Как написать уравнение прямой проходящей через 2 точки 9 класс

Данная статья раскрывает получение уравнения прямой, проходящей через две заданные точки в прямоугольной системе координат, расположенной на плоскости. Выведем уравнение прямой, проходящей через две заданные точки в прямоугольной системе координат. Наглядно покажем и решим несколько примеров, касающихся пройденного материала.

Уравнение прямой, проходящей через две заданные точки на плоскости

Перед получением уравнения прямой, проходящей через две заданные точки необходимо обратить внимание на некоторые факты. Существует аксиома, которая говорит о том, что через две несовпадающие точки на плоскости возможно провести прямую и только одну. Иначе говоря, две заданные точки плоскости определяются прямой линией, проходящей через эти точки.

Если плоскость задана прямоугольной системой координат Оху, то любая изображенная в нем прямая будет соответствовать уравнению прямой на плоскости. Также имеется связь с направляющим вектором прямой. Этих данных достаточно для того, чтобы произвести составление уравнения прямой, проходящей через две заданные точки.

Рассмотрим на примере решения подобной задачи. Необходимо составить уравнение прямой a, проходящей через две несовпадающие точки M1(x1, y1) и M2(x2, y2), находящиеся в декартовой системе координат.

В каноническом уравнении прямой на плоскости, имеющего вид x-x1ax=y-y1ay, задается прямоугольная система координат Оху с прямой, которая пересекается с ней в точке с координатами M1(x1, y1) с направляющим вектором  a→=(ax, ay).

Необходимо составить каноническое уравнение прямой a, которая пройдет через две точки с координатами M1(x1, y1) и M2(x2, y2).

Прямая а имеет направляющий вектор M1M2→ с координатами(x2-x1, y2-y1), так как пересекает точки М1 и М2. Мы получили необходимые данные для того, чтобы преобразовать каноническое уравнение  с координатами направляющего вектора M1M2→=(x2-x1, y2-y1) и координатами лежащих на них точках M1(x1, y1) и M2(x2, y2). Получим уравнение вида x-x1x2-x1=y-y1y2-y1 или x-x2x2-x1=y-y2y2-y1.

Рассмотрим рисунок, приведенный ниже.

Уравнение прямой, проходящей через две заданные точки на плоскости

Следуя по вычислениям, запишем параметрические уравнения прямой на плоскости, которое проходит через две точки с координатами M1(x1, y1) и M2(x2, y2). Получим уравнение вида x=x1+(x2-x1)·λy=y1+(y2-y1)·λ или x=x2+(x2-x1)·λy=y2+(y2-y1)·λ.

Рассмотрим подробней на решении нескольких примеров.

Пример 1

Записать уравнение прямой, проходящей через 2 заданные точки с координатами M1-5, 23, M21, -16.

Решение

Каноническим уравнением для прямой, пересекающейся в двух точках с координатами x1, y1 и x2, y2 принимает вид x-x1x2-x1=y-y1y2-y1. По условию задачи имеем, что x1=-5, y1=23, x2=1, y2=-16.  Необходимо подставить числовые значения в уравнение x-x1x2-x1=y-y1y2-y1. Отсюда получим, что каноническое уравнение примет вид x-(-5)1-(-5)=y-23-16-23⇔x+56=y-23-56.

Ответ: x+56=y-23-56.

При необходимости  решения задачи с другим видом уравнения, то для начала можно перейти к каноническому, так как из него проще прийти к любому другому.

Пример 2

Составить общее уравнение прямой, проходящей через точки с координатами M1(1, 1) и M2(4, 2) в системе координат Оху.

Решение

Для начала необходимо записать каноническое уравнение заданной прямой, которая проходит через заданные две точки. Получим уравнение вида x-14-1=y-12-1⇔x-13=y-11.

Приведем каноническое уравнение к искомому виду, тогда получим:

x-13=y-11⇔1·x-1=3·y-1⇔x-3y+2=0

Ответ: x-3y+2=0.

Примеры таких заданий были рассмотрены в школьных учебниках на уроках алгебры. Школьные задачи отличались тем, что известным было уравнение прямой с угловым коэффициентом, имеющее вид y=kx+b. Если необходимо найти значение углового коэффициента k и числа b, при которых уравнение y=kx+b определяет линию в системе Оху, которая проходит через  точки M1(x1, y1) и M2(x2, y2), где x1≠x2. Когда x1=x2 , тогда угловой коэффициент принимает значение бесконечности, а прямая М1М2 определена общим неполным уравнением вида x-x1=0.

Потому как точки М1 и М2 находятся на прямой, тогда их координаты удовлетворяют уравнению y1=kx1+bи y2=kx2+b. Следует решить систему уравнений y1=kx1+by2=kx2+b относительно k и b.

Для этого найдем k=y2-y1x2-x1b=y1-y2-y1x2-x1·x1 или k=y2-y1x2-x1b=y2-y2-y1x2-x1·x2.

С такими значениями k и b уравнение прямой, проходящее через заданные две точки, принимает следующий вид y=y2-y1x2-x1·x+y2-y2-y1x2-x1·x1 или y=y2-y1x2-x1·x+y2-y2-y1x2-x1·x2.

Запомнить сразу такое огромное количество формул не получится. Для этого необходимо учащать количество повторений в решениях задач.

Пример 3

Записать уравнение прямой с угловым коэффициентом, проходящей через точки с координатами M2(2, 1) и y=kx+b.

Решение

Для решения задачи применяем формулу с угловым коэффициентом, имеющую вид y=kx+b. Коэффициенты k и b должны принимать такое значение, чтобы данное уравнение соответствовало прямой, проходящей через две точки с координатами M1(-7, -5) и M2(2, 1).

Точки М1 и М2  располагаются на прямой, тогда их координаты должны обращать уравнение y=kx+b  верное равенство. Отсюда получаем, что -5=k·(-7)+b и 1=k·2+b. Объединим уравнение в систему -5=k·-7+b1=k·2+bи решим.

При подстановке получаем, что

-5=k·-7+b1=k·2+b⇔b=-5+7k2k+b=1⇔b=-5+7k2k-5+7k=1⇔⇔b=-5+7kk=23⇔b=-5+7·23k=23⇔b=-13k=23

Теперь значения k=23 и b=-13 подвергаются подстановке в уравнение y=kx+b. Получаем, что искомым уравнением, проходящим через заданные точки, будет уравнение, имеющее вид y=23x-13.

Такой способ решения предопределяет траты большого количества времени. Существует способ, при котором задание решается буквально в два действия.

Запишем каноническое уравнение прямой, проходящей через M2(2, 1) и M1(-7, -5), имеющее вид x-(-7)2-(-7)=y-(-5)1-(-5)⇔x+79=y+56. 

Теперь переходим к уравнению в угловым коэффициентом. Получаем, что: x+79=y+56⇔6·(x+7)=9·(y+5)⇔y=23x-13.

Ответ: y=23x-13.

Уравнения прямой, которая проходит через две заданные точки в трехмерном пространстве

Если в трехмерном пространстве имеется прямоугольная система координат Охуz с двумя заданными несовпадающими точками с координатами M1(x1, y1, z1) и M2(x2, y2, z2), проходящая через них прямая M1M2, необходимо получить уравнение этой прямой.

Имеем, что канонические уравнения вида x-x1ax=y-y1ay=z-z1az и параметрические вида x=x1+ax·λy=y1+ay·λz=z1+az·λспособны задать линию в системе координат Охуz, проходящую через точки, имеющие координаты (x1, y1, z1) с направляющим вектором a→=(ax, ay, az).

