Как пишется бозон хиггса

Higgs boson

Candidate Higgs Events in ATLAS and CMS.png

Candidate Higgs boson events from collisions between protons in the LHC. The top event in the CMS experiment shows a decay into two photons (dashed yellow lines and green towers). The lower event in the ATLAS experiment shows a decay into four muons (red tracks).[a]

Composition Elementary particle
Statistics Bosonic
Symbol
H0
Theorised R. Brout, F. Englert, P. Higgs, G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble (1964)
Discovered Large Hadron Collider (2011–2013)
Mass 125.25 ± 0.17 GeV/c2[1]
Mean lifetime 1.56×10−22 s[b]
(predicted)
1.2 ~ 4.6 × 10−22 s (tentatively measured at 3.2 sigma (1 in 1000) significance)[3][4]
Decays into
  • Bottom–antibottom
    pair (observed)[5][6]
  • Two W bosons (observed)
  • Two gluons (predicted)
  • Tau–antitau pair (observed)
  • Two Z bosons (observed)
  • Two photons (observed)
  • Two leptons and a photon (Dalitz decay via virtual photon) (tentatively observed at sigma 3.2 (1 in 1000) significance) [4]
  • Muon–antimuon pair (predicted)
  • Various other decays (predicted)
Electric charge 0 e
Colour charge 0
Spin 0[7][8]
Weak isospin 1/2
Weak hypercharge +1
Parity +1[7][8]

The Higgs boson, sometimes called the Higgs particle,[9][10] is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field,[11][12] one of the fields in particle physics theory.[12] In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge that couples to (interacts with) mass.[13] It is also very unstable, decaying into other particles almost immediately.

The Higgs field is a scalar field, with two neutral and two electrically charged components that form a complex doublet of the weak isospin SU(2) symmetry. Its «Mexican hat-shaped» potential leads it to take a nonzero value everywhere (including otherwise empty space), which breaks the weak isospin symmetry of the electroweak interaction, and via the Higgs mechanism gives mass to many particles.

Both the field and the boson are named after physicist Peter Higgs, who in 1964, along with five other scientists in three teams, proposed the Higgs mechanism, a way that some particles can acquire mass. (All fundamental particles that were known at the time[c] should be massless at very high energies, but fully explaining how some particles gain mass at lower energies had been extremely difficult.) If these ideas were correct, a particle known as a scalar boson should also exist, with certain properties. This particle was called the Higgs boson, and could be used to test whether the Higgs field was the correct explanation.

After a 40 year search, a subatomic particle with the expected properties was discovered in 2012 by the ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN near Geneva, Switzerland. The new particle was subsequently confirmed to match the expected properties of a Higgs boson. Physicists from two of the three teams, Peter Higgs and François Englert, were awarded the Nobel Prize in Physics in 2013 for their theoretical predictions. Although Higgs’s name has come to be associated with this theory, several researchers between about 1960 and 1972 independently developed different parts of it.

In the mainstream media, the Higgs boson is sometimes called the «God particle» after the 1993 book The God Particle by Nobel Laureate Leon Lederman,[14] although the nickname has been criticised by many physicists.[15][16]

Introduction[edit]

The Standard Model[edit]

Physicists explain the fundamental particles and forces of our universe in terms of the Standard Model – a widely accepted framework based on quantum field theory that predicts almost all known particles and forces other than gravity with great accuracy. (A separate theory, general relativity, is used for gravity.) In the Standard Model, the particles and forces in nature (other than gravity) arise from properties of quantum fields, known as gauge invariance and symmetries. Forces in the Standard Model are transmitted by particles known as gauge bosons.[17][18]

Gauge invariant theories and symmetries[edit]

«It is only slightly overstating the case to say that physics is the study of symmetry» – Philip Anderson, Nobel Prize Physics[19]

Gauge invariant theories are theories which have a useful feature, that some kinds of changes to the value of certain items don’t make any difference to the outcomes or the measurements we make. An example is that changing voltages in an electromagnet by +100 Volts, doesn’t cause any change to the magnetic field it produces. Similarly, measuring the speed of light in vacuum seems to give the identical result whatever the location in time and space, and whatever the local gravitational field.

In these kinds of theories, the gauge is an item whose value we can change, the fact that some changes leave the results we measure unchanged means it is a gauge invariant theory, and symmetries are the specific kinds of changes to the gauge, which have this effect of leaving measurements unchanged. (More precisely, these transformations of the gauge component do not change the energy). Symmetries of this kind are powerful tools for deep understanding of the fundamental forces and particles of our physical world, and gauge invariance is therefore an important property within particle physics theory. They are closely connected to conservation laws, and are described mathematically using group theory. Quantum field theory and the Standard Model are both gauge invariant theories – meaning they focus on properties of our universe that demonstrate this property of gauge invariance, and the symmetries which are involved.

The problem of gauge boson mass[edit]

Quantum field theories based on gauge invariance had been used with great success in understanding the electromagnetic and strong forces, but by around 1960 all attempts to create a gauge invariant theory for the weak force (and its combination with the electromagnetic force, known together as the electroweak interaction) had consistently failed, with gauge theories thereby starting to fall into disrepute as a result. The problem was that the symmetry requirements for these two forces incorrectly predicted that the weak force’s gauge bosons (W and Z) would have zero mass. But experiments showed that the W and Z gauge bosons had non-zero mass.[20]

A further problem was that many promising solutions seemed to require extra particles known as Goldstone bosons to exist. But evidence suggested these did not exist either. This meant that either gauge invariance was an incorrect approach, or something unknown was giving the weak force’s W and Z bosons their mass, and doing it in a way that did not create Goldstone bosons. By the late 1950s and early 1960s, physicists were still completely at a loss how to resolve these issues, or how to create a comprehensive theory for particle physics.

Symmetry breaking[edit]

In the late 1950s, Yoichiro Nambu recognised that spontaneous symmetry breaking, a process where a symmetric system becomes asymmetric, could occur under certain conditions.[d]
Symmetry breaking is when a change that previously didn’t change the measured results (it was originally a «symmetry») now does change the measured results (it’s now «broken» and no longer a symmetry). In 1962 physicist Philip Anderson, an expert in condensed matter physics, observed that symmetry breaking played a role in superconductivity, and suggested it could also be part of the answer to the problem of gauge invariance in particle physics.

Specifically, Anderson suggested that the Goldstone bosons that would result from symmetry breaking might instead, in some circumstances, be «absorbed» by the massless W and Z bosons. If so, perhaps the Goldstone bosons would not exist, and the W and Z bosons could gain mass, solving both problems at once. Similar behaviour was already theorised in superconductivity.[21] In 1963, this was shown to be theoretically possible by physicists Abraham Klein and Benjamin Lee, at least for some limited (non-relativistic) cases. These findings were formally published in April 1963 (Anderson) and March 1964 (Klein and Lee).

Higgs mechanism[edit]

Following the 1963 and early 1964 papers, three groups of researchers independently developed these theories more completely, in what became known as the 1964 PRL symmetry breaking papers. All three groups reached similar conclusions and for all cases, not just some limited cases. They showed that the conditions for electroweak symmetry would be «broken» if an unusual type of field existed throughout the universe, and indeed, there would be no Goldstone bosons and some existing bosons would acquire mass.

The field required for this to happen (which was purely hypothetical at the time) became known as the Higgs field (after Peter Higgs, one of the researchers) and the mechanism by which it led to symmetry breaking, known as the Higgs mechanism. A key feature of the necessary field is that it would take less energy for the field to have a non-zero value than a zero value, unlike all other known fields, therefore, the Higgs field has a non-zero value (or vacuum expectation) everywhere. This non-zero value could in theory break electroweak symmetry. It was the first proposal capable of showing how the weak force gauge bosons could have mass despite their governing symmetry, within a gauge invariant theory.

Although these ideas did not gain much initial support or attention, by 1972 they had been developed into a comprehensive theory and proved capable of giving «sensible» results that accurately described particles known at the time, and which, with exceptional accuracy, predicted several other particles discovered during the following years.[e]
During the 1970s these theories rapidly became the Standard Model of particle physics.

Higgs field[edit]

The Standard Model includes a field of the kind needed to «break» electroweak symmetry and give particles their correct mass. This field, called the «Higgs Field», exists throughout space, and it breaks some symmetry laws of the electroweak interaction, triggering the Higgs mechanism. It therefore causes the W and Z gauge bosons of the weak force to be massive at all temperatures below an extreme high value.[f]
When the weak force bosons acquire mass, this affects the distance they can freely travel, which becomes very small, also matching experimental findings.[g]
Furthermore, it was later realised that the same field would also explain, in a different way, why other fundamental constituents of matter (including electrons and quarks) have mass.

Unlike all other known fields such as the electromagnetic field, the Higgs field is a scalar field, and has a non-zero average value in vacuum.

The «central problem»[edit]

There was not yet any direct evidence that the Higgs field existed, but even without direct proof, the accuracy of its predictions led scientists to believe the theory might be true. By the 1980s, the question of whether the Higgs field existed, and therefore whether the entire Standard Model was correct, had come to be regarded as one of the most important unanswered questions in particle physics.

For many decades, scientists had no way to determine whether the Higgs field existed, because the technology needed for its detection did not exist at that time. If the Higgs field did exist, then it would be unlike any other known fundamental field, but it also was possible that these key ideas, or even the entire Standard Model, were somehow incorrect.[h]

The existence of the Higgs field became the last unverified part of the Standard Model of particle physics, and for several decades was considered «the central problem in particle physics».[23][24]

The hypothesised Higgs theory made several key predictions.[e][25]: 22  One crucial prediction was that a matching particle, called the «Higgs boson», should also exist. Proving the existence of the Higgs boson would prove whether the Higgs field existed, and therefore finally prove whether the Standard Model’s explanation was correct. Therefore, there was an extensive search for the Higgs boson, as a way to prove the Higgs field itself existed.[11][12]

Search and discovery[edit]

Although the Higgs field would exist everywhere, proving its existence was far from easy. In principle, it can be proved to exist by detecting its excitations, which manifest as Higgs particles (the Higgs boson), but these are extremely difficult to produce and detect, due to the energy required to produce them and their very rare production even if the energy is sufficient. It was therefore several decades before the first evidence of the Higgs boson could be found. Particle colliders, detectors, and computers capable of looking for Higgs bosons took more than 30 years (c. 1980~2010) to develop.

The importance of this fundamental question led to a 40-year search, and the construction of one of the world’s most expensive and complex experimental facilities to date, CERN’s Large Hadron Collider,[26]
in an attempt to create Higgs bosons and other particles for observation and study. On 4 July 2012, the discovery of a new particle with a mass between 125 and 127 GeV/c2 was announced; physicists suspected that it was the Higgs boson.[27][i]
[28][29]

Since then, the particle has been shown to behave, interact, and decay in many of the ways predicted for Higgs particles by the Standard Model, as well as having even parity and zero spin,[7][8] two fundamental attributes of a Higgs boson. This also means it is the first elementary scalar particle discovered in nature.[30]

By March 2013, the existence of the Higgs boson was confirmed, and therefore, the concept of some type of Higgs field throughout space is strongly supported.[27][29][7]

The presence of the field, now confirmed by experimental investigation, explains why some fundamental particles have mass, despite the symmetries controlling their interactions implying that they should be massless. It also resolves several other long-standing puzzles, such as the reason for the extremely short distance travelled by the weak force bosons, and therefore the weak force’s extremely short range.

