Рассмотрим изменение импульсов тел при их взаимодействии друг с другом.
Если два или несколько тел взаимодействуют только между собой (то есть не подвергаются воздействию внешних сил), то эти тела образуют замкнутую систему.
Импульс, равный векторной сумме импульсов тел, входящих в замкнутую систему, называется суммарным импульсом этой системы.
Результирующая векторная величина импульса системы тел равна векторной сумме импульсов тел, её составляющих:
Закон сохранения импульса
Суммарный импульс системы тел до взаимодействия равен суммарному импульсу этой системы тел после взаимодействия.
В этом заключается закон сохранения импульса, который называют также законом сохранения количества движения.
Закон сохранения импульса впервые был сформулирован Р. Декартом. В одном из своих писем он написал:
«Я принимаю, что во Вселенной, во всей созданной материи есть известное количество движения, которое никогда не увеличивается, не уменьшается, и, таким образом, если одно тело приводит в движение другое, то теряет столько своего движения, сколько его сообщает».
Для примера возьмем систему из двух тел: шары массами
m1
и
m2
равномерно и прямолинейно движутся со скоростями
v1
и
v2
, причем их скорости противоположно направлены, то есть шары движутся навстречу друг другу. Импульсы шаров записываются
p1→=m1v1→
и
p2→=m2v2→
соответственно.
Рис. (1). Направление движения шаров до соударения
Когда шары приблизятся друг к другу, произойдет столкновение. Удар не будет мгновенным, он займёт пусть малое, но вполне измеримое время (t), при этом появятся силы взаимодействия
F1→
и
F2→
, которые будут приложены к первому и второму шарам соответственно. Как известно, под действием силы скорость тела меняется, поэтому изменятся и скорости шаров. После столкновения модули и направления скоростей могут быть совершенно иными, поэтому обозначим скорости
v1′
и
v2′
соответственно. Изменятся и импульсы шаров, они станут равны
p1→′=m1v1→′
и
p2→′=m2v2→′
соответственно.
Рис. (2). Направление движения шаров после соударения
Тогда, согласно закону сохранения импульса, имеют место равенства:
или
.
Данные равенства являются математической записью закона сохранения импульса.
Закон сохранения импульса выполняется и в том случае, если на тела системы действуют внешние силы, векторная сумма которых равна нулю.
Таким образом, более точно закон сохранения импульса формулируется так:
векторная сумма импульсов всех тел замкнутой системы — величина постоянная, если внешние силы, действующие на неё, отсутствуют или же их векторная сумма равна нулю.
Импульс системы тел может измениться только в результате действия на систему внешних сил. И тогда закон сохранения импульса действовать не будет.
Пример:
при стрельбе из пушки возникает отдача: снаряд летит вперёд, а само орудие откатывается назад. Почему?
Рис. (3). После выстрела пушка откатывается назад
Снаряд и пушка — замкнутая система, в которой действует закон сохранения импульса. В результате выстрела из пушки импульс самой пушки и импульс снаряда изменятся. Но сумма импульсов пушки и находящегося в ней снаряда до выстрела останется равной сумме импульсов откатывающейся пушки и летящего снаряда после выстрела.
Обрати внимание!
В природе замкнутых систем не существует. Но если время действия внешних сил очень мало, например, во время взрыва, выстрела и т. п., то в этом случае воздействием внешних сил на систему пренебрегают, а саму систему рассматривают как замкнутую.
Кроме того, если на систему действуют внешние силы, но сумма их проекций на одну из координатных осей равна нулю (то есть силы уравновешены в направлении этой оси), то в этом направлении закон сохранения импульса выполняется.
Великий учёный Исаак Ньютон изобрёл наглядную демонстрацию закона сохранения импульса — маятник, или её ещё называют «колыбель». Это устройство представляет собой конструкцию из пяти одинаковых металлических шаров, каждый из которых крепится с помощью двух тросов к каркасу, а тот в свою очередь — к прочному основанию П-образной формы.
Рис. (4). Устройство для демонстрации закона сохранения импульса, колыбель Ньютона
Маятник Ньютона устроен так, что начальный шар передаёт импульс второму шарику, а затем замирает. Нашему глазу на первый взгляд не заметно, как следующий шарик принимает импульс от предыдущего, мы не можем проследить его скорость. Но, если взглянуть пристальнее, можно заметить, как шарик немножко «вздрагивает». Это объясняется тем, что он совершает движения с посланной ему скоростью, но поскольку расстояние очень маленькое, ему некуда разогнаться, то он может на своём коротком пути передать импульс третьему шарику и в итоге остановиться.
Такое же действие совершает и следующий шарик и т. д. Последнему шарику некуда передавать свой импульс, поэтому он свободно колеблется, поднимаясь на определённую высоту, а затем возвращается, и весь процесс передачи импульсов повторяется в обратном порядке.
Самый яркий пример применения закона сохранения импульса — реактивное движение.