Прямая M1M2 имеет направляющий вектор вида M1M2→=(x2-x1, y2-y1, z2-z1), где прямая проходит через точку M1(x1, y1, z1) и M2(x2, y2, z2), отсюда каноническое уравнение может быть вида x-x1x2-x1=y-y1y2-y1=z-z1z2-z1 или x-x2x2-x1=y-y2y2-y1=z-z2z2-z1, в свою очередь параметрические x=x1+(x2-x1)·λy=y1+(y2-y1)·λz=z1+(z2-z1)·λ или x=x2+(x2-x1)·λy=y2+(y2-y1)·λz=z2+(z2-z1)·λ.

Рассмотрим рисунок, на котором изображены 2 заданные точки в пространстве  и уравнение прямой.

Уравнения прямой, которая проходит через две заданные точки в трехмерном пространстве

Пример 4

Написать уравнение прямой, определенной в прямоугольной системе координат Охуz трехмерного пространства, проходящей через заданные две точки с координатами M1(2, -3, 0) и M2(1, -3, -5).

Решение

Необходимо найти каноническое уравнение. Так как речь идет о трехмерном пространстве, значит при прохождении прямой через заданные точки, искомое каноническое уравнение примет вид x-x1x2-x1=y-y1y2-y1=z-z1z2-z1.

По условию имеем, что x1=2, y1=-3, z1=0, x2=1, y2=-3, z2=-5. Отсюда следует, что необходимые уравнения запишутся таким образом:

x-21-2=y-(-3)-3-(-3)=z-0-5-0⇔x-2-1=y+30=z-5

Ответ: x-2-1=y+30=z-5.

Получить уравнение прямой по двум точкам бывает необходимо, когда мы решаем задачи, связанные с анализом различных фигур на плоскости. В этом случае бывает полезно знать уравнение прямой, проходящей через две точки. Например, составляя такое уравнение мы уже знаем – как проходит прямая, с какие углом наклона к осям координат и можем рассчитать расположение прямой по отношению к другим прямым или к фигурам.

Составляем уравнение прямой по двум точкам

Итак, пусть нам даны две точки A(x_1, y_1) и B(x_2, y_2). Наша прямая проходит через две эти точки, давайте получим уравнение этой прямой. Уравнение пучка прямых, проходящих через точку с координатами A(x_1, y_1) имеет вид:

    [y-y_1=k(x-x_1) eqno  (1)]

То есть если прямая проходит через две точки A и B она – одна из этого пучка прямых, проходящих через точку A и эта прямая имеет определенный коэффициент k. Значит, координаты точки B должны удовлетворять уравнению (1), то есть

    [y_2-y_1=k(x_2-x_1) eqno  (2)]

.

Находим из (2) k:

    [k=frac{y_2-y_1}{x_2-x_1}]

и подставим в уравнение (1):

    [y-y_1=frac{y_2-y_1}{x_2-x_1} (x-x_1) eqno  (3)]

.

Преобразовывая уравнение (3) получим:

    [frac{y-y_1}{y_2-y_1}=frac{x-x_1}{x_2-x_1}]

Это и есть уравнение прямой, проходящей через две точки A(x_1, y_1) и B(x_2, y_2).

Примечание: если точки A и B лежат на прямой, которая параллельна оси Ox (y_2-y_1=0) или оси Oy x_2-x_1=0, то уравнение прямой будет иметь вид y=y_1 или x=x_1 соответственно.

Зная координаты любых двух точек прямой, мы всегда сможем определить угловой коэффициент прямой:

    [k=frac{y_2-y_1}{x_2-x_1}]

Геометрический вывод уравнения прямой

Действительно, давайте нарисуем прямую в системе координат xOy и отметим на прямой две точки A и B, координаты которых известны A(x_1, y_1) и B(x_2, y_2) и отметим на этой прямой произвольную точку M(x,y).

К выводу уравнения прямой через две дочки

Из подобия треугольников AMD и ABC находим:

    [frac{DM}{CB}=frac{AD}{AC}]

Из рисунка видно, что:

    [DM=y-y_1]

    [CB=y_2-y_1]

    [AD=x-x_1]

    [AC=x_2-x_1]

,

Таким образом, получаем уравнение прямой по двум точкам:

    [frac{y-y_1}{y_2-y_1}=frac{x-x_1}{x_2-x_1}]

Задача

Составим уравнение прямой, проходящей через две точки A(1,2) и B(3,7).

Решение: Имеем x_1=1, x_2=3, y_1=2, y_2=7. Подставим эти значения в уравнение прямой, проходящей через две заданные точки:

    [frac{y-2}{7-2}=frac{x-1}{3-1}]

    [frac{y-2}{5}=frac{x-1}{2}]

Умножим левую и правую части уравнения на 5, получим:

y-2=frac{5x-5}{2}

y=2+2,5x-2,5

y=2,5x-0,5 – получившееся уравнение прямой.

Давайте сделаем проверку – если мы все решили правильно, то при подстановке координат точек A и B мы получим верное равенство. Итак, подставим сначала координаты точки A:

y_1=2,5x_1-0,5

2=2,5 cdot 1-0,5

2=2

Теперь координаты точки B:

y_2=2,5x_2-0,5

7=2,5 cdot 3-0,5

7=7

Значит, уравнение прямой мы нашли верно.

Ответ: y=2,5x-0,5

Условие прохождения прямой через три заданные точки

Если нам в задаче нужно убедиться, что три точки с заданными координатами лежат на одной прямой, можно рассуждать так:

  1. Если две точки с заданными координатами образуют прямую, то их координаты удовлетворяют уравнению прямой, проходящей через две точки.
  2. Если третья точка также лежит на этой прямой, то и ее координаты будут удовлетворять этому уравнению.

Таким образом, если нам даны три точки A(x_1, y_1), B(x_2, y_2) и C(x_3, y_3), лежащие на одной прямой, то их координаты будут удовлетворять условию:

    [frac{y_3-y_1}{y_2-y_1}=frac{x_3-x_1}{x_2-x_1}]

Теперь вы легко сможете составить уравнение прямой по двум точкам, а также найти угловой коэффициент прямой и проверить – принадлежит ли третья точка этой прямой.

Рассмотрим, как составить уравнение прямой, проходящей через две точки, на примерах.

Пример 1.

Составить уравнение прямой, проходящей через точки A(-3; 9) и B(2;-1).

Решение:

1 способ — составим уравнение прямой с угловым коэффициентом.

Уравнение прямой с угловым коэффициентом имеет вид y=kx+b. Подставив координаты точек A и B в уравнение прямой (x= -3 и y=9 — в первом случае, x=2 и y= -1 — во втором), получаем систему уравнений, из которой находим значения k и b:

    [left{ begin{array}{l} 9 = k cdot ( - 3) + b;___left| { cdot ( - 1)} right. \ - 1 = k cdot 2 + b; \ end{array} right. Rightarrow left{ begin{array}{l} - 9 = 3k - b; \ - 1 = 2k + b; \ end{array} right.]

Сложив почленно 1-е и 2-е уравнения, получим: -10=5k, откуда k= -2. Подставив во второе уравнение k= -2, найдём b: -1=2·(-2)+b, b=3.

Таким образом, y= -2x+3 — искомое уравнение.

2 способ — составим общее уравнение прямой.

Общее уравнение прямой имеет вид ax+by+c=0. Подставив координаты точек A и B в уравнение, получаем систему:

    [left{ begin{array}{l} a cdot ( - 3) + b cdot 9 + c = 0; \ a cdot 2 + b cdot ( - 1) + c = 0; \ end{array} right. Rightarrow left{ begin{array}{l} - 3a + 9b + c = 0; \ 2a - b + c = 0. \ end{array} right.]

Поскольку количество неизвестных больше количества уравнений, система не разрешима. Но можно все переменные выразить через одну. Например, через b.