As of 2018, in-depth research shows the particle continuing to behave in line with predictions for the Standard Model Higgs boson. More studies are needed to verify with higher precision that the discovered particle has all of the properties predicted, or whether, as described by some theories, multiple Higgs bosons exist.[31]

The nature and properties of this field are now being investigated further, using more data collected at the LHC.[32]

Interpretation[edit]

Various analogies have been used to describe the Higgs field and boson, including analogies with well-known symmetry-breaking effects such as the rainbow and prism, electric fields, and ripples on the surface of water.

Other analogies based on resistance of macro objects moving through media (such as people moving through crowds, or some objects moving through syrup or molasses) are commonly used but misleading, since the Higgs field does not actually resist particles, and the effect of mass is not caused by resistance.

Overview of Higgs boson and field properties[edit]

The «Mexican hat-shaped» potential of the Higgs field is responsible for some particles gaining mass.

In the Standard Model, the Higgs boson is a massive scalar boson whose mass must be found experimentally. Its mass has been determined to be 125.35±0.15 GeV/c2.[33] It is the only particle that remains massive even at very high energies. It has zero spin, even (positive) parity, no electric charge, and no colour charge, and it couples to (interacts with) mass.[13] It is also very unstable, decaying into other particles almost immediately via several possible pathways.

The Higgs field is a scalar field, with two neutral and two electrically charged components that form a complex doublet of the weak isospin SU(2) symmetry. Unlike any other known quantum field, it has a «Mexican hat-shaped» potential. This shape means that below extremely high energies of about 159.5±1.5 GeV[34] such as those seen during the first picosecond (10−12 s) of the Big Bang, the Higgs field in its ground state takes less energy to have a nonzero vacuum expectation (value) than a zero value. Therefore in today’s universe the Higgs field has a nonzero value everywhere (including otherwise empty space). This nonzero value in turn breaks the weak isospin SU(2) symmetry of the electroweak interaction everywhere. (Technically the non-zero expectation value converts the Lagrangian’s Yukawa coupling terms into mass terms.) When this happens, three components of the Higgs field are «absorbed» by the SU(2) and U(1) gauge bosons (the «Higgs mechanism») to become the longitudinal components of the now-massive W and Z bosons of the weak force. The remaining electrically neutral component either manifests as a Higgs boson, or may couple separately to other particles known as fermions (via Yukawa couplings), causing these to acquire mass as well.[35]

Significance[edit]

Evidence of the Higgs field and its properties has been extremely significant for many reasons. The importance of the Higgs boson is largely that it is able to be examined using existing knowledge and experimental technology, as a way to confirm and study the entire Higgs field theory.[11][12] Conversely, proof that the Higgs field and boson did not exist would have also been significant.

Particle physics[edit]

Validation of the Standard Model[edit]

The Higgs boson validates the Standard Model through the mechanism of mass generation. As more precise measurements of its properties are made, more advanced extensions may be suggested or excluded. As experimental means to measure the field’s behaviours and interactions are developed, this fundamental field may be better understood. If the Higgs field had not been discovered, the Standard Model would have needed to be modified or superseded.

Related to this, a belief generally exists among physicists that there is likely to be «new» physics beyond the Standard Model, and the Standard Model will at some point be extended or superseded. The Higgs discovery, as well as the many measured collisions occurring at the LHC, provide physicists a sensitive tool to search their data for any evidence that the Standard Model seems to fail, and could provide considerable evidence guiding researchers into future theoretical developments.

Symmetry breaking of the electroweak interaction[edit]

Below an extremely high temperature, electroweak symmetry breaking causes the electroweak interaction to manifest in part as the short-ranged weak force, which is carried by massive gauge bosons. In the history of the universe, electroweak symmetry breaking is believed to have happened at about 1 picosecond (10−12 s) after the Big Bang, when the universe was at a temperature 159.5±1.5 GeV/kB.[36] This symmetry breaking is required for atoms and other structures to form, as well as for nuclear reactions in stars, such as the Sun. The Higgs field is responsible for this symmetry breaking.

Particle mass acquisition[edit]

The Higgs field is pivotal in generating the masses of quarks and charged leptons (through Yukawa coupling) and the W and Z gauge bosons (through the Higgs mechanism).

It is worth noting that the Higgs field does not «create» mass out of nothing (which would violate the law of conservation of energy), nor is the Higgs field responsible for the mass of all particles. For example, approximately 99% of the mass of baryons (composite particles such as the proton and neutron), is due instead to quantum chromodynamic binding energy, which is the sum of the kinetic energies of quarks and the energies of the massless gluons mediating the strong interaction inside the baryons.[37] In Higgs-based theories, the property of «mass» is a manifestation of potential energy transferred to fundamental particles when they interact («couple») with the Higgs field, which had contained that mass in the form of energy.[38]

Scalar fields and extension of the Standard Model[edit]

The Higgs field is the only scalar (spin 0) field to be detected; all the other fields in the Standard Model are spin 12 fermions or spin 1 bosons. According to Rolf-Dieter Heuer, director general of CERN when the Higgs boson was discovered, this existence proof of a scalar field is almost as important as the Higgs’s role in determining the mass of other particles. It suggests that other hypothetical scalar fields suggested by other theories, from the inflaton to quintessence, could perhaps exist as well.[39][40]

Cosmology[edit]

Inflaton[edit]

There has been considerable scientific research on possible links between the Higgs field and the inflaton – a hypothetical field suggested as the explanation for the expansion of space during the first fraction of a second of the universe (known as the «inflationary epoch»). Some theories suggest that a fundamental scalar field might be responsible for this phenomenon; the Higgs field is such a field, and its existence has led to papers analysing whether it could also be the inflaton responsible for this exponential expansion of the universe during the Big Bang. Such theories are highly tentative and face significant problems related to unitarity, but may be viable if combined with additional features such as large non-minimal coupling, a Brans–Dicke scalar, or other «new» physics, and they have received treatments suggesting that Higgs inflation models are still of interest theoretically.

Nature of the universe, and its possible fates[edit]

Diagram showing the Higgs boson and top quark masses, which could indicate whether our universe is stable, or a long-lived ‘bubble’. As of 2012, the 2 σ ellipse based on Tevatron and LHC data still allows for both possibilities.[41]

In the Standard Model, there exists the possibility that the underlying state of our universe – known as the «vacuum» – is long-lived, but not completely stable. In this scenario, the universe as we know it could effectively be destroyed by collapsing into a more stable vacuum state.[42][43][44][45][46] This was sometimes misreported as the Higgs boson «ending» the universe.[j] If the masses of the Higgs boson and top quark are known more precisely, and the Standard Model provides an accurate description of particle physics up to extreme energies of the Planck scale, then it is possible to calculate whether the vacuum is stable or merely long-lived.[49][50][51] A Higgs mass of 125–127 GeV/c2 seems to be extremely close to the boundary for stability, but a definitive answer requires much more precise measurements of the pole mass of the top quark.[41] New physics can change this picture.[52]

If measurements of the Higgs boson suggest that our universe lies within a false vacuum of this kind, then it would imply – more than likely in many billions of years[53][k] – that the universe’s forces, particles, and structures could cease to exist as we know them (and be replaced by different ones), if a true vacuum happened to nucleate.[53][l] It also suggests that the Higgs self-coupling λ and its βλ function could be very close to zero at the Planck scale, with «intriguing» implications, including theories of gravity and Higgs-based inflation.[41]: 218 [55][56] A future electron–positron collider would be able to provide the precise measurements of the top quark needed for such calculations.[41]

Vacuum energy and the cosmological constant[edit]

More speculatively, the Higgs field has also been proposed as the energy of the vacuum, which at the extreme energies of the first moments of the Big Bang caused the universe to be a kind of featureless symmetry of undifferentiated, extremely high energy. In this kind of speculation, the single unified field of a Grand Unified Theory is identified as (or modelled upon) the Higgs field, and it is through successive symmetry breakings of the Higgs field, or some similar field, at phase transitions that the presently known forces and fields of the universe arise.[57]

The relationship (if any) between the Higgs field and the presently observed vacuum energy density of the universe has also come under scientific study. As observed, the present vacuum energy density is extremely close to zero, but the energy densities predicted from the Higgs field, supersymmetry, and other current theories are typically many orders of magnitude larger. It is unclear how these should be reconciled. This cosmological constant problem remains a major unanswered problem in physics.

History[edit]

Theorisation[edit]

Particle physicists study matter made from fundamental particles whose interactions are mediated by exchange particles – gauge bosons – acting as force carriers. At the beginning of the 1960s a number of these particles had been discovered or proposed, along with theories suggesting how they relate to each other, some of which had already been reformulated as field theories in which the objects of study are not particles and forces, but quantum fields and their symmetries.[58]: 150  However, attempts to produce quantum field models for two of the four known fundamental forces – the electromagnetic force and the weak nuclear force – and then to unify these interactions, were still unsuccessful.

One known problem was that gauge invariant approaches, including non-abelian models such as Yang–Mills theory (1954), which held great promise for unified theories, also seemed to predict known massive particles as massless.[21] Goldstone’s theorem, relating to continuous symmetries within some theories, also appeared to rule out many obvious solutions,[59] since it appeared to show that zero-mass particles known as Goldstone bosons would also have to exist that simply were «not seen».[60] According to Guralnik, physicists had «no understanding» how these problems could be overcome.[60]

Nobel Prize Laureate Peter Higgs in Stockholm, December 2013

Particle physicist and mathematician Peter Woit summarised the state of research at the time:

Yang and Mills work on non-abelian gauge theory had one huge problem: in perturbation theory it has massless particles which don’t correspond to anything we see. One way of getting rid of this problem is now fairly well understood, the phenomenon of confinement realized in QCD, where the strong interactions get rid of the massless «gluon» states at long distances. By the very early sixties, people had begun to understand another source of massless particles: spontaneous symmetry breaking of a continuous symmetry. What Philip Anderson realized and worked out in the summer of 1962 was that, when you have both gauge symmetry and spontaneous symmetry breaking, the massless Nambu–Goldstone mode [which give rise to Goldstone bosons] can combine with the massless gauge field modes [which give rise to massless gauge bosons] to produce a physical massive vector field [gauge bosons with mass]. This is what happens in superconductivity, a subject about which Anderson was (and is) one of the leading experts.[21] [text condensed]

The Higgs mechanism is a process by which vector bosons can acquire rest mass without explicitly breaking gauge invariance, as a byproduct of spontaneous symmetry breaking.[61][62] Initially, the mathematical theory behind spontaneous symmetry breaking was conceived and published within particle physics by Yoichiro Nambu in 1960[63] (and somewhat anticipated by Ernst Stueckelberg in 1938[64]), and the concept that such a mechanism could offer a possible solution for the «mass problem» was originally suggested in 1962 by Philip Anderson, who had previously written papers on broken symmetry and its outcomes in superconductivity.[65] Anderson concluded in his 1963 paper on the Yang–Mills theory, that «considering the superconducting analog… [t]hese two types of bosons seem capable of canceling each other out… leaving finite mass bosons»),[66][67] and in March 1964, Abraham Klein and Benjamin Lee showed that Goldstone’s theorem could be avoided this way in at least some non-relativistic cases, and speculated it might be possible in truly relativistic cases.[68]

