^2}}.$

Расстояние от точки $M(x_0, y_0, z_0)$ до плоскости $P: Ax+By+Cz+D=0$ вычисляется по формуле $$d=left|frac{Ax_0+By_0+Cz_0+D}{sqrt{A^2+B^2+C^2}}right|.$$

 {jumi[*3]}

Примеры:

2.180.

а) Заданы плоскость $P: -2x+y-z+1=0$ и точка $M(1, 1, 1).$ Написать уравнение плоскости $P’,$ проходящей через точку $M$ параллельно плоскости $P$ и вычислить расстояние $rho(P, P’).$ 

Решение.

Так как п.лоскости $P$ и $P’$ параллельны, то нормальный вектор для плоскости $P$ будет также нормальным вектором для плоскости $P’.$ Из уравнения плоскости получаем $overline{N}=(-2, 1, -1).$

Далее запишем уравнение плоскости по формуле (2): $A(x-x_0)+B(y-y_0)+C(z-z_0)=0 -$  уравнение плоскости, которая проходит через точку $M(x_0, y_0, z_0)$ перпендикулярно вектору $overline{N}=(A, B, C).$ 

$-2(x-1)+(y-1)-(z-1)=0Rightarrow -2x+y-z+2=0.$

Ответ: $-2x+y-z+2=0.$

2.181. 

а) Написать уравнение плоскости $P’,$ проходящей через заданные точки $M_1(1, 2, 0)$ и $M_2(2, 1, 1)$ перпендикулярно заданной плоскости $P: -x+y-1=0.$

Решение.

Из уравнения плоскости $P,$ находим ее нормальный вектор $overline{N}=(-1, 1, 0).$ Плоскость, перпендикулярная плоскости $P,$ параллельна ее нормальному вектору. Отсюда следует, что можно выбрать точку $M_3(x, y, z)in P’$ такую, что что $overline{M_1M_3}||overline{N}.$

$overline{M_1M_3}=(x-1, y-2, z).$

Условие коллинеарности векторов $overline{M_1M_3}$ и $overline{N}:$ $frac{x_{M_1M_3}}{x_N}=frac{y_{M_1M_3}}{y_N}=frac{z_{M_1M_3}}{z_N}.$

Поскольку $z_N=0,$ то есть вектор $Nin XoY,$ то $z_{M_1M_3}=0.$

$frac{x-1}{-1}=frac{y-2}{1}.$ Пусть $x=2,$ тогда $y=1.$

Мы нашли точку $M_3=(2, 1, 0).$

Так как точка $M_1in P’,$ то и $M_3in P’.$ Запишем уравнение плоскости, которая проходит через три точки $M_1 (1, 2, 0), M_2(2, 1, 1)$ и $M_3(2, 1, 0).$

$begin{vmatrix}x-1&y-2&z\2-1&1-2&1\2-1&1-2&0-0end{vmatrix}=0 Rightarrow $

$begin{vmatrix}x-1&y-2&z\1&-1&1\1&-1&0end{vmatrix}=0 Rightarrow $

$(x-1)(-1)0+(-1)z+(y-2)-(-1)z-(-1)(x-1)-(y-2)0=0Rightarrow$ $Rightarrow-z+y-2+z+x-1=0Rightarrow x+y-3=0.$

Ответ: $x+y-3=0.$ 

2.182.

а) Написать уравнение плоскости $P,$ проходящей через точку $M(1, 1, 1)$ параллельно векторам $a_1(0, 1, 2)$ и $a_2(-1, 0, 1).$ 

Решение.

Поскольку вектор $[a_1, a_2]$ перпендикулярен плоскости векторов $a_1$ и $a_2$ (см. векторное произведение), то он будет также перпендикулярен искомой плоскости. То есть вектор $[a_1, a_2]$ является нормальным для плоскости $P.$ Найдем этот вектор:

$[a_1, a_2]=begin{vmatrix}i&j&k\0&1&2\-1&0&1end{vmatrix}=i(1-0)-j(0+2)+k(0+1)=i-2j+k.$

Таким образом $overline{N}=[a_1, a_2]=(1, -2, 1).$

Теперь можно найти уравнение плоскости $P,$ по формуле (2), как плоскости, проходящей через точку $M(1, 1, 1)$ перпендикулярно  вектору $overline N=(1, -2, 1):$

$1(x-1)-2(y-1)+1(z-1)=0Rightarrow$

$x-2y+z=0.$

Ответ: $x-2y+z=0.$

2.183.

а) Написать уравнение плоскости $P,$ проходящей через точки $M_1(1, 2, 0)$ и $M_2(2, 1, 1)$ параллельно вектору $a=(3, 0, 1).$

Решение.

Поскольку вектор $a$ параллелен плоскости $P,$ то для всякого вектора $overline{M_1M_3},$ параллельного вектору $a,$ точка $M_3in P.$

Пусть $M_3=(x, y, z).$ Тогда $overline{M_1M_3}=(x-1, y-2, z).$ Так как $overline{M_1M_3}||a,$ то $frac{x_{M_1M_3}}{x_а}=frac{y_{M_1M_3}}{y_а}=frac{z_{M_1M_3}}{z_а}.$ $y_a=0,$ то есть вектор $ain XoZ$ и  всякий параллельный ему вектор так же будет принадлежать этой плоскости. Таким образом, $y_{M_1M_3}=y-2=0Rightarrow y=2.$

Из условия параллельности векторов имеем $frac{x-1}{3}=frac{z}{1}.$ Пусть $x=4,$ тогда $z=1.$

Мы получили точку $M_3=(4, 2, 1).$

Запишем уравнение плоскости, которая проходит через три точки $M_1 (1, 2, 0), M_2(2, 1, 1)$ и $M_3(4, 2, 1).$

$begin{vmatrix}x-1&y-2&z\2-1&1-2&1\4-1&2-2&1end{vmatrix}=0 Rightarrow $

$begin{vmatrix}x-1&y-2&z\1&-1&1\3&0&1end{vmatrix}=0 Rightarrow $

$(x-1)(-1)1+1cdot zcdot 0+(y-2)3-3(-1)z-0cdot 1cdot(x-1)-1(y-2)1=0Rightarrow$

$Rightarrow -x+1+3y-6+3z-y+2=0Rightarrow -x+2y+3z-3=0.$

Ответ: $-x+2y+3z-3=0.$ 

2.184.

а) Написать уравнение плоскости, проходящей через три заданные точки $M_1(1, 2,0),$ $M_2(2, 1, 1)$ и $M_3(3, 0, 1).$ 

Решение.

Воспользуемся формулой (4):

$begin{vmatrix}x-1&y-2&z\2-1&1-2&1\3-1&0-2&1end{vmatrix}=0 Rightarrow $

$begin{vmatrix}x-1&y-2&z\1&-1&1\2&-2&1end{vmatrix}=0 Rightarrow $

$(x-1)(-1)1+z(-2)+2(y-2)1-2(-1)z-(-2)(x-1)-1(y-2)1=0Rightarrow$

$Rightarrow -x+1+-2z+2y-4+2z+2x-2-y+2=0Rightarrow x+y-3=0.$

Ответ: $x+y-3=0.$ 

 {jumi[*4]} 

Понравилась статья? Поделить с друзьями:
  • Как написать уравнение оси симметрии параболы
  • Как написать уравнение оси симметрии гиперболы
  • Как написать уравнение окружности если известны две точки
  • Как написать уравнение обратной функции
  • Как написать уравнение константы равновесия