Умножив первое уравнение системы на -1 и сложив почленно со вторым:

    [left{ begin{array}{l} - 3a + 9b + c = 0;___left| { cdot ( - 1)} right. \ 2a - b + c = 0; \ end{array} right. Rightarrow left{ begin{array}{l} 3a - 9b - c = 0; \ 2a - b + c = 0; \ end{array} right.]

получим: 5a-10b=0. Отсюда a=2b.

Подставим полученное выражение во второе уравнение: 2·2b -b+c=0; 3b+c=0; c= -3b.
Подставляем a=2b, c= -3b в уравнение ax+by+c=0:

2bx+by-3b=0. Осталось разделить обе части на b:

2x+y-3=0.

Общее уравнение прямой легко приводится к уравнению прямой с угловым коэффициентом:

y= -2x+3.

3 способ — составим уравнение прямой, проходящей через 2 точки.

Уравнение прямой, проходящей через две точки, имеет вид:

    [frac{{y - y_1 }}{{y_2 - y_1 }} = frac{{x - x_1 }}{{x_2 - x_1 }}]

Подставим в это уравнение координаты точек A(-3; 9) и B(2;-1)

(то есть x1= -3, y1=9, x2=2, y2= -1):

    [frac{{y - 9}}{{ - 1 - 9}} = frac{{x - ( - 3)}}{{2 - ( - 3)}}]

и упростим:

    [frac{{y - 9}}{{ - 10}} = frac{{x + 3}}{5}, Rightarrow frac{{y - 9}}{{ - 2}} = frac{{x + 3}}{1}]

По основному свойству пропорции

    [- 2(x + 3) = 1(y - 9), Rightarrow - 2x - 6 = y - 9,]

откуда 2x+y-3=0.

В школьном курсе чаще всего используется уравнение прямой с угловым коэффициентом. Но самый простой способ — вывести и использовать формулу уравнения прямой, проходящей через две точки.

Замечание.

Если при подстановке координат заданных точек один из знаменателей уравнения

    [frac{{y - y_1 }}{{y_2 - y_1 }} = frac{{x - x_1 }}{{x_2 - x_1 }}]

окажется равным нулю, то искомое уравнение получается приравниваем к нулю соответствующего числителя.

Пример 2.

Составить уравнение прямой, проходящей через две точки C(5; -2) и D(7;-2).

Решение:

Подставляем  в уравнение прямой, проходящей через 2 точки, координаты точек C и D:

    [frac{{y - y_1 }}{{y_2 - y_1 }} = frac{{x - x_1 }}{{x_2 - x_1 }}, Rightarrow frac{{y - ( - 2)}}{{ - 2 - ( - 2)}} = frac{{x - 5}}{{7 - 5}},]

    [ frac{{y + 2}}{0} = frac{{x - 5}}{2}, Rightarrow y + 2 = 0, Rightarrow y = - 2.]

Пример 3.

Составить уравнение прямой, проходящей через точки M (7; 3) и N (7; 11).

Решение:

    [frac{{y - y_1 }}{{y_2 - y_1 }} = frac{{x - x_1 }}{{x_2 - x_1 }}, Rightarrow frac{{y - 3}}{{11 - 3}} = frac{{x - 7}}{{7 - 7}},]

    [frac{{y - 3}}{8} = frac{{x - 7}}{0}, Rightarrow x - 7 = 0, Rightarrow x = 7.]

Общее уравнение прямой: описание, примеры, решение задач

Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.

Общее уравнение прямой: основные сведения

Пусть на плоскости задана прямоугольная система координат O x y .

Любое уравнение первой степени, имеющее вид A x + B y + C = 0 , где А , В , С – некоторые действительные числа ( А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид A x + B y + C = 0 при некотором наборе значений А , В , С .

указанная теорема состоит из двух пунктов, докажем каждый из них.

  1. Докажем, что уравнение A x + B y + C = 0 определяет на плоскости прямую.

Пусть существует некоторая точка М 0 ( x 0 , y 0 ) , координаты которой отвечают уравнению A x + B y + C = 0 . Таким образом: A x 0 + B y 0 + C = 0 . Вычтем из левой и правой частей уравнений A x + B y + C = 0 левую и правую части уравнения A x 0 + B y 0 + C = 0 , получим новое уравнение, имеющее вид A ( x — x 0 ) + B ( y — y 0 ) = 0 . Оно эквивалентно A x + B y + C = 0 .

Полученное уравнение A ( x — x 0 ) + B ( y — y 0 ) = 0 является необходимым и достаточным условием перпендикулярности векторов n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) . Таким образом, множество точек M ( x , y ) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора n → = ( A , B ) . Можем предположить, что это не так, но тогда бы векторы n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) не являлись бы перпендикулярными, и равенство A ( x — x 0 ) + B ( y — y 0 ) = 0 не было бы верным.

Следовательно, уравнение A ( x — x 0 ) + B ( y — y 0 ) = 0 определяет некоторую прямую в прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение A x + B y + C = 0 определяет ту же прямую. Так мы доказали первую часть теоремы.

  1. Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени A x + B y + C = 0 .

Зададим в прямоугольной системе координат на плоскости прямую a ; точку M 0 ( x 0 , y 0 ) , через которую проходит эта прямая, а также нормальный вектор этой прямой n → = ( A , B ) .

Пусть также существует некоторая точка M ( x , y ) – плавающая точка прямой. В таком случае, векторы n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) являются перпендикулярными друг другу, и их скалярное произведение есть нуль:

n → , M 0 M → = A ( x — x 0 ) + B ( y — y 0 ) = 0

Перепишем уравнение A x + B y — A x 0 — B y 0 = 0 , определим C : C = — A x 0 — B y 0 и в конечном результате получим уравнение A x + B y + C = 0 .

Так, мы доказали и вторую часть теоремы, и доказали всю теорему в целом.

Уравнение, имеющее вид A x + B y + C = 0 – это общее уравнение прямой на плоскости в прямоугольной системе координат O x y .

Опираясь на доказанную теорему, мы можем сделать вывод, что заданные на плоскости в фиксированной прямоугольной системе координат прямая линия и ее общее уравнение неразрывно связаны. Иначе говоря, исходной прямой соответствует ее общее уравнение; общему уравнению прямой соответствует заданная прямая.

Из доказательства теоремы также следует, что коэффициенты А и В при переменных x и y являются координатами нормального вектора прямой, которая задана общим уравнением прямой A x + B y + C = 0 .

Рассмотрим конкретный пример общего уравнения прямой.

Пусть задано уравнение 2 x + 3 y — 2 = 0 , которому соответствует прямая линия в заданной прямоугольной системе координат. Нормальный вектор этой прямой – это вектор n → = ( 2 , 3 ) . Изобразим заданную прямую линию на чертеже.

Также можно утверждать и следующее: прямая, которую мы видим на чертеже, определяется общим уравнением 2 x + 3 y — 2 = 0 , поскольку координаты всех точек заданной прямой отвечают этому уравнению.

Мы можем получить уравнение λ · A x + λ · B y + λ · C = 0 , умножив обе части общего уравнения прямой на число λ , не равное нулю. Полученное уравнение является эквивалентом исходного общего уравнения, следовательно, будет описывать ту же прямую на плоскости.

Неполное уравнение общей прямой

Полное общее уравнение прямой – такое общее уравнение прямой A x + B y + C = 0 , в котором числа А , В , С отличны от нуля. В ином случае уравнение является неполным.

Разберем все вариации неполного общего уравнения прямой.