These approaches were quickly developed into a full relativistic model, independently and almost simultaneously, by three groups of physicists: by François Englert and Robert Brout in August 1964;[69] by Peter Higgs in October 1964;[70] and by Gerald Guralnik, Carl Hagen, and Tom Kibble (GHK) in November 1964.[71] Higgs also wrote a short, but important,[61] response published in September 1964 to an objection by Gilbert,[72] which showed that if calculating within the radiation gauge, Goldstone’s theorem and Gilbert’s objection would become inapplicable.[m] Higgs later described Gilbert’s objection as prompting his own paper.[73] Properties of the model were further considered by Guralnik in 1965,[74] by Higgs in 1966,[75] by Kibble in 1967,[76] and further by GHK in 1967.[77] The original three 1964 papers demonstrated that when a gauge theory is combined with an additional charged scalar field that spontaneously breaks the symmetry, the gauge bosons may consistently acquire a finite mass.[61][62][78]
In 1967, Steven Weinberg[79]
and Abdus Salam[80]
independently showed how a Higgs mechanism could be used to break the electroweak symmetry of Sheldon Glashow’s unified model for the weak and electromagnetic interactions,[81]
(itself an extension of work by Schwinger), forming what became the Standard Model of particle physics. Weinberg was the first to observe that this would also provide mass terms for the fermions.[82][n]

At first, these seminal papers on spontaneous breaking of gauge symmetries were largely ignored, because it was widely believed that the (non-Abelian gauge) theories in question were a dead-end, and in particular that they could not be renormalised. In 1971–72, Martinus Veltman and Gerard ‘t Hooft proved renormalisation of Yang–Mills was possible in two papers covering massless, and then massive, fields.[82] Their contribution, and the work of others on the renormalisation group – including «substantial» theoretical work by Russian physicists Ludvig Faddeev, Andrei Slavnov, Efim Fradkin, and Igor Tyutin[83] – was eventually «enormously profound and influential»,[84] but even with all key elements of the eventual theory published there was still almost no wider interest. For example, Coleman found in a study that «essentially no-one paid any attention» to Weinberg’s paper prior to 1971[85] and discussed by David Politzer in his 2004 Nobel speech.[84] – now the most cited in particle physics[86] – and even in 1970 according to Politzer, Glashow’s teaching of the weak interaction contained no mention of Weinberg’s, Salam’s, or Glashow’s own work.[84] In practice, Politzer states, almost everyone learned of the theory due to physicist Benjamin Lee, who combined the work of Veltman and ‘t Hooft with insights by others, and popularised the completed theory.[84] In this way, from 1971, interest and acceptance «exploded»[84] and the ideas were quickly absorbed in the mainstream.[82][84]

The resulting electroweak theory and Standard Model have accurately predicted (among other things) weak neutral currents, three bosons, the top and charm quarks, and with great precision, the mass and other properties of some of these.[e] Many of those involved eventually won Nobel Prizes or other renowned awards. A 1974 paper and comprehensive review in Reviews of Modern Physics commented that «while no one doubted the [mathematical] correctness of these arguments, no one quite believed that nature was diabolically clever enough to take advantage of them»,[87] adding that the theory had so far produced accurate answers that accorded with experiment, but it was unknown whether the theory was fundamentally correct.[88] By 1986 and again in the 1990s it became possible to write that understanding and proving the Higgs sector of the Standard Model was «the central problem today in particle physics».[23][24]

Summary and impact of the PRL papers[edit]

The three papers written in 1964 were each recognised as milestone papers during Physical Review Letters‘s 50th anniversary celebration.[78] Their six authors were also awarded the 2010 J. J. Sakurai Prize for Theoretical Particle Physics for this work.[89] (A controversy also arose the same year, because in the event of a Nobel Prize only up to three scientists could be recognised, with six being credited for the papers.[90]) Two of the three PRL papers (by Higgs and by GHK) contained equations for the hypothetical field that eventually would become known as the Higgs field and its hypothetical quantum, the Higgs boson.[70][71] Higgs’ subsequent 1966 paper showed the decay mechanism of the boson; only a massive boson can decay and the decays can prove the mechanism.[citation needed]

In the paper by Higgs the boson is massive, and in a closing sentence Higgs writes that «an essential feature» of the theory «is the prediction of incomplete multiplets of scalar and vector bosons».[70] (Frank Close comments that 1960s gauge theorists were focused on the problem of massless vector bosons, and the implied existence of a massive scalar boson was not seen as important; only Higgs directly addressed it.[91]: 154, 166, 175 ) In the paper by GHK the boson is massless and decoupled from the massive states.[71] In reviews dated 2009 and 2011, Guralnik states that in the GHK model the boson is massless only in a lowest-order approximation, but it is not subject to any constraint and acquires mass at higher orders, and adds that the GHK paper was the only one to show that there are no massless Goldstone bosons in the model and to give a complete analysis of the general Higgs mechanism.[60][92] All three reached similar conclusions, despite their very different approaches: Higgs’ paper essentially used classical techniques, Englert and Brout’s involved calculating vacuum polarisation in perturbation theory around an assumed symmetry-breaking vacuum state, and GHK used operator formalism and conservation laws to explore in depth the ways in which Goldstone’s theorem may be worked around.[61] Some versions of the theory predicted more than one kind of Higgs fields and bosons, and alternative «Higgsless» models were considered until the discovery of the Higgs boson.

Experimental search[edit]

To produce Higgs bosons, two beams of particles are accelerated to very high energies and allowed to collide within a particle detector. Occasionally, although rarely, a Higgs boson will be created fleetingly as part of the collision byproducts. Because the Higgs boson decays very quickly, particle detectors cannot detect it directly. Instead the detectors register all the decay products (the decay signature) and from the data the decay process is reconstructed. If the observed decay products match a possible decay process (known as a decay channel) of a Higgs boson, this indicates that a Higgs boson may have been created. In practice, many processes may produce similar decay signatures. Fortunately, the Standard Model precisely predicts the likelihood of each of these, and each known process, occurring. So, if the detector detects more decay signatures consistently matching a Higgs boson than would otherwise be expected if Higgs bosons did not exist, then this would be strong evidence that the Higgs boson exists.

Because Higgs boson production in a particle collision is likely to be very rare (1 in 10 billion at the LHC),[o]
and many other possible collision events can have similar decay signatures, the data of hundreds of trillions of collisions needs to be analysed and must «show the same picture» before a conclusion about the existence of the Higgs boson can be reached. To conclude that a new particle has been found, particle physicists require that the statistical analysis of two independent particle detectors each indicate that there is lesser than a one-in-a-million chance that the observed decay signatures are due to just background random Standard Model events – i.e., that the observed number of events is more than five standard deviations (sigma) different from that expected if there was no new particle. More collision data allows better confirmation of the physical properties of any new particle observed, and allows physicists to decide whether it is indeed a Higgs boson as described by the Standard Model or some other hypothetical new particle.

To find the Higgs boson, a powerful particle accelerator was needed, because Higgs bosons might not be seen in lower-energy experiments. The collider needed to have a high luminosity in order to ensure enough collisions were seen for conclusions to be drawn. Finally, advanced computing facilities were needed to process the vast amount of data (25 petabytes per year as of 2012) produced by the collisions.[95] For the announcement of 4 July 2012, a new collider known as the Large Hadron Collider was constructed at CERN with a planned eventual collision energy of 14 TeV – over seven times any previous collider – and over 300 trillion (3×10+14) LHC proton–proton collisions were analysed by the LHC Computing Grid, the world’s largest computing grid (as of 2012), comprising over 170 computing facilities in a worldwide network across 36 countries.[95][96][97]

Search before 4 July 2012[edit]

The first extensive search for the Higgs boson was conducted at the Large Electron–Positron Collider (LEP) at CERN in the 1990s. At the end of its service in 2000, LEP had found no conclusive evidence for the Higgs.[p]
This implied that if the Higgs boson were to exist it would have to be heavier than 114.4 GeV/c2.[98]

The search continued at Fermilab in the United States, where the Tevatron – the collider that discovered the top quark in 1995 – had been upgraded for this purpose. There was no guarantee that the Tevatron would be able to find the Higgs, but it was the only supercollider that was operational since the Large Hadron Collider (LHC) was still under construction and the planned Superconducting Super Collider had been cancelled in 1993 and never completed. The Tevatron was only able to exclude further ranges for the Higgs mass, and was shut down on 30 September 2011 because it no longer could keep up with the LHC. The final analysis of the data excluded the possibility of a Higgs boson with a mass between 147 GeV/c2 and 180 GeV/c2. In addition, there was a small (but not significant) excess of events possibly indicating a Higgs boson with a mass between 115 GeV/c2 and 140 GeV/c2.[99]

The Large Hadron Collider at CERN in Switzerland, was designed specifically to be able to either confirm or exclude the existence of the Higgs boson. Built in a 27 km tunnel under the ground near Geneva originally inhabited by LEP, it was designed to collide two beams of protons, initially at energies of 3.5 TeV per beam (7 TeV total), or almost 3.6 times that of the Tevatron, and upgradeable to 2 × 7 TeV (14 TeV total) in future. Theory suggested if the Higgs boson existed, collisions at these energy levels should be able to reveal it. As one of the most complicated scientific instruments ever built, its operational readiness was delayed for 14 months by a magnet quench event nine days after its inaugural tests, caused by a faulty electrical connection that damaged over 50 superconducting magnets and contaminated the vacuum system.[100][101][102]

Data collection at the LHC finally commenced in March 2010.[103] By December 2011 the two main particle detectors at the LHC, ATLAS and CMS, had narrowed down the mass range where the Higgs could exist to around 116–130 GeV/c2 (ATLAS) and 115–127 GeV/c2 (CMS).[104][105] There had also already been a number of promising event excesses that had «evaporated» and proven to be nothing but random fluctuations. However, from around May 2011,[106] both experiments had seen among their results, the slow emergence of a small yet consistent excess of gamma and 4-lepton decay signatures and several other particle decays, all hinting at a new particle at a mass around 125 GeV/c2.[106] By around November 2011, the anomalous data at 125 GeV/c2 was becoming «too large to ignore» (although still far from conclusive), and the team leaders at both ATLAS and CMS each privately suspected they might have found the Higgs.[106] On 28 November 2011, at an internal meeting of the two team leaders and the director general of CERN, the latest analyses were discussed outside their teams for the first time, suggesting both ATLAS and CMS might be converging on a possible shared result at 125 GeV/c2, and initial preparations commenced in case of a successful finding.[106] While this information was not known publicly at the time, the narrowing of the possible Higgs range to around 115–130 GeV/2 and the repeated observation of small but consistent event excesses across multiple channels at both ATLAS and CMS in the 124–126 GeV/c2 region (described as «tantalising hints» of around 2–3 sigma) were public knowledge with «a lot of interest».[107] It was therefore widely anticipated around the end of 2011, that the LHC would provide sufficient data to either exclude or confirm the finding of a Higgs boson by the end of 2012, when their 2012 collision data (with slightly higher 8 TeV collision energy) had been examined.[107][108]

Discovery of candidate boson at CERN[edit]

On 22 June 2012 CERN announced an upcoming seminar covering tentative findings for 2012,[112][113] and shortly afterwards (from around 1 July 2012 according to an analysis of the spreading rumour in social media[114]) rumours began to spread in the media that this would include a major announcement, but it was unclear whether this would be a stronger signal or a formal discovery.[115][116] Speculation escalated to a «fevered» pitch when reports emerged that Peter Higgs, who proposed the particle, was to be attending the seminar,[117][118] and that «five leading physicists» had been invited – generally believed to signify the five living 1964 authors – with Higgs, Englert, Guralnik, Hagen attending and Kibble confirming his invitation (Brout having died in 2011).[119]

On 4 July 2012 both of the CERN experiments announced they had independently made the same discovery:[120] CMS of a previously unknown boson with mass 125.3±0.6 GeV/c2[121][122] and ATLAS of a boson with mass 126.0±0.6 GeV/c2.[123][124] Using the combined analysis of two interaction types (known as ‘channels’), both experiments independently reached a local significance of 5 sigma – implying that the probability of getting at least as strong a result by chance alone is less than one in three million. When additional channels were taken into account, the CMS significance was reduced to 4.9 sigma.[122]

The two teams had been working ‘blinded’ from each other from around late 2011 or early 2012,[106] meaning they did not discuss their results with each other, providing additional certainty that any common finding was genuine validation of a particle.[95] This level of evidence, confirmed independently by two separate teams and experiments, meets the formal level of proof required to announce a confirmed discovery.