Рис. (4). Шаттл
Источники:
Рис. 1. Направление движения шаров до соударения. © ЯКласс.
Рис. 2. Направление движения шаров после соударения. © ЯКласс.
Рис. 3. После выстрела пушка откатывается назад. © ЯКласс. Пушка. Указание автора не требуется, 2021-08-26, Pixabay License, https://pixabay.com/images/id-159503/
Рис. 4. Устройство для демонстрации закона сохранения импульса, колыбель Ньютона.Указание автора не требуется, 2021-08-26, Pixabay License,https://pixabay.com/images/id-6076266/.
Рис. 5. Шаттл. Указание автора не требуется, 2021-08-26, Pixabay License,https://pixabay.com/images/id-992/
Закон сохранения импульса
Закон сохранения импульса можно наблюдать повсюду. Он достаточно точно выполняется в реальных условиях, если пренебречь сопротивлением воздуха, силами трения и т.д. Примеры проявления этого закона:
- стрелок ощущает отдачу при выстреле из ружья;
- рыбак переходит с кормы на нос лодки, а лодка при этом движется в противоположную сторону;
- шары сталкиваются на бильярдном столе.
Однако, прежде чем говорить о законе сохранении импульса, рассмотрим понятие замкнутой системы.
Замкнутая система — система тел, на которую со стороны других тел не действуют внешние силы.
Векторная сумма импульсов всех тел, входящих в замкнутую систему, остается постоянной при любых взаимодействиях этих тел между собой внутри системы.
Данный закон является следствием из второго и третьего законов Ньютона. Покажем это.
Возьмем замкнутую систему из двух взаимодействующих тел. Силы F1→ и F2→ — это силы взаимодействия между телами. Третий закон Ньютона гласит, что F2→=-F1→. Пусть тела взаимодействуют во течение времени t. Тогда импульсы сил одинаковы по модулю и противоположны по направлению, как и сами силы.
F2t→=-F1→t.
По второму закону Ньютона:
F1→t=m1v1’→-m1v1→; F2→t=m1v2’→-m1v2→
Здесь v1’→ и v2’→ — скорости тел в конце взаимодействия. Соответственно, скорости без штрихов обозначают эти величины в начальный момент взаимодействия.
Из записанного выше следует соотношение:
m1v1→+m2v2→=m1v1’→+m2v2’→
Это равенство — математическая форма записи закона сохранения импульса. Оно означает, что суммарный импульс системы в результате какого-то взаимодействия не изменился.
Проиллюстрируем закон сохранения импульса на примере соударения шаров разных масс. Один из шаров до удара покоился.
Как видим, после удара векторная сумма импульсов двух шаров равна первоначальному импульсу движущегося шара.
Важно! Закон сохранения выполняется и для проекций векторов на координатные оси.
Закон сохранения импульса позволяет решать задачи и находить скорости тел не зная значений действующих сил.
Рассмотрим снаряд, вылетающий из пушки.
В данном случае взаимодействующие тела — это снаряд и пушка. Сначала тела не движутся. При выстреле снаряд приобретает скорость v→ и летит вперед, а пушка откатывается назад со скоростью V→. Откатывание пушки называется отдачей от выстрела.
По закону сохранения импульса в проекции на ось OX можно записать:
mv-MV=0
V=mvM.
Реактивное движение
Реактивное движение также основано на принципе отдачи. Нагретые газы выбрасываются из сопла реактивного двигателя со скоростью u→. Пусть масса газов равна m, а масса ракеты после истечения газов — M. Рассматривая замкнутую систему «ракета-газы» и применяя к ней закон сохранения импульса, можно вычислить скорость ракеты V после истечения газов.
V=muM
Формула для пушки и снаряда не применима к ракете, так как дает лишь приблизительное представление о движении ракеты, На самом деле вся масса газов выходит из сопла не сразу, а постепенно.
Рассмотрим этот процесс подробнее. Пусть масса ракеты в момент времени t равна M, а сама ракета движется со скоростью v→. В течение малого промежутка времени ∆t из сопла ракеты выбрасывается порция газа с относительной скоростью u→. По истечении времени ∆t ракета будет двигаться со скоростью v+∆v, а масса ракеты станет равной M-∆M.
В момент t+∆t импульс ракеты равен:
M-∆M·v→+∆v→.
Импульс реактивных газов:
∆M·v→+u→.
По закону сохранения импульса:
Mv→=M-∆M·v→+∆v→+∆M·v→+u→.
Или
M∆v→=∆M·u→-∆M·∆v→.
Величиной ∆M·∆v→ можно пренебречь, так как ∆M намного меньше M.
Разделим последнее равенство на ∆t и перейдем к пределу ∆t→0.
M∆v→∆t=∆M·u→∆t (∆t→0)
Ma→=-μu→.
Здесь μ — расход топлива в единицу времени, а -μu→ — реактивная сила тяги. Направление этой силы совпадает с направлением движения ракеты.