  1. Когда А = 0 , В ≠ 0 , С ≠ 0 , общее уравнение принимает вид B y + C = 0 . Такое неполное общее уравнение задает в прямоугольной системе координат O x y прямую, которая параллельна оси O x , поскольку при любом действительном значении x переменная y примет значение — C B . Иначе говоря, общее уравнение прямой A x + B y + C = 0 , когда А = 0 , В ≠ 0 , задает геометрическое место точек ( x , y ) , координаты которых равны одному и тому же числу — C B .
  2. Если А = 0 , В ≠ 0 , С = 0 , общее уравнение принимает вид y = 0 . Такое неполное уравнение определяет ось абсцисс O x .
  3. Когда А ≠ 0 , В = 0 , С ≠ 0 , получаем неполное общее уравнение A x + С = 0 , задающее прямую, параллельную оси ординат.
  4. Пусть А ≠ 0 , В = 0 , С = 0 , тогда неполное общее уравнение примет вид x = 0 , и это есть уравнение координатной прямой O y .
  5. Наконец, при А ≠ 0 , В ≠ 0 , С = 0 , неполное общее уравнение принимает вид A x + B y = 0 . И это уравнение описывает прямую, которая проходит через начало координат. В самом деле, пара чисел ( 0 , 0 ) отвечает равенству A x + B y = 0 , поскольку А · 0 + В · 0 = 0 .

Графически проиллюстрируем все вышеуказанные виды неполного общего уравнения прямой.

Известно, что заданная прямая параллельна оси ординат и проходит через точку 2 7 , — 11 . Необходимо записать общее уравнение заданной прямой.

Решение

Прямая, параллельная оси ординат, задается уравнением вида A x + C = 0 , в котором А ≠ 0 . Также условием заданы координаты точки, через которую проходит прямая, и координаты этой точки отвечают условиям неполного общего уравнения A x + C = 0 , т.е. верно равенство:

Из него возможно определить C , если придать A какое-то ненулевое значение, к примеру, A = 7 . В таком случае получим: 7 · 2 7 + C = 0 ⇔ C = — 2 . Нам известны оба коэффициента A и C , подставим их в уравнение A x + C = 0 и получим требуемое уравнение прямой: 7 x — 2 = 0

Ответ: 7 x — 2 = 0

На чертеже изображена прямая, необходимо записать ее уравнение.

Решение

Приведенный чертеж позволяет нам легко взять исходные данные для решения задачи. Мы видим на чертеже, что заданная прямая параллельна оси O x и проходит через точку ( 0 , 3 ) .

Прямую, которая параллельна очи абсцисс, определяет неполное общее уравнение B y + С = 0 . Найдем значения B и C . Координаты точки ( 0 , 3 ) , поскольку через нее проходит заданная прямая, будут удовлетворять уравнению прямой B y + С = 0 , тогда справедливым является равенство: В · 3 + С = 0 . Зададим для В какое-то значение, отличное от нуля. Допустим, В = 1 , в таком случае из равенства В · 3 + С = 0 можем найти С : С = — 3 . Используем известные значения В и С , получаем требуемое уравнение прямой: y — 3 = 0 .

Ответ: y — 3 = 0 .

Общее уравнение прямой, проходящей через заданную точку плоскости

Пусть заданная прямая проходит через точку М 0 ( x 0 , y 0 ) , тогда ее координаты отвечают общему уравнению прямой, т.е. верно равенство: A x 0 + B y 0 + C = 0 . Отнимем левую и правую части этого уравнения от левой и правой части общего полного уравнения прямой. Получим: A ( x — x 0 ) + B ( y — y 0 ) + C = 0 , это уравнение эквивалентно исходному общему, проходит через точку М 0 ( x 0 , y 0 ) и имеет нормальный вектор n → = ( A , B ) .

Результат, который мы получили, дает возможность записывать общее уравнение прямой при известных координатах нормального вектора прямой и координатах некой точки этой прямой.

Даны точка М 0 ( — 3 , 4 ) , через которую проходит прямая, и нормальный вектор этой прямой n → = ( 1 , — 2 ) . Необходимо записать уравнение заданной прямой.

Решение

Исходные условия позволяют нам получить необходимые данные для составления уравнения: А = 1 , В = — 2 , x 0 = — 3 , y 0 = 4 . Тогда:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 1 · ( x — ( — 3 ) ) — 2 · y ( y — 4 ) = 0 ⇔ ⇔ x — 2 y + 22 = 0

Задачу можно было решить иначе. Общее уравнение прямой имеет вид A x + B y + C = 0 . Заданный нормальный вектор позволяет получить значения коэффициентов A и B , тогда:

A x + B y + C = 0 ⇔ 1 · x — 2 · y + C = 0 ⇔ x — 2 · y + C = 0

Теперь найдем значение С, используя заданную условием задачи точку М 0 ( — 3 , 4 ) , через которую проходит прямая. Координаты этой точки отвечают уравнению x — 2 · y + C = 0 , т.е. — 3 — 2 · 4 + С = 0 . Отсюда С = 11 . Требуемое уравнение прямой принимает вид: x — 2 · y + 11 = 0 .

Ответ: x — 2 · y + 11 = 0 .

Задана прямая 2 3 x — y — 1 2 = 0 и точка М 0 , лежащая на этой прямой. Известна лишь абсцисса этой точки, и она равна — 3 . Необходимо определить ординату заданной точки.

Решение

Зададим обозначение координат точки М 0 как x 0 и y 0 . В исходных данных указано, что x 0 = — 3 . Поскольку точка принадлежит заданной прямой, значит ее координаты отвечают общему уравнению этой прямой. Тогда верным будет равенство:

2 3 x 0 — y 0 — 1 2 = 0

Определяем y 0 : 2 3 · ( — 3 ) — y 0 — 1 2 = 0 ⇔ — 5 2 — y 0 = 0 ⇔ y 0 = — 5 2

Ответ: — 5 2

Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно

Как мы знаем, существует несколько видов уравнения одной и той же прямой на плоскости. Выбор вида уравнения зависит от условий задачи; возможно выбирать тот, который более удобен для ее решения. Здесь очень пригодится навык преобразования уравнения одного вида в уравнение другого вида.

Для начала рассмотрим переход от общего уравнения вида A x + B y + C = 0 к каноническому уравнению x — x 1 a x = y — y 1 a y .

Если А ≠ 0 , тогда переносим слагаемое B y в правую часть общего уравнения. В левой части выносим A за скобки. В итоге получаем: A x + C A = — B y .

Это равенство возможно записать как пропорцию: x + C A — B = y A .

В случае, если В ≠ 0 , оставляем в левой части общегь уравнения только слагаемое A x , прочие переносим в правую часть, получаем: A x = — B y — C . Выносим – В за скобки, тогда: A x = — B y + C B .

Перепишем равенство в виде пропорции: x — B = y + C B A .

Конечно, заучивать полученные формулы нет необходимости. Достаточно знать алгоритм действий при переходе от общего уравнения к каноническому.

Задано общее уравнение прямой 3 y — 4 = 0 . Необходимо преобразовать его в каноническое уравнение.

Решение

Запишем исходное уравнение как 3 y — 4 = 0 . Далее действуем по алгоритму: в левой части остаётся слагаемое 0 x ; а в правой части выносим — 3 за скобки; получаем: 0 x = — 3 y — 4 3 .

Запишем полученное равенство как пропорцию: x — 3 = y — 4 3 0 . Так, мы получили уравнение канонического вида.

Ответ: x — 3 = y — 4 3 0 .

Чтобы преобразовать общее уравнение прямой в параметрические, сначала осуществляют переход к каноническому виду, а затем переход от канонического уравнения прямой к параметрическим уравнениям.

Прямая задана уравнением 2 x — 5 y — 1 = 0 . Запишите параметрические уравнения этой прямой.

Решение

Осуществим переход от общего уравнения к каноническому:

2 x — 5 y — 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2

Теперь примем обе части полученного канонического уравнения равными λ , тогда:

x 5 = λ y + 1 5 2 = λ ⇔ x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R

Ответ: x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R

Общее уравнение можно преобразовать в уравнение прямой с угловым коэффициентом y = k · x + b , но только тогда, когда В ≠ 0 . Для перехода в левой части оставляем слагаемое B y , остальные переносятся в правую. Получим: B y = — A x — C . Разделим обе части полученного равенство на B , отличное от нуля: y = — A B x — C B .