On 31 July 2012, the ATLAS collaboration presented additional data analysis on the «observation of a new particle», including data from a third channel, which improved the significance to 5.9 sigma (1 in 588 million chance of obtaining at least as strong evidence by random background effects alone) and mass 126.0 ± 0.4 (stat) ± 0.4 (sys) GeV/c2,[124] and CMS improved the significance to 5-sigma and mass 125.3 ± 0.4 (stat) ± 0.5 (sys) GeV/c2.[121]

The new particle tested as a possible Higgs boson[edit]

Following the 2012 discovery, it was still unconfirmed whether the 125 GeV/c2 particle was a Higgs boson. On one hand, observations remained consistent with the observed particle being the Standard Model Higgs boson, and the particle decayed into at least some of the predicted channels. Moreover, the production rates and branching ratios for the observed channels broadly matched the predictions by the Standard Model within the experimental uncertainties. However, the experimental uncertainties currently still left room for alternative explanations, meaning an announcement of the discovery of a Higgs boson would have been premature.[125] To allow more opportunity for data collection, the LHC’s proposed 2012 shutdown and 2013–14 upgrade were postponed by seven weeks into 2013.[126]

In November 2012, in a conference in Kyoto researchers said evidence gathered since July was falling into line with the basic Standard Model more than its alternatives, with a range of results for several interactions matching that theory’s predictions.[127] Physicist Matt Strassler highlighted «considerable» evidence that the new particle is not a pseudoscalar negative parity particle (consistent with this required finding for a Higgs boson), «evaporation» or lack of increased significance for previous hints of non-Standard Model findings, expected Standard Model interactions with W and Z bosons, absence of «significant new implications» for or against supersymmetry, and in general no significant deviations to date from the results expected of a Standard Model Higgs boson.[q] However some kinds of extensions to the Standard Model would also show very similar results;[129] so commentators noted that based on other particles that are still being understood long after their discovery, it may take years to be sure, and decades to fully understand the particle that has been found.[127][q]

These findings meant that as of January 2013, scientists were very sure they had found an unknown particle of mass ~125 GeV/c2, and had not been misled by experimental error or a chance result. They were also sure, from initial observations, that the new particle was some kind of boson. The behaviours and properties of the particle, so far as examined since July 2012, also seemed quite close to the behaviours expected of a Higgs boson. Even so, it could still have been a Higgs boson or some other unknown boson, since future tests could show behaviours that do not match a Higgs boson, so as of December 2012 CERN still only stated that the new particle was «consistent with» the Higgs boson,[27][29] and scientists did not yet positively say it was the Higgs boson.[130] Despite this, in late 2012, widespread media reports announced (incorrectly) that a Higgs boson had been confirmed during the year.[136]

In January 2013, CERN director-general Rolf-Dieter Heuer stated that based on data analysis to date, an answer could be possible ‘towards’ mid-2013,[137] and the deputy chair of physics at Brookhaven National Laboratory stated in February 2013 that a «definitive» answer might require «another few years» after the collider’s 2015 restart.[138] In early March 2013, CERN Research Director Sergio Bertolucci stated that confirming spin-0 was the major remaining requirement to determine whether the particle is at least some kind of Higgs boson.[139]

Confirmation of existence and current status[edit]

On 14 March 2013 CERN confirmed the following:

CMS and ATLAS have compared a number of options for the spin-parity of this particle, and these all prefer no spin and even parity [two fundamental criteria of a Higgs boson consistent with the Standard Model]. This, coupled with the measured interactions of the new particle with other particles, strongly indicates that it is a Higgs boson.[7]

This also makes the particle the first elementary scalar particle to be discovered in nature.[30]

The following are examples of tests used to confirm that the discovered particle is the Higgs boson:[q][13]

Requirement How tested / explanation Current status (As of July 2017)
Zero spin Examining decay patterns. Spin-1 had been ruled out at the time of initial discovery by the observed decay to two photons (γ γ), leaving spin-0 and spin-2 as remaining candidates. Spin-0 confirmed.[8][7][140][141] The spin-2 hypothesis is excluded with a confidence level exceeding 99.9%.[141]
Even (Positive) parity Studying the angles at which decay products fly apart. Negative parity was also disfavoured if spin-0 was confirmed.[142] Even parity tentatively confirmed.[7][140][141] The spin-0 negative parity hypothesis is excluded with a confidence level exceeding 99.9%.[140][8]
Decay channels (outcomes of particle decaying) are as predicted The Standard Model predicts the decay patterns of a 125 GeV/c2 Higgs boson. Are these all being seen, and at the right rates?

Particularly significant, we should observe decays into pairs of photons (γ γ), W and Z bosons (WW and ZZ), bottom quarks (bb), and tau leptons (τ τ), among the possible outcomes.

bb, γ γ, τ τ, WW and ZZ observed. All observed signal strengths are consistent with the Standard Model prediction.[143][32]
Couples to mass (i.e., strength of interaction with Standard Model particles proportional to their mass) Particle physicist Adam Falkowski states that the essential qualities of a Higgs boson are that it is a spin-0 (scalar) particle which also couples to mass (W and Z bosons); proving spin-0 alone is insufficient.[13] Couplings to mass strongly evidenced («At 95% confidence level cV is within 15% of the standard model value cV=1″).[13]
Higher energy results remain consistent After the LHC’s 2015 restart at the higher energy of 13 TeV, searches for multiple Higgs particles (as predicted in some theories) and tests targeting other versions of particle theory continued. These higher energy results must continue to give results consistent with Higgs theories. Analysis of collisions up to July 2017 do not show deviations from the Standard Model, with experimental precisions better than results at lower energies.[32]

Findings since 2013[edit]

In July 2017, CERN confirmed that all measurements still agree with the predictions of the Standard Model, and called the discovered particle simply «the Higgs boson».[32] As of 2019, the Large Hadron Collider has continued to produce findings that confirm the 2013 understanding of the Higgs field and particle.[146][147]

The LHC’s experimental work since restarting in 2015 has included probing the Higgs field and boson to a greater level of detail, and confirming whether less common predictions were correct. In particular, exploration since 2015 has provided strong evidence of the predicted direct decay into fermions such as pairs of bottom quarks (3.6 σ) – described as an «important milestone» in understanding its short lifetime and other rare decays – and also to confirm decay into pairs of tau leptons (5.9 σ). This was described by CERN as being «of paramount importance to establishing the coupling of the Higgs boson to leptons and represents an important step towards measuring its couplings to third generation fermions, the very heavy copies of the electrons and quarks, whose role in nature is a profound mystery».[32] Published results as of 19 March 2018 at 13 TeV for ATLAS and CMS had their measurements of the Higgs mass at 124.98±0.28 GeV/c2 and 125.26±0.21 GeV/c2 respectively.

In July 2018, the ATLAS and CMS experiments reported observing the Higgs boson decay into a pair of bottom quarks, which makes up approximately 60% of all of its decays.[148][149][150]

Theoretical issues[edit]

Theoretical need for the Higgs[edit]

«Symmetry breaking illustrated»: – At high energy levels (left) the ball settles in the centre, and the result is symmetrical. At lower energy levels (right), the overall «rules» remain symmetrical, but the «Mexican hat» potential comes into effect: «local» symmetry inevitably becomes broken since eventually the ball must at random roll one way or another.

Gauge invariance is an important property of modern particle theories such as the Standard Model, partly due to its success in other areas of fundamental physics such as electromagnetism and the strong interaction (quantum chromodynamics). However, before Sheldon Glashow extended the electroweak unification models in 1961, there were great difficulties in developing gauge theories for the weak nuclear force or a possible unified electroweak interaction. Fermions with a mass term would violate gauge symmetry and therefore cannot be gauge invariant. (This can be seen by examining the Dirac Lagrangian for a fermion in terms of left and right handed components; we find none of the spin-half particles could ever flip helicity as required for mass, so they must be massless.[r])
W and Z bosons are observed to have mass, but a boson mass term contains terms which clearly depend on the choice of gauge, and therefore these masses too cannot be gauge invariant. Therefore, it seems that none of the standard model fermions or bosons could «begin» with mass as an inbuilt property except by abandoning gauge invariance. If gauge invariance were to be retained, then these particles had to be acquiring their mass by some other mechanism or interaction.

Additionally, solutions based on spontaneous symmetry breaking appeared to fail, seemingly an inevitable result of Goldstone’s theorem. Because there is no potential energy cost to moving around the complex plane’s «circular valley» responsible for spontaneous symmetry breaking, the resulting quantum excitation is pure kinetic energy, and therefore a massless boson («Goldstone boson»), which in turn implies a new long range force. But no new long range forces or massless particles were detected either. So whatever was giving these particles their mass had to not «break» gauge invariance as the basis for other parts of the theories where it worked well, and had to not require or predict unexpected massless particles or long-range forces which did not actually seem to exist in nature.

A solution to all of these overlapping problems came from the discovery of a previously unnoticed borderline case hidden in the mathematics of Goldstone’s theorem,[m]
that under certain conditions it might theoretically be possible for a symmetry to be broken without disrupting gauge invariance and without any new massless particles or forces, and having «sensible» (renormalisable) results mathematically. This became known as the Higgs mechanism.