Формула Ma→=-μu→ выражает второй закон Ньютона для тела переменной массы. В скалярном виде ее можно переписать так:
Ma=μu.
Конечная скорость ракеты определяется по формуле:
v=ulnM0M.
Это так называемая формула Циолковского, согласно которой конечная скорость ракеты может превышать скорость истечения газов из сопла двигателя. Правда, достижение такой скорости связано с определенными сложностями. Во-первых, такими, как значительный расход топлива.
Для того, чтобы развить первую космическую скорость v=v1=7,9·103 мс при скорости истечения газов u=3·103 мс стартовая масса ракеты должна быть примерно в 14 раз больше конечной массы.
Современное ракетостроение развивается в направлении экономичных многоступенчатых ракет. Сброс отсеков с отработанным топливом позволяет значительно сократить массу ракеты и оптимизировать дальнейший расход топлива для ее разгона.
Импульс тела — векторная физическая величина, обозначаемая как p и равная произведению массы тела на его скорость:
p = mv
Единица измерения импульса — килограмм на метр в секунду (кг∙м/с).
Направление импульса всегда совпадает с направлением скорости (p↑↓v), так как масса — всегда положительная величина (m > 0).
Пример №1. Определить импульс пули массой 10 г, вылетевшей со скоростью 300 м/с. Сопротивлением воздуха пренебречь.
Импульс пули есть произведение массы на ускорение. Прежде чем выполнить вычисления, нужно перевести единицы измерения в СИ:
10 г = 0,01 кг
Импульс равен:
p = mv = 0,01∙300 = 3 (кг∙м/с)
Относительный импульс
Определение
Относительный импульс — векторная физическая величина, равная произведению массы тела на относительную скорость:
p1отн2 = m1v1отн2 = m1(v1 – v2)
p1отн2 — импульс первого тела относительно второго, m1 — масса первого тела, v1отн2 — скорость первого тела относительно второго, v1 и v2 — скорости первого и второго тела соответственно в одной и той же системе отсчета.
Пример №2. Два автомобиля одинаковой массы (15 т) едут друг за другом по одной прямой. Первый — со скоростью 20 м/с, второй — со скоростью 15 м/с относительно Земли. Вычислите импульс первого автомобиля в системе отсчета, связанной со вторым автомобилем.
Сначала переведем единицы измерения в СИ:
15 т = 15000 кг
p1отн2 = m1(v1 – v2) = 15000(20 – 15) = 75000 (кг∙м/с) = 75∙103 (кг∙м/с)
Изменение импульса тела
ОпределениеИзменение импульса тела — векторная разность между конечным и начальным импульсом тела:
∆p = p – p0 = p + (– p0)
∆p — изменение импульса тела, p — конечный импульс тела, p0 — начальный импульс тела
Частные случаи определения изменения импульса тела
Абсолютно неупругий удар |
|
|
Конечная скорость после удара:
v = 0. Конечный импульс тела: p = 0. Модуль изменения импульса тела равен модулю его начального импульса: ∆p = p0. |
Абсолютно упругий удар |
|
Модули конечной и начальной скоростей равны: v = v0. Модули конечного и начального импульсов равны: p = p0. Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса: ∆p = 2p0 = 2p. |
|
Пуля пробила стенку |
|
Модуль изменения импульса тела равен разности модулей начального и конечного импульсов: ∆p = p0 – p = m(v0 – v) |
|
Радиус-вектор тела повернул на 180 градусов |
|
Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса: ∆p = 2p0 = 2p = 2mv0 |
|
Абсолютно упругое отражение от горизонтальной поверхности под углом α к нормали |
|
|
Модули конечной и начальной скоростей равны: v = v0. Модули конечного и начального импульсов равны: p = p0. Угол падения равен углу отражения: α = α’ Модуль изменения импульса в этом случае определяется формулой: |
Пример №3. Шайба абсолютно упруго ударилась о неподвижную стену. При этом направление движения шайбы изменилось на 90 градусов. Импульс шайбы перед ударом равен 1 кг∙м/с. Чему равен модуль изменения импульса шайбы в результате удара? Ответ округлите до десятых.
В данном случае 90 градусов и есть 2α (угол между векторами начального и конечного импульсов), в то время как α — это угол между вектором импульса и нормалью. Учтем, что при абсолютно упругом отражении модули конечного и начального импульсов равны.
Вычисляем:
Второй закон Ньютона в импульсном виде
Второй закон Ньютона говорит о том, что ускорение тела прямо пропорционально силе, действующей на него. Записывается он так:
Но ускорение определяется отношением разности конечной и начальной скоростей ко времени, в течение которого менялась скорость:
Подставим это выражение во второй закон Ньютона и получим:
Или:
F∆t — импульс силы, ∆p — изменение импульса тела
Пример №4. Тело движется по прямой в одном направлении. Под действием постоянной силы за 3 с импульс тела изменился на 6 кг∙м/с. Каков модуль силы?