Задано общее уравнение прямой: 2 x + 7 y = 0 . Необходимо преобразовать то уравнение в уравнение с угловым коэффициентом.

Решение

Произведем нужные действия по алгоритму:

2 x + 7 y = 0 ⇔ 7 y — 2 x ⇔ y = — 2 7 x

Ответ: y = — 2 7 x .

Из общего уравнения прямой достаточно просто получить уравнение в отрезках вида x a + y b = 1 . Чтобы осуществить такой переход, перенесем число C в правую часть равенства, разделим обе части полученного равенства на – С и, наконец, перенесем в знаменатели коэффициенты при переменных x и y :

A x + B y + C = 0 ⇔ A x + B y = — C ⇔ ⇔ A — C x + B — C y = 1 ⇔ x — C A + y — C B = 1

Необходимо преобразовать общее уравнение прямой x — 7 y + 1 2 = 0 в уравнение прямой в отрезках.

Решение

Перенесем 1 2 в правую часть: x — 7 y + 1 2 = 0 ⇔ x — 7 y = — 1 2 .

Разделим на -1/2 обе части равенства: x — 7 y = — 1 2 ⇔ 1 — 1 2 x — 7 — 1 2 y = 1 .

Преобразуем далее в необходимый вид: 1 — 1 2 x — 7 — 1 2 y = 1 ⇔ x — 1 2 + y 1 14 = 1 .

Ответ: x — 1 2 + y 1 14 = 1 .

В общем, несложно производится и обратный переход: от прочих видов уравнения к общему.

Уравнение прямой в отрезках и уравнение с угловым коэффициентом легко преобразовать в общее, просто собрав все слагаемые в левой части равенства:

x a + y b ⇔ 1 a x + 1 b y — 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y — k x — b = 0 ⇔ A x + B y + C = 0

Каноническое уравнение преобразуется к общему по следующей схеме:

x — x 1 a x = y — y 1 a y ⇔ a y · ( x — x 1 ) = a x ( y — y 1 ) ⇔ ⇔ a y x — a x y — a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0

Для перехода от параметрических сначала осуществляется переход к каноническому, а затем – к общему:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x — x 1 a x = y — y 1 a y ⇔ A x + B y + C = 0

Заданы параметрические уравнения прямой x = — 1 + 2 · λ y = 4 . Необходимо записать общее уравнение этой прямой.

Решение

Осуществим переход от параметрических уравнений к каноническому:

x = — 1 + 2 · λ y = 4 ⇔ x = — 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y — 4 0 ⇔ x + 1 2 = y — 4 0

Перейдем от канонического к общему:

x + 1 2 = y — 4 0 ⇔ 0 · ( x + 1 ) = 2 ( y — 4 ) ⇔ y — 4 = 0

Ответ: y — 4 = 0

Задано уравнение прямой в отрезках x 3 + y 1 2 = 1 . Необходимо осуществить переход к общему виду уравнения.

Решение:

Просто перепишем уравнение в необходимом виде:

x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y — 1 = 0

Ответ: 1 3 x + 2 y — 1 = 0 .

Составление общего уравнения прямой

Выше мы говорили о том, что общее уравнение возможно записать при известных координатах нормального вектора и координатах точки, через которую проходит прямая. Такая прямая определяется уравнением A ( x — x 0 ) + B ( y — y 0 ) = 0 . Там же мы разобрали соответствующий пример.

Сейчас рассмотрим более сложные примеры, в которых для начала необходимо определить координаты нормального вектора.

Задана прямая, параллельная прямой 2 x — 3 y + 3 3 = 0 . Также известна точка M 0 ( 4 , 1 ) , через которую проходит заданная прямая. Необходимо записать уравнение заданной прямой.

Решение

Исходные условия говорят нам о том, что прямые параллельны, тогда, как нормальный вектор прямой, уравнение которой требуется записать, возьмем направляющий вектор прямой n → = ( 2 , — 3 ) : 2 x — 3 y + 3 3 = 0 . Теперь нам известны все необходимые данные, чтобы составить общее уравнение прямой:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 2 ( x — 4 ) — 3 ( y — 1 ) = 0 ⇔ 2 x — 3 y — 5 = 0

Ответ: 2 x — 3 y — 5 = 0 .

Заданная прямая проходит через начало координат перпендикулярно прямой x — 2 3 = y + 4 5 . Необходимо составить общее уравнение заданной прямой.

Решение

Нормальный вектором заданной прямой будет направляющий вектор прямой x — 2 3 = y + 4 5 .

Тогда n → = ( 3 , 5 ) . Прямая проходит через начало координат, т.е. через точку О ( 0 , 0 ) . Составим общее уравнение заданной прямой:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 3 ( x — 0 ) + 5 ( y — 0 ) = 0 ⇔ 3 x + 5 y = 0

Прямая линия. Уравнение прямой.

Свойства прямой в евклидовой геометрии.

Через любую точку можно провести бесконечно много прямых.

Через любые две несовпадающие точки можно провести единственную прямую.

Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются

параллельными (следует из предыдущего).

В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:

  • прямые пересекаются;
  • прямые параллельны;
  • прямые скрещиваются.

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия

задается на плоскости уравнением первой степени (линейное уравнение).

Общее уравнение прямой.

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

уравнением прямой. В зависимости от значений постоянных А, В и С возможны следующие частные случаи:

C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

А = 0, В ≠0, С ≠0 — прямая параллельна оси Ох

В = 0, А ≠0, С ≠ 0 – прямая параллельна оси Оу

В = С = 0, А ≠0 – прямая совпадает с осью Оу

А = С = 0, В ≠0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных

Уравнение прямой по точке и вектору нормали.

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В)

перпендикулярен прямой , заданной уравнением

Пример. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Решение. Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С

подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно

С = -1. Итого: искомое уравнение: 3х – у – 1 = 0.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 ( x 1 , y 1 , z 1 ) и M2 ( x 2, y 2 , z 2 ), тогда уравнение прямой,

проходящей через эти точки:

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На

плоскости записанное выше уравнение прямой упрощается:

Дробь = k называется угловым коэффициентом прямой.

Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение. Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется

уравнением прямой с угловым коэффициентом k.

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание

прямой через точку и направляющий вектор прямой.

Определение. Каждый ненулевой вектор 1, α2), компоненты которого удовлетворяют условию

Аα1 + Вα2 = 0 называется направляющим вектором прямой.

Пример. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Решение. Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением,

коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0.

при х = 1, у = 2 получаем С/ A = -3, т.е. искомое уравнение:

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на –С, получим:

или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения

прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется

нормирующем множителем, то получим

xcosφ + ysinφ — p = 0 – нормальное уравнение прямой.

Уравнение прямой 9 класс

Уравнение прямой 9 класс презентация к уроку

Просмотр содержимого документа
«Уравнение прямой 9 класс»

Теорема. Прямая на плоскости задается уравнением

где a , b , c — некоторые числа, причем a , b одновременно не равны нулю и составляют координаты вектора , перпендикулярного этой прямой и называемого вектором нормали .

В режиме слайдов ответы появляются после кликанья мышкой

Если число b в уравнении прямой не равно нулю , то, разделив на b , это уравнение можно привести к виду y = kx + l . Коэффициент k называется угловым коэффициентом этой прямой. Он равен тангенсу угла , который образует прямая с осью абсцисс .