The Standard Model hypothesises a field which is responsible for this effect, called the Higgs field (symbol: phi ), which has the unusual property of a non-zero amplitude in its ground state; i.e., a non-zero vacuum expectation value. It can have this effect because of its unusual «Mexican hat» shaped potential whose lowest «point» is not at its «centre». In simple terms, unlike all other known fields, the Higgs field requires less energy to have a non-zero value than a zero value, so it ends up having a non-zero value everywhere. Below a certain extremely high energy level the existence of this non-zero vacuum expectation spontaneously breaks electroweak gauge symmetry which in turn gives rise to the Higgs mechanism and triggers the acquisition of mass by those particles interacting with the field. This effect occurs because scalar field components of the Higgs field are «absorbed» by the massive bosons as degrees of freedom, and couple to the fermions via Yukawa coupling, thereby producing the expected mass terms. When symmetry breaks under these conditions, the Goldstone bosons that arise interact with the Higgs field (and with other particles capable of interacting with the Higgs field) instead of becoming new massless particles. The intractable problems of both underlying theories «neutralise» each other, and the residual outcome is that elementary particles acquire a consistent mass based on how strongly they interact with the Higgs field. It is the simplest known process capable of giving mass to the gauge bosons while remaining compatible with gauge theories.[151] Its quantum would be a scalar boson, known as the Higgs boson.[152]

Simple explanation of the theory, from its origins in superconductivity[edit]

The proposed Higgs mechanism arose as a result of theories proposed to explain observations in superconductivity. A superconductor does not allow penetration by external magnetic fields (the Meissner effect). This strange observation implies that somehow, the electromagnetic field becomes short ranged during this phenomenon. Successful theories arose to explain this during the 1950s, first for fermions (Ginzburg–Landau theory, 1950), and then for bosons (BCS theory, 1957).

In these theories, superconductivity is interpreted as arising from a charged condensate field. Initially, the condensate value does not have any preferred direction, implying it is scalar, but its phase is capable of defining a gauge, in gauge based field theories. To do this, the field must be charged. A charged scalar field must also be complex (or described another way, it contains at least two components, and a symmetry capable of rotating each into the other(s)). In naïve gauge theory, a gauge transformation of a condensate usually rotates the phase. But in these circumstances, it instead fixes a preferred choice of phase. However it turns out that fixing the choice of gauge so that the condensate has the same phase everywhere, also causes the electromagnetic field to gain an extra term. This extra term causes the electromagnetic field to become short range.

Once attention was drawn to this theory within particle physics, the parallels were clear. A change of the usually long range electromagnetic field to become short ranged, within a gauge invariant theory, was exactly the needed effect sought for the weak force bosons (because a long range force has massless gauge bosons, and a short ranged force implies massive gauge bosons, suggesting that a result of this interaction is that the field’s gauge bosons acquired mass, or a similar and equivalent effect). The features of a field required to do this was also quite well defined – it would have to be a charged scalar field, with at least two components, and complex in order to support a symmetry able to rotate these into each other.[s]

Alternative models[edit]

The Minimal Standard Model as described above is the simplest known model for the Higgs mechanism with just one Higgs field. However, an extended Higgs sector with additional Higgs particle doublets or triplets is also possible, and many extensions of the Standard Model have this feature. The non-minimal Higgs sector favoured by theory are the two-Higgs-doublet models (2HDM), which predict the existence of a quintet of scalar particles: two CP-even neutral Higgs bosons h0 and H0, a CP-odd neutral Higgs boson A0, and two charged Higgs particles H±. Supersymmetry («SUSY») also predicts relations between the Higgs-boson masses and the masses of the gauge bosons, and could accommodate a 125 GeV/c2 neutral Higgs boson.

The key method to distinguish between these different models involves study of the particles’ interactions («coupling») and exact decay processes («branching ratios»), which can be measured and tested experimentally in particle collisions. In the Type-I 2HDM model one Higgs doublet couples to up and down quarks, while the second doublet does not couple to quarks. This model has two interesting limits, in which the lightest Higgs couples to just fermions («gauge-phobic») or just gauge bosons («fermiophobic»), but not both. In the Type-II 2HDM model, one Higgs doublet only couples to up-type quarks, the other only couples to down-type quarks.[153] The heavily researched Minimal Supersymmetric Standard Model (MSSM) includes a Type-II 2HDM Higgs sector, so it could be disproven by evidence of a Type-I 2HDM Higgs.[citation needed]

In other models the Higgs scalar is a composite particle. For example, in technicolour the role of the Higgs field is played by strongly bound pairs of fermions called techniquarks. Other models feature pairs of top quarks (see top quark condensate). In yet other models, there is no Higgs field at all and the electroweak symmetry is broken using extra dimensions.[154][155]

Further theoretical issues and hierarchy problem[edit]

A one-loop Feynman diagram of the first-order correction to the Higgs mass. In the Standard Model the effects of these corrections are potentially enormous, giving rise to the so-called hierarchy problem.

The Standard Model leaves the mass of the Higgs boson as a parameter to be measured, rather than a value to be calculated. This is seen as theoretically unsatisfactory, particularly as quantum corrections (related to interactions with virtual particles) should apparently cause the Higgs particle to have a mass immensely higher than that observed, but at the same time the Standard Model requires a mass of the order of 100 to 1000 GeV/c2 to ensure unitarity (in this case, to unitarise longitudinal vector boson scattering).[156] Reconciling these points appears to require explaining why there is an almost-perfect cancellation resulting in the visible mass of ~ 125 GeV/c2, and it is not clear how to do this. Because the weak force is about 1032 times stronger than gravity, and (linked to this) the Higgs boson’s mass is so much less than the Planck mass or the grand unification energy, it appears that either there is some underlying connection or reason for these observations which is unknown and not described by the Standard Model, or some unexplained and extremely precise fine-tuning of parameters – however at present neither of these explanations is proven. This is known as a hierarchy problem.[157] More broadly, the hierarchy problem amounts to the worry that a future theory of fundamental particles and interactions should not have excessive fine-tunings or unduly delicate cancellations, and should allow masses of particles such as the Higgs boson to be calculable. The problem is in some ways unique to spin-0 particles (such as the Higgs boson), which can give rise to issues related to quantum corrections that do not affect particles with spin.[156] A number of solutions have been proposed, including supersymmetry, conformal solutions and solutions via extra dimensions such as braneworld models.

There are also issues of quantum triviality, which suggests that it may not be possible to create a consistent quantum field theory involving elementary scalar particles.[158] However, if quantum triviality is avoided, triviality constraints may set bounds on the Higgs Boson mass.

Properties[edit]

Properties of the Higgs field[edit]

In the Standard Model, the Higgs field is a scalar tachyonic field – scalar meaning it does not transform under Lorentz transformations, and tachyonic meaning the field (but not the particle) has imaginary mass, and in certain configurations must undergo symmetry breaking. It consists of four components: Two neutral ones and two charged component fields. Both of the charged components and one of the neutral fields are Goldstone bosons, which act as the longitudinal third-polarisation components of the massive W+, W, and Z bosons. The quantum of the remaining neutral component corresponds to (and is theoretically realised as) the massive Higgs boson.[159] This component can interact with fermions via Yukawa coupling to give them mass as well.

Mathematically, the Higgs field has imaginary mass and is therefore a tachyonic field.[t] While tachyons (particles that move faster than light) are a purely hypothetical concept, fields with imaginary mass have come to play an important role in modern physics.[161][162] Under no circumstances do any excitations ever propagate faster than light in such theories – the presence or absence of a tachyonic mass has no effect whatsoever on the maximum velocity of signals (there is no violation of causality).[163] Instead of faster-than-light particles, the imaginary mass creates an instability: Any configuration in which one or more field excitations are tachyonic must spontaneously decay, and the resulting configuration contains no physical tachyons. This process is known as tachyon condensation, and is now believed to be the explanation for how the Higgs mechanism itself arises in nature, and therefore the reason behind electroweak symmetry breaking.

Although the notion of imaginary mass might seem troubling, it is only the field, and not the mass itself, that is quantised. Therefore, the field operators at spacelike separated points still commute (or anticommute), and information and particles still do not propagate faster than light.[164] Tachyon condensation drives a physical system that has reached a local limit – and might naively be expected to produce physical tachyons – to an alternate stable state where no physical tachyons exist. Once a tachyonic field such as the Higgs field reaches the minimum of the potential, its quanta are not tachyons any more but rather are ordinary particles such as the Higgs boson.[165]

Properties of the Higgs boson[edit]

This section needs to be updated. The reason given is: With the Higgs boson now empirically confirmed, the paragraphs on the mass should be rephrased to make it clear that they are about what could be predicted before that observation. Please help update this article to reflect recent events or newly available information. (July 2018)

Since the Higgs field is scalar, the Higgs boson has no spin. The Higgs boson is also its own antiparticle, is CP-even, and has zero electric and colour charge.[166]

The Standard Model does not predict the mass of the Higgs boson.[167] If that mass is between 115 and 180 GeV/c2 (consistent with empirical observations of 125 GeV/c2), then the Standard Model can be valid at energy scales all the way up to the Planck scale (1019 GeV/c2).[168] It should be the only particle in the Standard Model that remains massive even at high energies. Many theorists expect new physics beyond the Standard Model to emerge at the TeV-scale, based on unsatisfactory properties of the Standard Model.[169]
The highest possible mass scale allowed for the Higgs boson (or some other electroweak symmetry breaking mechanism) is 1.4 TeV; beyond this point, the Standard Model becomes inconsistent without such a mechanism, because unitarity is violated in certain scattering processes.[170]

It is also possible, although experimentally difficult, to estimate the mass of the Higgs boson indirectly: In the Standard Model, the Higgs boson has a number of indirect effects; most notably, Higgs loops result in tiny corrections to masses of the W and Z bosons. Precision measurements of electroweak parameters, such as the Fermi constant and masses of the W and Z bosons, can be used to calculate constraints on the mass of the Higgs. As of July 2011, the precision electroweak measurements tell us that the mass of the Higgs boson is likely to be less than about 161 GeV/c2 at 95% confidence level.[u] These indirect constraints rely on the assumption that the Standard Model is correct. It may still be possible to discover a Higgs boson above these masses, if it is accompanied by other particles beyond those accommodated by the Standard Model.[172]

The LHC cannot directly measure the Higgs boson’s lifetime, due to its extreme brevity. It is predicted as 1.56×10−22 s based on the predicted decay width of 4.07×10−3 GeV.[2] However it can be measured indirectly, based upon comparing masses measured from quantum phenomena occurring in the on shell production pathways and in the, much rarer, off shell production pathways, derived from Dalitz decay via a virtual photon (H→γ*γ→ℓℓγ). Using this technique, the lifetime of the Higgs boson was tentatively measured in 2021 as 1.2 — 4.6 x 10−22 s, at sigma 3.2 (1 in 1000) significance.[3][4]

Production[edit]

Feynman diagrams for Higgs production

Gluon fusion
Gluon fusion
Higgs Strahlung
Higgs Strahlung
Vector boson fusion
Vector boson fusion
Top fusion
Top fusion

If Higgs particle theories are valid, then a Higgs particle can be produced much like other particles that are studied, in a particle collider. This involves accelerating a large number of particles to extremely high energies and extremely close to the speed of light, then allowing them to smash together. Protons and lead ions (the bare nuclei of lead atoms) are used at the LHC. In the extreme energies of these collisions, the desired esoteric particles will occasionally be produced and this can be detected and studied; any absence or difference from theoretical expectations can also be used to improve the theory. The relevant particle theory (in this case the Standard Model) will determine the necessary kinds of collisions and detectors. The Standard Model predicts that Higgs bosons could be formed in a number of ways,[93][173][174] although the probability of producing a Higgs boson in any collision is always expected to be very small – for example, only one Higgs boson per 10 billion collisions in the Large Hadron Collider.[o] The most common expected processes for Higgs boson production are:

Gluon fusion
If the collided particles are hadrons such as the proton or antiproton – as is the case in the LHC and Tevatron – then it is most likely that two of the gluons binding the hadron together collide. The easiest way to produce a Higgs particle is if the two gluons combine to form a loop of virtual quarks. Since the coupling of particles to the Higgs boson is proportional to their mass, this process is more likely for heavy particles. In practice it is enough to consider the contributions of virtual top and bottom quarks (the heaviest quarks). This process is the dominant contribution at the LHC and Tevatron being about ten times more likely than any of the other processes.[93][173]
Higgs Strahlung
If an elementary fermion collides with an anti-fermion – e.g., a quark with an anti-quark or an electron with a positron – the two can merge to form a virtual W or Z boson which, if it carries sufficient energy, can then emit a Higgs boson. This process was the dominant production mode at the LEP, where an electron and a positron collided to form a virtual Z boson, and it was the second largest contribution for Higgs production at the Tevatron. At the LHC this process is only the third largest, because the LHC collides protons with protons, making a quark-antiquark collision less likely than at the Tevatron. Higgs Strahlung is also known as associated production.[93][173][174]
Weak boson fusion
Another possibility when two (anti-)fermions collide is that the two exchange a virtual W or Z boson, which emits a Higgs boson. The colliding fermions do not need to be the same type. So, for example, an up quark may exchange a Z boson with an anti-down quark. This process is the second most important for the production of Higgs particle at the LHC and LEP.[93][174]
Top fusion
The final process that is commonly considered is by far the least likely (by two orders of magnitude). This process involves two colliding gluons, which each decay into a heavy quark–antiquark pair. A quark and antiquark from each pair can then combine to form a Higgs particle.[93][173]

Decay[edit]

The Standard Model prediction for the decay width of the Higgs particle depends on the value of its mass.

Quantum mechanics predicts that if it is possible for a particle to decay into a set of lighter particles, then it will eventually do so.[175] This is also true for the Higgs boson. The likelihood with which this happens depends on a variety of factors including: the difference in mass, the strength of the interactions, etc. Most of these factors are fixed by the Standard Model, except for the mass of the Higgs boson itself. For a Higgs boson with a mass of 125 GeV/c2 the SM predicts a mean life time of about 1.6×10−22 s.[b]

The Standard Model prediction for the branching ratios of the different decay modes of the Higgs particle depends on the value of its mass.

Since it interacts with all the massive elementary particles of the SM, the Higgs boson has many different processes through which it can decay. Each of these possible processes has its own probability, expressed as the branching ratio; the fraction of the total number decays that follows that process. The SM predicts these branching ratios as a function of the Higgs mass (see plot).

Higgs boson decays into heavy vector boson pairs (a), fermion–antifermion pairs (b) and photon pairs or Zγ (c,d)[176]

One way that the Higgs can decay is by splitting into a fermion–antifermion pair. As general rule, the Higgs is more likely to decay into heavy fermions than light fermions, because the mass of a fermion is proportional to the strength of its interaction with the Higgs.[125] By this logic the most common decay should be into a top–antitop quark pair. However, such a decay would only be possible if the Higgs were heavier than ~346 GeV/c2, twice the mass of the top quark. For a Higgs mass of 125 GeV/c2 the SM predicts that the most common decay is into a bottom–antibottom quark pair, which happens 57.7% of the time.[2] The second most common fermion decay at that mass is a tau–antitau pair, which happens only about 6.3% of the time.[2]

Another possibility is for the Higgs to split into a pair of massive gauge bosons. The most likely possibility is for the Higgs to decay into a pair of W bosons (the light blue line in the plot), which happens about 21.5% of the time for a Higgs boson with a mass of 125 GeV/c2.[2] The W bosons can subsequently decay either into a quark and an antiquark or into a charged lepton and a neutrino. The decays of W bosons into quarks are difficult to distinguish from the background, and the decays into leptons cannot be fully reconstructed (because neutrinos are impossible to detect in particle collision experiments). A cleaner signal is given by decay into a pair of Z-bosons (which happens about 2.6% of the time for a Higgs with a mass of 125 GeV/c2),[2] if each of the bosons subsequently decays into a pair of easy-to-detect charged leptons (electrons or muons).

Decay into massless gauge bosons (i.e., gluons or photons) is also possible, but requires intermediate loop of virtual heavy quarks (top or bottom) or massive gauge bosons.[125] The most common such process is the decay into a pair of gluons through a loop of virtual heavy quarks. This process, which is the reverse of the gluon fusion process mentioned above, happens approximately 8.6% of the time for a Higgs boson with a mass of 125 GeV/c2.[2] Much rarer is the decay into a pair of photons mediated by a loop of W bosons or heavy quarks, which happens only twice for every thousand decays.[2] However, this process is very relevant for experimental searches for the Higgs boson, because the energy and momentum of the photons can be measured very precisely, giving an accurate reconstruction of the mass of the decaying particle.[125]

In 2021 the extremely rare Dalitz decay was tentatively observed, into two leptons (electrons or muons) and a photon (ℓℓγ), via virtual photon decay. This can happen in three ways; Higgs to virtual photon to ℓℓγ in which the virtual photon (γ*) has very small but nonzero mass, Higgs to Z boson to ℓℓγ, or Higgs to two leptons, one of which emits a final-state photon leading to ℓℓγ. ATLAS searched for evidence of the first of these (H→γ*γ→ℓℓγ) at low di-lepton mass (≤ 30 GeV/c2), where this process should dominate. The observation is at sigma 3.2 (1 in 1000) significance.[3][4] This decay path is important because it facilitates measuring the on- and off-shelf mass of the Higgs boson (allowing indirect measurement of decay time), and the decay into two charged particles allows exploration of charge conjugation and charge parity (CP) violation.[4]

Public discussion[edit]

Naming[edit]

Names used by physicists[edit]

The name most strongly associated with the particle and field is the Higgs boson[91]: 168  and Higgs field. For some time the particle was known by a combination of its PRL author names (including at times Anderson), for example the Brout–Englert–Higgs particle, the Anderson–Higgs particle, or the Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism,[v] and these are still used at times.[61][178] Fuelled in part by the issue of recognition and a potential shared Nobel Prize,[178][179]
the most appropriate name was still occasionally a topic of debate until 2013.[178]
Higgs himself prefers to call the particle either by an acronym of all those involved, or «the scalar boson», or «the so-called Higgs particle».[179]

A considerable amount has been written on how Higgs’ name came to be exclusively used. Two main explanations are offered. The first is that Higgs undertook a step which was either unique, clearer or more explicit in his paper in formally predicting and examining the particle. Of the PRL papers’ authors, only the paper by Higgs explicitly offered as a prediction that a massive particle would exist and calculated some of its properties;[180][91]: 167 
he was therefore «the first to postulate the existence of a massive particle» according to Nature.[178]
Physicist and author Frank Close and physicist-blogger Peter Woit both comment that the paper by GHK was also completed after Higgs and Brout–Englert were submitted to Physical Review Letters,[181][91]: 167 
and that Higgs alone had drawn attention to a predicted massive scalar boson, while all others had focused on the massive vector bosons.[181][91]: 154, 166, 175 
In this way, Higgs’ contribution also provided experimentalists with a crucial «concrete target» needed to test the theory.[182]

However, in Higgs’ view, Brout and Englert did not explicitly mention the boson since its existence is plainly obvious in their work,[66]: 6  while according to Guralnik the GHK paper was a complete analysis of the entire symmetry breaking mechanism whose mathematical rigour is absent from the other two papers, and a massive particle may exist in some solutions.[92]: 9  Higgs’ paper also provided an «especially sharp» statement of the challenge and its solution according to science historian David Kaiser.[179]

The alternative explanation is that the name was popularised in the 1970s due to its use as a convenient shorthand or because of a mistake in citing. Many accounts (including Higgs’ own[66]: 7 ) credit the «Higgs» name to physicist Benjamin Lee.[w]
Lee was a significant populariser of the theory in its early days, and habitually attached the name «Higgs» as a «convenient shorthand» for its components from 1972.[15][178][183][184][185]
and in at least one instance from as early as 1966.[186] Although Lee clarified in his footnotes that «‘Higgs’ is an abbreviation for Higgs, Kibble, Guralnik, Hagen, Brout, Englert»,[183]
his use of the term (and perhaps also Steven Weinberg’s mistaken cite of Higgs’ paper as the first in his seminal 1967 paper[91][187]
[186]) meant that by around 1975–1976 others had also begun to use the name ‘Higgs’ exclusively as a shorthand.[x]
In 2012, physicist Frank Wilczek, who was credited for naming the elementary particle, the axion (over an alternative proposal «Higglet», by Weinberg), endorsed the «Higgs boson» name, stating «History is complicated, and wherever you draw the line, there will be somebody just below it.»[179]

Nickname[edit]

The Higgs boson is often referred to as the «God particle» in popular media outside the scientific community.[188][189][190][191][192]
The nickname comes from the title of the 1993 book on the Higgs boson and particle physics, The God Particle: If the Universe Is the Answer, What Is the Question? by Physics Nobel Prize winner and Fermilab director Leon Lederman.[25]
Lederman wrote it in the context of failing US government support for the Superconducting Super Collider,[193] a partially constructed titanic[194][195]
competitor to the Large Hadron Collider with planned collision energies of 2 × 20 TeV that was championed by Lederman since its 1983 inception[193][y]
[196][197]
and shut down in 1993. The book sought in part to promote awareness of the significance and need for such a project in the face of its possible loss of funding.[198]
Lederman, a leading researcher in the field, writes that he wanted to title his book The Goddamn Particle: If the Universe is the Answer, What is the Question? Lederman’s editor decided that the title was too controversial and convinced him to change the title to The God Particle: If the Universe is the Answer, What is the Question?[199]

While media use of this term may have contributed to wider awareness and interest,[200]
many scientists feel the name is inappropriate[15][16][201]
since it is sensational hyperbole and misleads readers;[202]
the particle also has nothing to do with any God, leaves open numerous questions in fundamental physics, and does not explain the ultimate origin of the universe. Higgs, an atheist, was reported to be displeased and stated in a 2008 interview that he found it «embarrassing» because it was «the kind of misuse … which I think might offend some people».[202][203][204]
The nickname has been satirised in mainstream media as well.[205]
Science writer Ian Sample stated in his 2010 book on the search that the nickname is «universally hate[d]» by physicists and perhaps the «worst derided» in the history of physics, but that (according to Lederman) the publisher rejected all titles mentioning «Higgs» as unimaginative and too unknown.[206]

Lederman begins with a review of the long human search for knowledge, and explains that his tongue-in-cheek title draws an analogy between the impact of the Higgs field on the fundamental symmetries at the Big Bang, and the apparent chaos of structures, particles, forces and interactions that resulted and shaped our present universe, with the biblical story of Babel in which the primordial single language of early Genesis was fragmented into many disparate languages and cultures.[207]

Today … we have the standard model, which reduces all of reality to a dozen or so particles and four forces … It’s a hard-won simplicity […and…] remarkably accurate. But it is also incomplete and, in fact, internally inconsistent … This boson is so central to the state of physics today, so crucial to our final understanding of the structure of matter, yet so elusive, that I have given it a nickname: the God Particle. Why God Particle? Two reasons. One, the publisher wouldn’t let us call it the Goddamn Particle, though that might be a more appropriate title, given its villainous nature and the expense it is causing. And two, there is a connection, of sorts, to another book, a much older one …

— Lederman & Teresi[25]: 22 

Lederman asks whether the Higgs boson was added just to perplex and confound those seeking knowledge of the universe, and whether physicists will be confounded by it as recounted in that story, or ultimately surmount the challenge and understand «how beautiful is the universe [God has] made».[208]

Other proposals[edit]

A renaming competition by British newspaper The Guardian in 2009 resulted in their science correspondent choosing the name «the champagne bottle boson» as the best submission: «The bottom of a champagne bottle is in the shape of the Higgs potential and is often used as an illustration in physics lectures. So it’s not an embarrassingly grandiose name, it is memorable, and [it] has some physics connection too.»[209]
The name Higgson was suggested as well, in an opinion piece in the Institute of Physics’ online publication physicsworld.com.[210]

Educational explanations and analogies[edit]

Photograph of light passing through a dispersive prism: the rainbow effect arises because photons are not all affected to the same degree by the dispersive material of the prism.