Из формулы импульса силы выразим модуль силы:
Реактивное движение
Определение
Реактивное движение — это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-либо его части. В отличие от других видов движения реактивное движение позволяет телу двигаться и тормозить в безвоздушном пространстве, достигать первой космической скорости.
Ракета представляет собой систему двух тел: оболочки массой M и топлива массой m. v — скорость выброса раскаленных газов. ∆m/∆t — расход реактивного топлива, V — скорость ракеты.
Второй закон Ньютона в импульсном виде:
Реактивная сила:
Второй закон Ньютона для ракеты:
Пример №5. Космический корабль массой 3000 кг начал разгон в межпланетном пространстве, включив реактивный двигатель. Из сопла двигателя каждую секунду выбрасывается 3 кг горючего газа со скоростью 600 м/с. Какой будет скорость корабля через 20 секунд после разгона? Изменением массы корабля во время разгона пренебречь. Принять, что поле тяготения, в котором движется корабль, пренебрежимо мало.
Корабль начинает движение из состояния покоя. Поэтому скорость будет равна:
V = a∆t
Выразим ускорение из второго закона Ньютона для ракеты:
Изменение импульса определяется произведением суммарной массы выброшенного горючего на скорость его выброса. Так как мы знаем, сколько выбрасывалось горючего каждую секунду, формула примет вид:
Отсюда ускорение равно:
Выразим формулу для скорости и сделаем вычисления:
Суммарный импульс системы тел
Определение
Суммарный импульс системы тел называется полным импульсом системы. Он равен векторной сумме импульсов всех тел, которые входят в эту систему:
Пример №6. Найти импульс системы, состоящей из двух тел. Векторы импульсов этих тел указаны на рисунке.
Между векторами прямой угол (его косинус равен нулю). Модуль первого вектора равен 4 кг∙м/с (т.к. занимает 2 клетки), а второго — 6 кг∙м/с (т.к. занимает 3 клетки). Отсюда:
Закон сохранения импульса
Закон сохранения импульсаПолный импульс замкнутой системы сохраняется:
Левая часть выражения показывает векторную сумму импульсов системы, состоящей из двух тел, до их взаимодействия. Правая часть выражения показывает векторную сумму этой системы после взаимодействия тел, которые в нее входят.
Закон сохранения импульса в проекции на горизонтальную ось
Если до и после столкновения скорости тел направлены вдоль горизонтальной оси, то закон сохранения импульса следует записывать в проекциях на ось ОХ. Нельзя забывать, что знак проекции вектора:
- положителен, если его направление совпадает с направлением оси ОХ;
- отрицателен, если он направлен противоположно направлению оси ОХ.
Важно!
При неупругом столкновении двух тел, движущихся навстречу друг другу, скорость совместного движения будет направлена в ту сторону, куда до столкновения двигалось тело с большим импульсом.
Частные случаи закона сохранения импульса (в проекциях на горизонтальную ось)
Неупругое столкновение с неподвижным телом | m1v1 = (m1 + m2)v |
Неупругое столкновение движущихся тел | ± m1v1 ± m2v2 = ±(m1 + m2)v |
В начальный момент система тел неподвижна | 0 = m1v’1 – m2v’2 |
До взаимодействия тела двигались с одинаковой скоростью | (m1 + m2)v = ± m1v’1 ± m2v’2 |
Сохранение проекции импульса
В незамкнутых системах закон сохранения импульса выполняется частично. Например, если из пушки под некоторым углом α к горизонту вылетает снаряд, то влияние силы реакции опоры не позволит орудию «уйти под землю». В момент отдачи оно будет откатываться от поверхности земли.
Пример №7. На полу лежит шар массой 2 кг. С ним сталкивается шарик массой 1 кг со скоростью 2 м/с. Определить скорость первого шара при условии, что столкновение было неупругим.
Если столкновение было неупругим, скорости первого и второго тел после столкновения будут одинаковыми, так как они продолжат двигаться совместно. Используем для вычислений следующую формулу:
m2v2 = (m1 + m2)v
Отсюда скорость равна:
Задание EF17556
Импульс частицы до столкновения равен −p1, а после столкновения равен −p2, причём p1 = p, p2 = 2p, −p1⊥−p2. Изменение импульса частицы при столкновении Δ−p равняется по модулю:
а) p
б) p√3
в) 3p
г) p√5
Алгоритм решения
1.Записать исходные данные.
2.Построить чертеж, обозначить векторы начального и конечного импульсов, а также вектор изменения импульса. Для отображения вектора изменения импульса использовать правило сложения векторов методом параллелограмма.
3.Записать геометрическую формулу для вычисления длины вектора изменения импульса.
4.Подставить известные значения и вычислить.
Решение
Запишем исходные данные:
• Модуль импульса частицы до столкновения равен: p1 = p.