В режиме слайдов ответы появляются после кликанья мышкой

Взаимное расположение прямых

Д ве прямы е , заданны е уравнениями a 1 x + b 1 y + c 1 = 0, a 2 x + b 2 y + c 2 = 0, параллельны, если векторы их нормалей одинаково или противоположно направлены, т.е. для их координат ( a 1 , b 1 ), ( a 2 , b 2 ) для некоторого числа t выполняются равенства a 2 = ta 1 , b 2 = tb 1 . При этом, если с 2 = t с 1 , то уравнения определяют одну и ту же прямую. Если же с 2 tc 1 , то эти уравнения определяют параллельные прямые.

Е сли две прямые пересекаются, то угол между ними равен углу между их нормалями ( a 1 , b 1 ), ( a 2 , b 2 ). Этот угол можно вычислить через формулу скалярного произведения

В режиме слайдов ответы появляются после кликанья мышкой

Найдите угол между прямыми, заданными уравнениями : x + 2 y – 1 = 0, 2 xy + 3 = 0.

Решение: Векторы нормалей к данным прямым имеют координаты (1, 2) и (2, -1) соответственно. Их скалярное произведение равно нулю и, следовательно, эти векторы перпендикулярны. Значит, угол между данными прямыми равен 90 о .

В режиме слайдов ответы появляются после кликанья мышкой

Найдите уравнение прямой, проходящей через заданные точки A 1 ( x 1 , y 1 ) и A 2 ( x 2 , y 2 ).

Решение: Найдем вектор нормали к данной прямой. Он перпендикулярен вектору ( x 2 – x 1 , y 2 – y 1 ). Следовательно, в качестве такого вектора можно взять вектор с координатами ( y 2 – y 1 , x 1 – x 2 ). Искомым уравнением прямой будет уравнение

которое можно также переписать в виде

В режиме слайдов ответы появляются после кликанья мышкой

Какие уравнения имеют координатные прямые: а) Ox ; б) Oy ?

В режиме слайдов ответы появляются после кликанья мышкой

Изобразите прямую , заданную уравнением y = 2 x .

В режиме слайдов ответы появляются после кликанья мышкой

Изобразите прямую , заданную уравнением x — 2 y + 2 = 0.

В режиме слайдов ответы появляются после кликанья мышкой

Напишите уравнение прямой, изображенной на рисунке.

В режиме слайдов ответы появляются после кликанья мышкой

Напишите уравнение прямой, изображенной на рисунке.

В режиме слайдов ответы появляются после кликанья мышкой

Напишите уравнение прямой, проходящей через начало координат с угловым коэффициентом: а) k = 1; б) k = 2; в) k = 0,5 ; г) k = -1; д) k = -2; е) k = — 0,5 . Нарисуйте эти прямые.

В режиме слайдов ответы появляются после кликанья мышкой

Найдите угловой коэффициент прямой: а) 2 x — 3 y + 4 = 0; б) x + 2 y — 1 = 0.

В режиме слайдов ответы появляются после кликанья мышкой

Напишите уравнение прямой, проходящей через точки A (1, 0), B (0, 1).

В режиме слайдов ответы появляются после кликанья мышкой

Напишите уравнение прямой, проходящей через точку A 0 (1, 2) с вектором нормали (-1, 1).

В режиме слайдов ответы появляются после кликанья мышкой

Напишите уравнение прямой, проходящей через точки M (3, -1), N (4, 1). Найдите координаты вектора нормали этой прямой.

Ответ: 2 xy — 7 = 0; (2, -1).

В режиме слайдов ответы появляются после кликанья мышкой

Напишите уравнение прямой, которая проходит через точку M (1, -2) и параллельна: а) координатной прямой Ox ; б) координатной прямой Oy ; в) прямой y = x .

В режиме слайдов ответы появляются после кликанья мышкой

Точка H (-2, 4) является основанием перпендикуляра, опущенного из начала координат на прямую. Напишите уравнение этой прямой.

Ответ: x — 2 y + 10 = 0.

В режиме слайдов ответы появляются после кликанья мышкой

Определите, какие из перечисленных ниже пар прямых параллельны между собой:

г) 2 x + 4 y — 8 = 0, — x — 2 y + 4 = 0.

В режиме слайдов ответы появляются после кликанья мышкой

Найдите угол между прямыми, заданными уравнениями x + y + 1 = 0, xy — 1 = 0. Изобрази те эти прямые.

В режиме слайдов ответы появляются после кликанья мышкой

Найдите координаты точки пересечения прямых:

б) 3 xy + 2 = 0, 5 x — 2 y + 1 = 0.

В режиме слайдов ответы появляются после кликанья мышкой

Напишите уравнение прямой, симметричной прямой, заданной уравнением ax + by + с = 0, относительно: а) оси Ox ; б) оси Oy ; в) начала координат O .

В режиме слайдов ответы появляются после кликанья мышкой

Ответ: а ) ax – by + с = 0 ;

Треугольник задан своими вершинами A (1, 3), B (3, 0), C (4, 2). Найдите уравнения высот этого треугольника и координаты их точки пересечения.

В режиме слайдов ответы появляются после кликанья мышкой

источники:

http://www.calc.ru/Uravneniye-Pryamoy.html

http://multiurok.ru/files/uravnenie-priamoi-9-klass.html

Получить уравнение прямой, проходящей через две точки помогут созданные нами калькуляторы. Предлагаем найти каноническое и параметрическое уравнение прямой, а также уравнение прямой с угловым коэффициентом как на плоскости, так и в пространстве.

Прямая — это бесконечная линия, по которой проходит кратчайший путь между любыми двумя её точками.

Уравнения прямой, проходящей через две точки могут быть следующих видов:

  • каноническое уравнение,
  • параметрическое уравнение,
  • общее уравнение прямой,
  • уравнение прямой с угловым коэффициентом,
  • уравнение прямой в полярных координатах и другие.

Для получения уравнений введите координаты двух точек прямой. Онлайн-калькулятор найдет уравнения и выдаст результат с подробным решением.

Каноническое уравнение прямой на плоскости

{dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a}}

xa и ya — координаты первой точки A,

xb и yb — координаты второй точки B

Параметрическое уравнение прямой на плоскости

{begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a end{cases}}

xa, ya — координаты точки, лежащей на прямой,

{l;m} — координаты направляющего вектора прямой,

t — произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении.

Каноническое уравнение прямой в пространстве

{dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a} = dfrac{z-z_a}{z_b-z_a}}

xa, ya и za — координаты первой точки A,

xb, yb и zb — координаты второй точки B

Параметрическое уравнение прямой в пространстве

{ begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a \ z=n cdot t + z_a end{cases} }

xa, ya и za — координаты точки, лежащей на прямой,

{l;m;n} — координаты направляющего вектора прямой,

t — произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении.

Пример нахождения уравнения прямой, проходящей через две точки

Найдем уравнения прямой, проходящей через точки A(1,2) и B(3,8).

Каноническое уравнение прямой

Каноническое уравнение прямой, проходящей через две точки имеет вид {dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a}}

Подставим в формулу координаты точек A и B: {dfrac{x-1}{3-1} = dfrac{y-2}{8-2}}

Получаем каноническое уравнение прямой: {dfrac{x-1}{2} = dfrac{y-2}{4}}

Уравнение прямой с угловым коэффициентом

Из канонического уравнения получаем уравнение прямой с угловым коэффициентом: {y=3x-1}

Параметрическое уравнение прямой

Параметрическое уравнение прямой имеет вид:

{ begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a end{cases} }

где {x_a, y_b} — координаты точки, лежащей на прямой, {{l;m}} — координаты направляющего вектора прямой, t — произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении. В качестве координат используем координаты точки {A(x_a, y_b)}.

Найдем координаты направляющего вектора:

overline{AB} = {x_b — x_a; y_b — y_a} = {3-1; 8-2} = {2; 6}

Получаем параметрическое уравнение:

begin{cases} x=2 t + 1 \ y=6 t + 2 end{cases}

Используем калькулятор для проверки полученного ответа.