There has been considerable public discussion of analogies and explanations for the Higgs particle and how the field creates mass,[211][212]
including coverage of explanatory attempts in their own right and a competition in 1993 for the best popular explanation by then-UK Minister for Science Sir William Waldegrave
[213]
and articles in newspapers worldwide.

An educational collaboration involving an LHC physicist and a High School Teachers at CERN educator suggests that dispersion of light – responsible for the rainbow and dispersive prism – is a useful analogy for the Higgs field’s symmetry breaking and mass-causing effect.[214]

Symmetry breaking
in optics
In a vacuum, light of all colours (or photons of all wavelengths) travels at the same velocity, a symmetrical situation. In some substances such as glass, water or air, this symmetry is broken (See: Photons in matter). The result is that light of different wavelengths have different velocities.
Symmetry breaking
in particle physics
In ‘naive’ gauge theories, gauge bosons and other fundamental particles are all massless – also a symmetrical situation. In the presence of the Higgs field this symmetry is broken. The result is that particles of different types will have different masses.

Matt Strassler uses electric fields as an analogy:[215]

Some particles interact with the Higgs field while others don’t. Those particles that feel the Higgs field act as if they have mass. Something similar happens in an electric field – charged objects are pulled around and neutral objects can sail through unaffected. So you can think of the Higgs search as an attempt to make waves in the Higgs field [create Higgs bosons] to prove it’s really there.

A similar explanation was offered by The Guardian:[216]

The Higgs boson is essentially a ripple in a field said to have emerged at the birth of the universe and to span the cosmos to this day … The particle is crucial however: It is the smoking gun, the evidence required to show the theory is right.

The Higgs field’s effect on particles was famously described by physicist David Miller as akin to a room full of political party workers spread evenly throughout a room: The crowd gravitates to and slows down famous people but does not slow down others.[z]
He also drew attention to well-known effects in solid state physics where an electron’s effective mass can be much greater than usual in the presence of a crystal lattice.[217]

Analogies based on drag effects, including analogies of «syrup» or «molasses» are also well known, but can be somewhat misleading since they may be understood (incorrectly) as saying that the Higgs field simply resists some particles’ motion but not others’ – a simple resistive effect could also conflict with Newton’s third law.[219]

Recognition and awards[edit]

There was considerable discussion prior to late 2013 of how to allocate the credit if the Higgs boson is proven, made more pointed as a Nobel prize had been expected, and the very wide basis of people entitled to consideration. These include a range of theoreticians who made the Higgs mechanism theory possible, the theoreticians of the 1964 PRL papers (including Higgs himself), the theoreticians who derived from these a working electroweak theory and the Standard Model itself, and also the experimentalists at CERN and other institutions who made possible the proof of the Higgs field and boson in reality. The Nobel prize has a limit of three persons to share an award, and some possible winners are already prize holders for other work, or are deceased (the prize is only awarded to persons in their lifetime). Existing prizes for works relating to the Higgs field, boson, or mechanism include:

  • Nobel Prize in Physics (1979) – Glashow, Salam, and Weinberg, for contributions to the theory of the unified weak and electromagnetic interaction between elementary particles[220]
  • Nobel Prize in Physics (1999) – ‘t Hooft and Veltman, for elucidating the quantum structure of electroweak interactions in physics[221]
  • J. J. Sakurai Prize for Theoretical Particle Physics (2010) – Hagen, Englert, Guralnik, Higgs, Brout, and Kibble, for elucidation of the properties of spontaneous symmetry breaking in four-dimensional relativistic gauge theory and of the mechanism for the consistent generation of vector boson masses[89] (for the 1964 papers described above)
  • Wolf Prize (2004) – Englert, Brout, and Higgs
  • Special Breakthrough Prize in Fundamental Physics (2013) – Fabiola Gianotti and Peter Jenni, spokespersons of the ATLAS Collaboration and Michel Della Negra, Tejinder Singh Virdee, Guido Tonelli, and Joseph Incandela spokespersons, past and present, of the CMS collaboration, «For [their] leadership role in the scientific endeavour that led to the discovery of the new Higgs-like particle by the ATLAS and CMS collaborations at CERN’s Large Hadron Collider».[222]
  • Nobel Prize in Physics (2013) – Peter Higgs and François Englert, for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN’s Large Hadron Collider[223]

Englert’s co-researcher Robert Brout had died in 2011 and the Nobel Prize is not ordinarily given posthumously.[224]

Additionally Physical Review Letters’ 50-year review (2008) recognised the 1964 PRL symmetry breaking papers and Weinberg’s 1967 paper A model of Leptons (the most cited paper in particle physics, as of 2012) «milestone Letters».[86]

Following reported observation of the Higgs-like particle in July 2012, several Indian media outlets reported on the supposed neglect of credit to Indian physicist Satyendra Nath Bose after whose work in the 1920s the class of particles «bosons» is named[225][226]
(although physicists have described Bose’s connection to the discovery as tenuous).[227]

Technical aspects and mathematical formulation[edit]

The potential for the Higgs field, plotted as function of phi ^{0} and phi ^{3}. It has a Mexican-hat or champagne-bottle profile at the ground.

In the Standard Model, the Higgs field is a four-component scalar field that forms a complex doublet of the weak isospin SU(2) symmetry:

{displaystyle phi ={frac {1}{sqrt {2}}}left({begin{array}{c}phi ^{1}+iphi ^{2}\phi ^{0}+iphi ^{3}end{array}}right) ,}

while the field has charge +1/2 under the weak hypercharge U(1) symmetry.[228]

Note: This article uses the scaling convention where the electric charge, Q, the weak isospin, T3, and the weak hypercharge, YW, are related by Q = T3 + YW. A different convention used in most other Wikipedia articles is Q = T3 + 1/2YW.[229][230][231]

The Higgs part of the Lagrangian is[228]

{displaystyle {mathcal {L}}_{text{H}}=left|left(partial _{mu }-igW_{mu ,a}{tfrac {1}{2}}sigma ^{a}-i{tfrac {1}{2}}g'B_{mu }right)phi right|^{2}+mu _{text{H}}^{2}phi ^{dagger }phi -lambda left(phi ^{dagger }phi right)^{2} ,}

where {displaystyle W_{mu ,a}} and B_{mu } are the gauge bosons of the SU(2) and U(1) symmetries, g and g' their respective coupling constants, sigma ^{a} are the Pauli matrices (a complete set generators of the SU(2) symmetry), and lambda >0 and {displaystyle mu _{text{H}}^{2}>0}, so that the ground state breaks the SU(2) symmetry (see figure).

The ground state of the Higgs field (the bottom of the potential) is degenerate with different ground states related to each other by a SU(2) gauge transformation. It is always possible to pick a gauge such that in the ground state {displaystyle phi ^{1}=phi ^{2}=phi ^{3}=0}. The expectation value of phi ^{0} in the ground state (the vacuum expectation value or VEV) is then {displaystyle leftlangle phi ^{0}rightrangle ={tfrac {1}{sqrt {2,}}}v}, where {displaystyle v={tfrac {1}{sqrt {lambda ,}}}left|mu _{text{H}}right|}. The measured value of this parameter is ~246 GeV/c2.[125] It has units of mass, and is the only free parameter of the Standard Model that is not a dimensionless number. Quadratic terms in W_{mu } and B_{mu } arise, which give masses to the W and Z bosons:[228]

{displaystyle {begin{aligned}m_{text{W}}&={tfrac {1}{2}}vleft|,g,right| ,\m_{text{Z}}&={tfrac {1}{2}}v{sqrt {g^{2}+{g'}^{2} }} ,end{aligned}}}

with their ratio determining the Weinberg angle, {textstyle cos theta _{text{W}}={frac {m_{text{W}}}{ m_{text{Z}} }}={frac {left|,g,right|}{ {sqrt {g^{2}+{g'}^{2} }} }}}, and leave a massless U(1) photon, gamma . The mass of the Higgs boson itself is given by

{displaystyle m_{text{H}}={sqrt {2mu _{text{H}}^{2} }}equiv {sqrt {2lambda v^{2} }}.}

The quarks and the leptons interact with the Higgs field through Yukawa interaction terms:

{displaystyle {begin{aligned}{mathcal {L}}_{text{Y}}=&-lambda _{u}^{i,j}{frac { phi ^{0}-iphi ^{3} }{sqrt {2 }}}{overline {u}}_{text{L}}^{i}u_{text{R}}^{j}+lambda _{u}^{i,j}{frac { phi ^{1}-iphi ^{2} }{sqrt {2 }}}{overline {d}}_{text{L}}^{i}u_{text{R}}^{j}\&-lambda _{d}^{i,j}{frac { phi ^{0}+iphi ^{3} }{sqrt {2 }}}{overline {d}}_{text{L}}^{i}d_{text{R}}^{j}-lambda _{d}^{i,j}{frac { phi ^{1}+iphi ^{2} }{sqrt {2 }}}{overline {u}}_{text{L}}^{i}d_{text{R}}^{j}\&-lambda _{e}^{i,j}{frac { phi ^{0}+iphi ^{3} }{sqrt {2 }}}{overline {e}}_{text{L}}^{i}e_{text{R}}^{j}-lambda _{e}^{i,j}{frac { phi ^{1}+iphi ^{2} }{sqrt {2 }}}{overline {nu }}_{text{L}}^{i}e_{text{R}}^{j}+{textrm {h.c.}} ,end{aligned}}}

where {displaystyle (d,u,e,nu )_{text{L,R}}^{i}} are left-handed and right-handed quarks and leptons of the ith generation, {displaystyle lambda _{text{u,d,e}}^{i,j}} are matrices of Yukawa couplings where h.c. denotes the hermitian conjugate of all the preceding terms. In the symmetry breaking ground state, only the terms containing phi ^{0} remain, giving rise to mass terms for the fermions. Rotating the quark and lepton fields to the basis where the matrices of Yukawa couplings are diagonal, one gets