• Модуль импульса частицы после столкновения равен: p2 = 2p.
• Угол между вектором начального и вектором конечного импульса: α = 90о.
Построим чертеж:
Так как угол α = 90о, вектор изменения импульса представляет собой гипотенузу треугольника, катами которого являются вектора начального и конечного импульсов. Поэтому изменение импульса можно вычислить по теореме Пифагора:
Δp=√p21+p22
Подставим известные данные:
Δp=√p2+(2p)2=√5p2=p√5
Ответ: г
pазбирался: Алиса Никитина | обсудить разбор | оценить
Задание EF17695
На рисунке приведён график зависимости проекции импульса на ось Ox тела, движущегося по прямой, от времени. Как двигалось тело в интервалах времени 0–1 и 1–2?
а) в интервале 0–1 не двигалось, а в интервале 1–2 двигалось равномерно
б) в интервале 0–1 двигалось равномерно, а в интервале 1–2 двигалось равноускорено
в) в интервалах 0–1 и 1–2 двигалось равномерно
г) в интервалах 0–1 и 1–2 двигалось равноускорено
Алгоритм решения
1.Записать формулу, связывающую импульс тема с его кинематическими характеристиками движения.
2.Сделать вывод о том, как зависит характер движения от импульса.
3.На основании вывода и анализа графика установить характер движения тела на интервалах.
Решение
Импульс тела есть произведение массы тела на его скорость:
p = mv
Следовательно, импульс и скорость тела — прямо пропорциональные величины. Если импульс с течением времени не меняется, то скорость тоже. Значит, движение равномерное. Если импульс растет линейно, то и скорость увеличивается линейно. В таком случае движение будет равноускоренным.
На участке 0–1 импульс тела не менялся. Следовательно, на этом участке тело двигалось равномерно. На участке 1–2 импульс тела увеличивался по линейной функции, следовательно, на этом участке тело двигалось равноускорено.
Верный ответ: б.
Ответ: б
pазбирался: Алиса Никитина | обсудить разбор | оценить
Задание EF22730
Камень массой 3 кг падает под углом α = 60° к горизонту в тележку с песком общей массой 15 кг, покоящуюся на горизонтальных рельсах, и застревает в песке (см. рисунок). После падения кинетическая энергия тележки с камнем равна 2,25 Дж. Определите скорость камня перед падением в тележку.
Алгоритм решения
1.Записать исходные данные.
2.Записать закон сохранения импульса применительно к задаче.
3.Записать формулу кинетической энергии тела.
4.Выполнить общее решение.
5.Подставить известные данные и вычислить искомую величину.
Решение
Запишем исходные данные:
• Масса камня: m1 = 3 кг.
• Масса тележки с песком: m2 = 15 кг.
• Кинетическая энергия тележки с камнем: Ek = 2,25 Дж.
Так как это абсолютно неупругий удар, закон сохранения импульса принимает вид:
m1v1+m2v2=(m1+m2)v
Учтем, что скорость тележки изначально была равна нулю, а к ее движению после столкновения привела только горизонтальная составляющая начальной скорости камня:
m1v1cosα=(m1+m2)v
Выразить конечную скорость системы тел после столкновения мы можем через ее кинетическую энергию:
Ek=(m1+m2)v22
Отсюда скорость равна:
v=√2Ekm1+m2
Выразим скорость камня до столкновения через закон сохранения импульса и подставим в формулу найденную скорость:
v1=(m1+m2)vm1cosα=(m1+m2)m1cosα·√2Ekm1+m2
Подставим известные данные и произведем вычисления:
v1=(3+15)3cos60o·√2·2,253+15=12·√0,25=12·0,5=6 (мс)
Ответ: 6
pазбирался: Алиса Никитина | обсудить разбор | оценить
Задание EF22520
Снаряд, имеющий в точке О траектории импульсp0, разорвался на два осколка. Один из осколков имеет импульс −p1
. Импульс второго осколка изображается вектором:
а) −−→AB
б) −−→BC
в) −−→CO
г) −−→OD
Алгоритм решения
1.Сформулировать закон сохранения импульса и записать его в векторной форме.
2.Применить закон сохранения импульса к задаче.
3.Выразить из закона импульс второго осколка и найти на рисунке соответствующий ему вектор.
Решение
Согласно закону сохранения импульса, импульс замкнутой системы тел сохраняется. Записать его можно так:
−p1+−p2=−p′
1+−p′2
Можем условно считать осколки замкнутой системой, так как они не взаимодействуют с другими телами. Применяя к ним закон сохранения импульса, получим:
−p0=−p1+−p2
Отсюда импульс второго осколка равен векторной разности импульса снаряда и импульса первого осколка:
−p2=−p0−−p1
Известно, что разностью двух векторов является вектор, начало которого соответствует вычитаемому вектору, а конец — вектору уменьшаемому. В нашем случае вычитаемый вектор — вектор импульса первого осколка. Следовательно, начало вектора импульса второго осколка лежит в точке А. Уменьшаемый вектор — вектор импульса снаряда. Следовательно, конец вектора лежит в точке В. Следовательно, искомый вектор — −−→AB.