Прямая имеет несколько видов задающих ее уравнений. Рассмотрим некоторые из них и разберем примеры.

Здесь будет калькулятор

Уравнение прямой с угловым коэффициентом

Уравнение прямой с угловым коэффициентом

y=kx+by=kx+b,

где kk — угловой коэффициент, а bb — свободный коэффициент.

Уравнения данного вида составляются следующим образом по формуле:

y−y0=k(x−x0)y-y_0=k(x-x_0),

где (x0;y0)(x_0; y_0) — координаты любой точки, лежащей на данной прямой.

Задача 1

Составить уравнение прямой, если координаты точки, принадлежащей данной прямой, таковы: x0=1,y0=2x_0=1, y_0=2. Угловой коэффициент принять равным 11.

Решение

Подставляем значения в формулу:

y−y0=k(x−x0)y-y_0=k(x-x_0)

y−2=1⋅(x−1)y-2=1cdot(x-1)

Приводим подобные слагаемые:

y=x+1y=x+1

Ответ

y=x+1y=x+1

Общее уравнение прямой

Для приведения прямой к такому виду из предыдущего вида достаточно просто перенести все слагаемые в одну часть. Возьмем уравнение прямой из предыдущей задачи y=x+1y=x+1. Тогда общее уравнение этой прямой запишется в виде:

y−x−1=0y-x-1=0

Уравнение прямой по двум точкам

Если в задаче даны координаты двух точек и необходимо составить уравнение прямой, то это делается при помощи такой формулы:

Уравнение прямой по двум точкам

x−x2x1−x2=y−y2y1−y2frac{x-x_2}{x_1-x_2}=frac{y-y_2}{y_1-y_2},

где (x1;y1),(x2;y2)(x_1; y_1), (x_2; y_2) — координаты двух точек, через которые проходит данная прямая.

Задача 2

Найти уравнение прямой, если координаты точек имеют значения: (2;3)(2;3) и (4;−1)(4;-1).

Решение

x1=2x_1=2
y1=3y_1=3
x2=4x_2=4
y2=−1y_2=-1

x−x2x1−x2=y−y2y1−y2frac{x-x_2}{x_1-x_2}=frac{y-y_2}{y_1-y_2}

x−42−4=y−(−1)3−(−1)frac{x-4}{2-4}=frac{y-(-1)}{3-(-1)}

x−4−2=y+14frac{x-4}{-2}=frac{y+1}{4}

x−4=−y−12x-4=frac{-y-1}{2}

y+1=2⋅(4−x)y+1=2cdot(4-x)

y=8−2x−1y=8-2x-1

y=−2x+7y=-2x+7

Ответ

y=−2x+7y=-2x+7

Уравнение прямой при помощи точки и вектора нормали

Уравнение прямой по точке и нормали

(x−x0)⋅n1+(y−y0)⋅n2=0(x-x_0)cdot n_1+(y-y_0)cdot n_2=0,

где (x0;y0)(x_0; y_0) — координаты точки, лежащей на данной прямой, а (n1;n2)(n_1; n_2) — координаты вектора нормали к этой прямой.

Задача 3

Составить уравнение прямой, если координаты нормального вектора — (1;−5)(1;-5), а точка, через которую проходит данная прямая имеет координаты (7;8)(7;8).

Решение

x0=7x_0=7
y0=8y_0=8
n1=1n_1=1
n2=−5n_2=-5

(x−x0)⋅n1+(y−y0)⋅n2=0(x-x_0)cdot n_1+(y-y_0)cdot n_2=0,

(x−7)⋅1+(y−8)⋅(−5)=0(x-7)cdot 1+(y-8)cdot (-5)=0,

x−7+40−5y=0x-7+40-5y=0

x−5y=−40+7x-5y=-40+7

x−5y=−33x-5y=-33

5y=x+335y=x+33

y=x5+335y=frac{x}{5}+frac{33}{5}

Проверка

Чтобы проверить правильность решения, достаточно подставить координаты точки в данное уравнение и, если оно будет верным, то задача решена верно.

8=75+3358=frac{7}{5}+frac{33}{5}

8=88=8 — верно, ответ правильный.

Ответ

y=x5+335y=frac{x}{5}+frac{33}{5}

Прямая в пространстве

Уравнение прямой, заданной в пространстве имеет такой вид:

Уравнение прямой в пространстве

x−x0ν1=y−y0ν2=z−z0ν3frac{x-x_0}{nu_1}=frac{y-y_0}{nu_2}=frac{z-z_0}{nu_3},

где (x0;y0;z0)(x_0;y_0;z_0) — координаты точки, через которую проходит прямая, а (ν1,ν2,ν3)(nu_1,nu_2,nu_3) — координаты напрявляющего вектора данной прямой.

Задача 4

Написать уравнение прямой по заданной точке (1;5;−23)(1;5;-23) и вектору направления (3;11;7)(3;11;7).

Решение

x0=1x_0=1
y0=5y_0=5
z0=−23z_0=-23
ν1=3nu_1=3
ν2=11nu_2=11
ν3=7nu_3=7

x−x0ν1=y−y0ν2=z−z0ν3frac{x-x_0}{nu_1}=frac{y-y_0}{nu_2}=frac{z-z_0}{nu_3}

x−13=y−511=z−(−23)7frac{x-1}{3}=frac{y-5}{11}=frac{z-(-23)}{7}

Проверка

Проверим, удовлетворяет ли это уравнение прямой точке (x0;y0;z0)(x_0;y_0;z_0). Для этого подставим в него координаты этой точки:

1−13=5−511=−23−(−23)7frac{1-1}{3}=frac{5-5}{11}=frac{-23-(-23)}{7} — верно, значит ответ правильный.

Такой вид уравнения прямой называется каноническим.

Ответ

x−13=y−511=z−(−23)7frac{x-1}{3}=frac{y-5}{11}=frac{z-(-23)}{7}

Тест по теме “Составление уравнения прямой”

Суть уравнения прямой, проходящей через две заданные точки

Можно представить, что на плоскости с координатами Oxy расположена пара точек: (M_{0}(x_{0},y_{0})), (M_{1}(x_{1},y_{1}))

Необходимо сделать вывод формулы для прямой, которая пересекает эти заданные точки.

Точка (М (х, у)) соответствует прямой (M_{0} M_{1}) только в том случае, когда ее радиус-вектор (vec{OM}) соответствует следующему условию:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

(vec{OM}=left(1-t right)times vec{OM_{0}}+ttimes vec{OM_{1}})

Где t является некоторым действительным числом (параметром). Координатная форма уравнения имеет следующий вид:

Координатная форма уравнения

 

Данное равенство в алгебре называют аффинным уравнением прямой с пересечением двух точек в пространстве: (M_{0}(x_{0},y_{0})) и (M_{1}(x_{1},y_{1})).

График

 

Определив параметр t с помощью первого и второго уравнений системы, можно получить доказательство следующего соотношения:

(frac{x-x_{0}}{x_{1}-x_{0}}=t=frac{y-y_{0}}{y_{1}-y_{0}})

Если исключить коэффициент t, то можно вывести уравнение прямой, проходящей через две точки: (M_{0}(x_{0},y_{0})) и (M_{1}(x_{1},y_{1})).