Ответ: а
pазбирался: Алиса Никитина | обсудить разбор | оценить
Задание EF18122
Летящая горизонтально со скоростью 20 м/с пластилиновая пуля массой 9 г попадает в груз неподвижно висящий на нити длиной 40 см, в результате чего груз с прилипшей к нему пулей начинает совершать колебания. Максимальный угол отклонения нити от вертикали при этом равен α = 60°. Какова масса груза?
Ответ:
а) 27 г
б) 64 г
в) 81 г
г) 100 г
Алгоритм решения
1.Записать исходные данные и перевести единицы измерения величин в СИ.
2.Сделать чертеж, отобразив начальное, промежуточное и конечное положение тел.
3.Записать закон сохранения импульса для момента столкновения и закон сохранения механической энергии для момента максимального отклонения нити от положения равновесия.
4.Выполнить решение задачи в общем виде.
5.Подставить известные данные и вычислить искомую величину.
Решение
Запишем исходные данные:
• Масса пластилиновой пули: m = 9 г.
• Скорость пластилиновой пули: v = 20 м/с.
• Максимальный угол отклонения нити: α = 60°.
Переведем единицы измерения величин в СИ:
Сделаем чертеж:
Нулевой уровень — точка А.
После неупругого столкновения пули с грузом они начинают двигаться вместе. Поэтому закон сохранения импульса для точки А выглядит так:
mv=(m+M)V
После столкновения система тел начинается двигаться по окружности. Точка В соответствует верхней точке траектории. В этот момент скорость системы на мгновение принимает нулевое значение, а потенциальная энергия — максимальное.
Закон сохранения энергии для точки В:
(m+M)V22=(m+M)gh
V22=gh
Высоту h можно определить как произведение длины нити на косинус угла максимального отклонения. Поэтому:
V=√2glcosα
Подставим это выражение в закон сохранения импульса для точки А и получим:
Выразим массу груза:
Ответ: в
pазбирался: Алиса Никитина | обсудить разбор | оценить
Алиса Никитина | Просмотров: 18.5k
Реактивное
движение.
-
Импульс тела.
-
Импульс силы.
-
Связь между
приращением импульса материальной
точки и импульсом силы (закон изменения
импульса). -
Механическая
система. -
Внутренние силы.
-
Внешние силы.
-
Импульс механической
системы. -
Замкнутая
механическая система. -
Закон сохранения
импульса. -
Реактивное
движение.
11. К.Э.Циолковский
основатель.
1.Импульс
тела ( количество движения) – векторная
физическая величина равная произведению
массы тела на его скорость:
.
Импульс измеряется
в
.
2. Импульс
силы – векторная
физическая величина равная произведению
силы на время её действия:
.
3. Связь
между приращением импульса материальной
точки и импульсом силы ( Закон
изменения импульса).
Пусть
на материальную точку массы m
в течение
интервала времени
действует постоянная сила
,
сообщая ей ускорение:
Умножая обе части
этого равенства на m,
получим
Здесь
,
— импульс точки в начальный момент
времени
,
импульс
точки в момент времени t
.
Таким
образом, получаем, что изменение импульса
точки в единицу времени равно силе,
вызывающей
это изменение
.
Из этого равенства
получим
т.е. изменение
импульса точки равно импульсу силы,
действующей на точку (обобщенное
выражение
второго закона Ньютона.
Последние два
равенства представляют собой два
выражения закона изменения импульса.
4.Механическая
система –
совокупность взаимодействующих
материальных точек (тел). Примером
механической системы является Солнечная
система.
5. Внутренние
силы – силы,
с которыми материальные точки системы
взаимодействуют между собой.
6. Внешние
силы – силы,
с которыми материальные точки системы
взаимодействуют с посторонними телами,
не входящими в данную систему.
7. Импульс
механической системы
– геометрическая сумма импульсов тел,
входящих в данную систему:
.
По третьему закону
Ньютона все внутренние силы механической
системы попарно равны по модулю и
противонаправлены. Поэтому равнодействующая
всех внутренних сил равна нулю. Это
значит, что внутренние силы не могут
изменить положение центра масс системы,
скорость, а следовательно и импульс
механической системы.
8. Замкнутая
система – механическая
система, на которую не действуют внешние
силы. Механическая система может
считаться замкнутой и в том случае,
когда равнодействующая всех внешних
сил равна нулю,
Система может быть
замкнутой вдоль какой-либо оси, если
сумма проекций всех внешних сил на эту
ось равна нулю.
9. Закон
сохранения импульса.
Геометрическая сумма импульсов тел
замкнутой системы остаётся постоянной
при любых взаимодействиях тел системы
между собой:
.
Покажем выполнение
закона сохранения импульса на примере
упругого столкновения двух шаров, массы
которых
и
.
Эти шары представляют пример замкнутой
системы, т.к. отсутствуют вешние силы.
Пусть
и
— импульсы шаров до удара,
и
—
импульсы шаров после удара.
Введём обозначения:
—
продолжительность удара,
— сила, с которой первый шар действует
на второй,
—
сила, с которой второй шар действует на
первый.
По третьему закону
Ньютона, силы с которыми действуют шары
друг на друга равны по модулю и
противонаправлены:
.
Умножая обе части
этого равенства на
получим
,
т.е. импульсы сил,
с которыми шары действуют друг на друга
равны по модулю и противонаправлены.
Это в свою очередь означает, что равны
по модулю и противоположно направлены
изменения импульсов шаров
.
Отсюда получаем
,
Или
.
Итак, векторная
сумма импульсов двух шаров до столкновения
равна векторной сумме этих шаров после
столкновения.
Если же удар
неупругий, то после столкновения тела
продолжают движение как одно целое со
скоростью
.
Поэтому согласно закону сохранения
импульса запишем
.
При решении задач
на закон сохранения импульса удобно
пользоваться правилом сложения векторов
(правилом параллелограмма). Покажем
это на примерах.
П
усть
тело массы
,
двигаясь со скоростью
,
сталкивается с покоящимся телом массы
.
Удар предполагаем упругий и не прямой,
т.е. после удара тела разлетаются под
некоторым углом, имея импульсы
и
.
По закону сохранения импульса векторная
сумма импульсов тел после удара равна
векторной сумме импульсов до удара.
Учитывая, что до столкновения второе
тело находилось в состоянии покоя, и
его импульс был равен нулю, запишем
.
Это значит, что
импульс
равен диагонали параллелограмма,
построенного на векторах
и
(Рис.48).
Здесь
импульсы тел до столкновения (до
взаимодействия) ,
и
— импульсы тел до взаимодействия.
П
усть
тело массы m,
двигаясь со скоростью
в некоторый момент времени распадается
на два осколка с массами
,
которые разлетаются под некоторым
углом, имея импульсы
и
.
По закону сохранения импульса векторная
сумма импульсов осколков равна импульсу
тела до распада, т. е.
Здесь
импульс
тела до распада равный диагонали
параллелограмма, построенного на
векторах
(Рис.49).
10. Реактивное
движение –
движение
механической системы,
возникающее при отбрасывании
внутренними
силами какой-либо её части с некоторой
скоростью.
В качестве примера
реактивного движения рассмотрим
выстрел из пушки. Пусть ствол пушки
установлен горизонтально. Пушка и снаряд
– замкнутая система. До выстрела пушка
и снаряд находились в состоянии покоя,
и их суммарный импульс был равен нулю.
Положим
и
,
и
— массы и скорости снаряда и пушки
соответственно (Рис.50).
Согласно закону
сохранения импульса суммарный импульс
пушки и снаряда после выстрела останется
равным нулю
.
Отсюда получим
скорость пушки после выстрела
.
Следовательно при
выстреле пушка получает скорость в
противоположном направлении, т.е.
возникает отдача
Примером реактивного
движения является движение ракеты. В
простейшем случае ракета – есть цилиндр,
закрытый с одной стороны и заполненный
порохом (Рис.51). До воспламенения пороха
суммарный импульс пороха и ракеты равен
нулю. Когда порох горит, продукты сгорания
выбрасываются из сопла ракеты с большой
скоростью
,
а ракета приобретает скорость в
противоположном направлении. Пусть
и
— массы пороха и ракеты,
—
скорость, которую приобретает ракета
после полного выгорания пороха. По
закону сохранения импульса запишем
.
Отсюда получим
модуль скорости ракеты после выгорания
пороха
.
1
1.
К.Э.Циолковский
основатель современной космонавтики
теоретически
доказал возможность запуска искусственного
спутника Земли и межпланетных полетов.
К.Э.Циолковский
является автором проекта реактивного
двигателя на жидком топливе (жидкостного
реактивного двигателя – ЖРД) (Рис.52).
Топливо – жидкий
водород
,
окислитель – жидкий кислород
по трубам – 1, с помощью турбин – 2
поступает в камеру сгорания – 3 , где
происходит сгорание водорода и продукты
сгорания с большой скоростью выбрасываются
из сопла – 4 , создавая реактивную силу
тяги.
Этот двигатель
удобен тем, что его можно в случае
необходимости включить или выключить,
меняя обороты турбин , регулировать
силу тяги. Реактивный двигатель на
твёрдом топливе (РДТТ) работает до
полного выгорания твёрдого топлива.
Для увеличения скорости и дальности
полета К.Э.Циолковский предложил идею
многоступенчатых ракет.