Формула будет иметь следующий вид:

(frac{x-x_{0}}{x_{1}-x_{0}}=frac{y-y_{0}}{y_{1}-y_{0}})

Данное равенство вытекает из канонического уравнения, если выбрать направляющим вектором:

(vec{p}=avec{i}+bvec{j})

Вектор (vec{M_{0}M_{1}}) будет равен:

(vec{M_{0}M_{1}}=left(x_{1}-x_{0} right)vec{i}+left(y_{1}-y_{0} right)vec{j})

То есть, замещая следующие параметры:

(a=x_{1}-x_{0})

(b=y_{1}-y_{0})

Уравнение прямой в отрезках

Пусть координатные оси включают две точки: (X_{1}left(x_{1},0 right)) и (Y_{1}left(0, y_{1} right))

Следует отметить следующее условие:

(x_{1}neq 0)

(y_{1}neq 0)

Необходимо записать уравнение прямой, которая проходит через заданные точки, подставив в формулу:

(x_{0}=x_{1})

(y_{0}=0)

(x_{1}=0)

(y_{1}=y_{1})

В результате уравнение принимает следующий вид:

(frac{x-x_{1}}{0-x_{1}}=frac{y-0}{y_{1}-0}Leftrightarrow -frac{x}{x_{1}}+1=frac{y}{y_{1}}Leftrightarrow 1=frac{x}{x_{1}}+frac{y}{y_{1}})

Если поменять местами правую и левую части уравнения, то равенство примет такой вид:

(frac{x}{x_{1}}+frac{y}{y_{1}}=1)

(x_{1}neq 0)

(y_{1}neq 0)

Данную формулу называют уравнением прямой в отрезках. С помощью прямой, которая пересекает точки: (X_{1}left(x_{1},0 right)) и (Y_{1}left(0, y_{1} right))

координатные оси делят на отрезки х1 на оси абсцисс и у1 на оси ординат. Длины отрезков будут рассчитаны следующим образом:

(OX_{1}=left|x_{1} right|)

(OY_{1}=left|y_{1} right|)

График 2

 

Как записать формулу, канонический вид

Какой-либо вектор, отличный от нуля, проходит по данной прямой или параллельно ей, называют направляющим вектором этой прямой. Для обозначения направляющего вектора произвольной прямой используют букву (bar{a})

Координаты данного вектора обозначают с помощью букв l, m, n. Таким образом, можно прийти к следующему уравнению:

(bar{a}=left{l; m; n right})

При известном значении одной точки (M_{0}left(x_{0};y_{0};z_{0} right)) и направляющего вектора (bar{a}=left{l; m; n right}) прямой, то для нее будут записаны следующие уравнения:

(frac{x-x_{0}}{l}=frac{y-y_{0}}{m}=frac{z-z_{0}}{n})

Уравнение в таком виде называют каноническим.

Параметрическое уравнение прямой, проходящей через две точки

Канонические уравнения для прямой, которая пересекает следующие точки:

(M_{1}left(x_{1};y_{1};z_{1} right))

(M_{2}left(x_{2};y_{2};z_{2} right))

будет записано в следующем виде:

(frac{x-x_{1}}{x_{2}-x_{1}}=frac{y-y_{1}}{y_{2}-y_{1}}=frac{z-z_{1}}{z_{2}-z_{1}})

Равные отношения можно обозначить буквой t в канонических уравнениях. В итоге они приобретают такой вид:

(frac{x-x_{0}}{l}=frac{y-y_{0}}{m}=frac{z-z_{0}}{n}=t)

Исход из этого, получается равенство:

(x=x_{0}+lt)

(y=y_{0}+mt)

(z=z_{0}+nt)

Данные равенства являются параметрическими уравнениями прямой, которая пересекает точку (M_{0}left(x_{0};y_{0}; z right)) в направлении вектора (bar{a}=left{l; m; n right})

В данном случае t является произвольно изменяющимся параметром, x, y, z представляют собой функции от t. Если изменяется t, то значения x, y, z также меняются. Таким образом, точка M (x; y; z) перемещается вдоль прямой. Если параметр t использовать в качестве переменного времени, а уравнения представить в виде формул, описывающих движение точки М, то с помощью данных уравнений можно определить прямолинейное и равномерное движение точки М. При t равным 0 точка М будет совпадать с точкой M0.

Скорость V точки М обладает постоянным значением и рассчитывается по формуле:

(V=sqrt{l^{2}+m^{2}+n^{2}})

Примеры задач с решением

Задача 1

Необходимо построить прямую, которая проходит через следующие точки: А (2, 1, 1), В (3, 1, -2).

Решение

Уравнение прямой, которая проходит через точки:

(Aleft(x_{1},y_{1},z_{1} right))

(Bleft(x_{2},y_{2},z_{2} right))

будет иметь следующий вид:

(frac{x-x_{1}}{x_{2}-x_{1}}=frac{y-y_{1}}{y_{2}-y_{1}}=frac{z-z_{1}}{z_{2}-z_{1}})

После того, как координаты точек А и В будут применены к первому уравнению, оно будет записано в такой форме:

(frac{x-2}{3-2}=frac{y-1}{1-1}=frac{z-1}{-2-1})

После некоторых преобразований получается:

(frac{x-2}{1}=frac{y-1}{0}=frac{z-1}{-3})

В данном случае наличие ноля в знаменателе не обозначает деление на ноль. Параметрическое уравнение прямой будет записано таким образом:

(t=frac{x-2}{1})

(t=frac{ y-1}{0})

(t=frac{z-1}{-3})

Если выразить переменные x, y, z с помощью параметра t, в итоге получится:

(x = t + 2)

(y = 1)

(z = -3 * t + 1)

Ответ: каноническое уравнение прямой, проходящей через точки A(2, 1, 1), B(3, 1, -2), будет записано в следующем виде:

(frac{x-2}{1}=frac{y-1}{0}=frac{z-1}{-3})

Параметрическое уравнение прямой, проходящей через точки A(2, 1, 1), B(3, 1, -2), будет записано в следующем виде:

(x = t + 2)

(y = 1)

(z = -3 * t + 1)

Задача 2

Требуется построить прямую, которая проходит через точки А (1, 1/5, 1) и В (-2, 1/2, -2).

Решение

Уравнение для прямой, которая пересекает заданные точки:

(Aleft(x_{1},y_{1},z_{1} right))

(Bleft(x_{2},y_{2},z_{2} right))

будет записано таким образом:

(frac{x-x_{1}}{x_{2}-x_{1}}=frac{y-y_{1}}{y_{2}-y_{1}}=frac{z-z_{1}}{z_{2}-z_{1}})

После подстановки координат точек А и В в исходную формулу, она приобретет такой вид:

(frac{x-1}{-2-1}=frac{y-frac{1}{5}}{frac{1}{2}-frac{1}{5}}=frac{z-1}{-2-1})

или

(frac{x-1}{-3}=frac{y-frac{1}{5}}{frac{3}{10}}=frac{z-1}{-3})

Далее можно записать параметрическое уравнение прямой:

(t=frac{x-1}{-3})

(t=frac{y-frac{1}{5}}{frac{3}{10}})

(t=frac{z-1}{-3})

Выразив переменные x, y, z с помощью параметра t, можно получить следующее уравнение:

(x=-3times t+1)

(y=frac{3}{10}t+frac{1}{5})

(z=-3times t+1)

Ответ: каноническое уравнение прямой, пересекающей заданные точки A(1, 1/5, 1) и B(−2, 1/2, −2) записано в следующем виде:

(frac{x-1}{-3}=frac{y-frac{1}{5}}{frac{3}{10}}=frac{z-1}{-3})

параметрическое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид:

(x=-3times t+1)

(y=frac{3}{10}t+frac{1}{5})

(z=-3times t+1)

Понравилась статья? Поделить с друзьями:
  • Как написать уравнение плоскости проходящей через три точки
  • Как написать уравнение плоскости проходящей через точку перпендикулярно вектору
  • Как написать уравнение плоскости проходящей через 2 точки перпендикулярно плоскости
  • Как написать уравнение плоскости перпендикулярной другой плоскости
  • Как написать уравнение оси симметрии параболы