К.Э.Циолковский
получил уравнение движения тела
переменной массы, которое стало
теоретической основой движения.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Импульс. Закон сохранения импульса
Импульс — произведение массы на скорость.
Само по себе это произведение ничего не дает для понимания взаимодействий описываемых импульсом. Немного более понятно о чем речь, когда примерно представляешь себе массу и скорость, и, можно сказать, что эти величины будут на него влиять и это верно. Однако давайте поробуем сделать наше понимание более адекватным тому, что происходит.
Чем импульс отличается от силы?
Сила, воздействуя на тело, пытается изменить его скорость.
Импульс присущ телу просто по факту наличия скорости, поэтому его иногда называют количеством движения.
И когда мы пытаемся остановить или разогнать какое то тело, обладающее импульсом, мы вынуждены, воздействуя на тело, приложить к нему силу.
Закон сохранения импульса
Если некое множество тел изолировано от действия внешних, по отношению к ним, сил, то суммарный импульс тел сохраняется.
- закон также выполняется при условии, если действие внешних сил скомпенсировано
- могут быть внутренние силы, действующие между телами
- если есть внешнии силы, то их сумма будет равна изменению суммарного импульса тел:
Закон сохранения импульса может выполнятся в векторной форме, но также возможно выполнение закона для одной из осей (например Х). Только вдоль нее обязательно либо не должны действовать внешние силы, либо действие их должно быть скомпенсировано.
Векторный вид:
В проекциях на ось Х:
Упругий и неупругий удар
В качестве примера рассмотрим абсолютно упругое и абсолютно неупругое столкновения:
Абсолютно упругое столкновение — столкновение, при котором сохраняется механическая энергия сталкивающихся тел (тела разлетаются в стороны).
Абсолютно неупругое столкновение — столкновение, при котором сталкивающиеся тела слипаются в одно целое.
Абсолютно упругое столкновение
Тело движущееся с одной скоростью врезается в тело движущееся с другой. Тела двигаются в одном направлении. Удар — абсолютно упругий. Внешнии силы отсутствуют или скомпенсированы.
Поскольку считается, что внешнии силы отсутствуют, то выполняется закон сохранения импульса в векторной форме:
В векторной форме не учитываются направления векторов (в уравнении везде плюсы). Для того, чтобы отыскать любую из скоростей можно записать его в виде:
Для получения модулей векторов скоростей (числовое значение скоростей), нужно спроектировать все вектора на горизонтальную ось ОХ. Так как все скорости целиком находятся на горизонтальной оси ОХ, то длина проекций всех векторов полностью равна длинам этих векторов.
Поэтому можно убрать значки векторов и записать в следующем виде:
Поскольку скорость V1| направлена против оси ОХ в ее проекции появляется знак минус.
С помощью последней формулы мы можем найти все величины и скоростей, и масс, в зависимости от того, что дано в условии.
Абсолютно неупругое столкновение
Тело движущееся с одной скоростью врезается в тело движущееся с другой. Тела двигались в одном направлении. Удар — абсолютно неупругий. Внешнии силы отсутствуют или скомпенсированы.
Все тоже самое. Поскольку считается, что внешнии силы отсутствуют, то выполняется закон сохранения импульса в векторной форме.
Масса после удара двух тел — общая потому, что тела слиплись в результате неупругого соударения (по условию):
Скорости также направлены вдоль оси ОХ, поэтому:
Откуда также можем найти все величины и скоростей, и масс, в зависимости от того, что дано в условии.
Выполнение закона сохранения импульса для оси
Рассмотрим пример, когда закон сохранения импульса не выполняется в векторной форме, но выполняется для оси.
Шар массой m1 врезается под углом в вагон массой m2. Соударение — неупругое. Внешнии силы отсутствуют.
Вертикальная составляющая скорости V1 идет на нагрев, в результате силы трения внутри вагона (если бы его не было, то вагон должен был либо провалиться вниз, либо его должно было бы отпружинить вверх), а горизонтальная составляющая учавствует в законе сохранения импульса вдоль оси ОХ.
Поэтому закон сохранения импульса не выполняется в векторной форме, но выполняется для оси ОХ, т.к. вдоль нее не действуют никакие силы:
Столкновение шаров под углом
Шар, массой m1 налетает на шар массой m2, под углом. Удар — абсолютно упругий. Внешнии силы отсутствуют.
Сложим вектора импульсов до столкновения P и вектора импульсов после столкновения P|, путем параллельного переноса (зеленая пунктирная линия).
Закон сохранения импульса выполнятеся в векторной форме. Для получения скалярных величин (численных значений), существует способ сложения двух векторов называемый теоремой косинусов.
Скалярнае (численное) значение вектора общего импульса:
Общий импульс — неизменен, вследствие закона сохранения импульса. Поэтому и после удара будет тот же самый импульс, но с другими скоростями и углом:
В зависимости от условия задачи, можно рассчитать те или иные скорости или углы, правомерно приравняв эти два уравнения.