{displaystyle {mathcal {L}}_{text{m}}=-m_{text{u}}^{i}{overline {u}}_{text{L}}^{i}u_{text{R}}^{i}-m_{text{d}}^{i}{overline {d}}_{text{L}}^{i}d_{text{R}}^{i}-m_{text{e}}^{i}{overline {e}}_{text{L}}^{i}e_{text{R}}^{i}+{textrm {h.c.}},}

where the masses of the fermions are {displaystyle m_{text{u,d,e}}^{i}={tfrac {1}{sqrt {2 }}}lambda _{text{u,d,e}}^{i}v}, and {displaystyle lambda _{text{u,d,e}}^{i}} denote the eigenvalues of the Yukawa matrices.[228]

See also[edit]

Standard Model
  • Higgs mechanism – Mechanism that explains the generation of mass for gauge bosons
  • History of quantum field theory
  • Introduction to quantum mechanics – Non-technical introduction to quantum physics
  • Noncommutative standard model
    and noncommutative geometry – Branch of mathematics
  • Mathematical formulation of the Standard Model – Mathematics of a particle physics model
    • Standard Model fields overview
    • mass terms and the Higgs mechanism
  • Quantum gauge theory – Physical theory with fields invariant under the action of local «gauge» Lie groups
  • W and Z bosons – Elementary particles; gauge bosons that mediate the weak interaction
Other
  • Bose–Einstein statistics – Description of the behavior of bosons
  • Composite Higgs models, a extension of the SM where the Higgs boson is made of smaller constituents
  • Dalitz plot – particle physics plot
  • Particle Fever, a 2013 American documentary film following various LHC experiments and concluding with the identification of the Higgs boson
  • Quantum triviality – Possible outcome of renormalization in physics
  • Scalar boson – Boson with spin equal to zero
  • Stueckelberg action – Special case of the abelian Higgs mechanism
  • Tachyonic field – Field with an imaginary mass
  • ZZ diboson

Explanatory notes[edit]

  1. ^
    Note that such events also occur due to other processes. Detection involves a statistically significant excess of such events at specific energies.
  2. ^ a b
    In the Standard Model, the total decay width of a Higgs boson with a mass of 125 GeV/c2 is predicted to be 4.07×10−3 GeV.[2] The mean lifetime is given by tau =hbar /Gamma .
  3. ^ In Higgs-based theories, the Higgs boson itself should be an exception, being massive even at high energies.
  4. ^
    In physics, it is possible for a law to hold true only if certain assumptions hold true, or when certain conditions are met. For example, Newton’s laws of motion only apply at speeds where relativistic effects are negligible; and laws related to conductivity, gases, and classical physics (as opposed to quantum mechanics) may apply only within certain ranges of size, temperature, pressure, or other conditions.
  5. ^ a b c
    The success of the Higgs-based electroweak theory and Standard Model is illustrated by their predictions of the mass of two particles later detected: the W boson (predicted mass: 80.390±0.018 GeV/c2, experimental measurement: 80.387±0.019 GeV/c2), and the Z boson (predicted mass: 91.1874±0.0021 GeV/c2, experimental measurement: 91.1876±0.0021 GeV/c2). Other accurate predictions included the weak neutral current, the gluon, and the top and charm quarks, all later proven to exist as the theory said.
  6. ^
    Electroweak symmetry is broken by the Higgs field in its lowest energy state, called its ground state. At high energy levels this does not happen, and the gauge bosons of the weak force would be expected to become massless above those energy levels.
  7. ^
    The range of a force is inversely proportional to the mass of the particles transmitting it.[22]

    In the Standard Model, forces are carried by virtual particles. The movement and interactions of these particles with each other are limited by the energy–time uncertainty principle. As a result, the more massive a single virtual particle is, the greater its energy, and therefore the shorter the distance it can travel. A particle’s mass therefore, determines the maximum distance at which it can interact with other particles and on any force it mediates. By the same token, the reverse is also true: Massless and near-massless particles can carry long distance forces.

    Since experiments have shown that the weak force acts over only a very short range, this implies that massive gauge bosons must exist, and indeed, their masses have since been confirmed by measurement.

    (See also: Compton wavelength and static forces and virtual-particle exchange)

  8. ^
    By the 1960s, many had already started to see gauge theories as failing to explain particle physics, because theorists had been unable to solve the mass problem or even explain how gauge theory could provide a solution. So the idea that the Standard Model – which relied on a Higgs field, not yet proved to exist – could be fundamentally incorrect, was not unreasonable.

    Against this, once the model was developed around 1972, no better theory existed, and its predictions and solutions were so accurate, that it became the preferred theory anyway. It then became crucial to science, to know whether it was correct.

  9. ^
    Discovery press conference, July 2012:

    ‘As a layman, I would say, I think we have it’, said Rolf-Dieter Heuer, director general of CERN at Wednesday’s seminar announcing the results of the search for the Higgs boson. But when pressed by journalists afterwards on what exactly ‘it’ was, things got more complicated.

    ‘We have discovered a boson; now we have to find out what boson it is’
    [Q]: ‘If we don’t know the new particle is a Higgs, what do we know about it?’
    [A]: We know it is some kind of boson, says Vivek Sharma of CMS […]
    [Q]: ‘are the CERN scientists just being too cautious? What would be enough evidence to call it a Higgs boson?’
    [A]: As there could be many different kinds of Higgs bosons, there’s no straight answer.[27]

    [emphasis in original]

  10. ^ For example: The Huffington Post / Reuters,[47] and others.[48]
  11. ^ The bubble’s effects would be expected to propagate across the universe at the speed of light from wherever it occurred. However space is vast – with even the nearest galaxy being over 2 million light years from us, and others being many billions of light years distant, so the effect of such an event would be unlikely to arise here for billions of years after first occurring.[53][54]
  12. ^ If the Standard Model is valid, then the particles and forces we observe in our universe exist as they do, because of underlying quantum fields. Quantum fields can have states of differing stability, including ‘stable’, ‘unstable’ and ‘metastable’ states (the latter remain stable unless sufficiently perturbed). If a more stable vacuum state were able to arise, then existing particles and forces would no longer arise as they presently do. Different particles or forces would arise from (and be shaped by) whatever new quantum states arose. The world we know depends upon these particles and forces, so if this happened, everything around us, from subatomic particles to galaxies, and all fundamental forces, would be reconstituted into new fundamental particles and forces and structures. The universe would potentially lose all of its present structures and become inhabited by new ones (depending upon the exact states involved) based upon the same quantum fields.
  13. ^ a b
    Goldstone’s theorem only applies to gauges having manifest Lorentz covariance, a condition that took time to become questioned. But the process of quantisation requires a gauge to be fixed and at this point it becomes possible to choose a gauge such as the ‘radiation’ gauge which is not invariant over time, so that these problems can be avoided. According to Bernstein (1974), p. 8:

    the «radiation gauge» condition ∇⋅A(x) = 0 is clearly not covariant, which means that if we wish to maintain transversality of the photon in all Lorentz frames, the photon field Aμ(x) cannot transform like a four-vector. This is no catastrophe, since the photon field is not an observable, and one can readily show that the S-matrix elements, which are observable have covariant structures. … in gauge theories one might arrange things so that one had a symmetry breakdown because of the noninvariance of the vacuum; but, because the Goldstone et al. proof breaks down, the zero mass Goldstone mesons need not appear. [emphasis in original]

    Bernstein (1974) contains an accessible and comprehensive background and review of this area, see external links.

  14. ^ A field with the «Mexican hat» potential {displaystyle V(phi )=mu ^{2}phi ^{2}+lambda phi ^{4}} and {displaystyle mu ^{2}<0} has a minimum not at zero but at some non-zero value {displaystyle phi _{0}~.} By expressing the action in terms of the field {tilde {phi }}=phi -phi _{0} (where phi _{0} is a constant independent of position), we find the Yukawa term has a component {displaystyle gphi _{0}{bar {psi }}psi ~.} Since both g and phi _{0} are constants, this looks exactly like the mass term for a fermion of mass gphi _{0}. The field {tilde {phi }} is then the Higgs field.
  15. ^ a b
    The example is based on the production rate at the LHC operating at 7 TeV. The total cross-section for producing a Higgs boson at the LHC is about 10 picobarn,[93] while the total cross-section for a proton–proton collision is 110 millibarn.[94]
  16. ^
    Just before LEP’s shut down, some events that hinted at a Higgs were observed, but it was not judged significant enough to extend its run and delay construction of the LHC.
  17. ^ a b c ATLAS and CMS only just co-discovered this particle in July… We will not know after today whether it is a Higgs at all, whether it is a Standard Model Higgs or not, or whether any particular speculative idea… is now excluded… Knowledge about nature does not come easy. We discovered the top quark in 1995, and we are still learning about its properties today… we will still be learning important things about the Higgs during the coming few decades. We’ve no choice but to be patient. — M. Strassler (2012)[128]
  18. ^
    In the Standard Model, the mass term arising from the Dirac Lagrangian for any fermion psi is -m{bar {psi }}psi . This is not invariant under the electroweak symmetry, as can be seen by writing psi in terms of left and right handed components:

    {displaystyle -m{bar {psi }}psi ,=,-mleft({bar {psi }}_{L}psi _{R}+{bar {psi }}_{R}psi _{L}right)}

    i.e., contributions from {bar {psi }}_{L}psi _{L} and {bar {psi }}_{R}psi _{R} terms do not appear. We see that the mass-generating interaction is achieved by constant flipping of particle chirality. Since the spin-half particles have no right/left helicity pair with the same SU(2) and SU(3) representation and the same weak hypercharge, then assuming these gauge charges are conserved in the vacuum, none of the spin-half particles could ever swap helicity. Therefore, in the absence of some other cause, all fermions must be massless.

  19. ^
    Goldstone’s theorem also plays a role in such theories. The connection is technically, when a condensate breaks a symmetry, then the state reached by acting with a symmetry generator on the condensate has the same energy as before. This means that some kinds of oscillation will not involve change of energy. Oscillations with unchanged energy imply that excitations (particles) associated with the oscillation are massless. Therefore the outcome is that new massless particles should exist, known as Goldstone bosons. Because zero mass gauge bosons always mediate long range interactions, a new long range force should exist as well.
  20. ^
    People initially thought of tachyons as particles travelling faster than the speed of light … But we now know that a tachyon indicates an instability in a theory that contains it. Regrettably for science fiction fans, tachyons are not real physical particles that appear in nature.[160]
  21. ^ This upper limit would increase to 185 GeV/c2 if the lower bound of 114.4 GeV/c2 from the LEP-2 direct search is allowed for.[171]
  22. ^
    Other names have included:

    • The «Anderson–Higgs» mechanism,[177]
    • «Higgs–Kibble» mechanism (by Abdus Salam)[91] and
    • «A-B-E-G-H-H-K-‘tH» mechanism [for Anderson, Brout, Englert, Guralnik, Hagen, Higgs, Kibble and ‘t Hooft] (by Peter Higgs).[91]

  23. ^
    Benjamin W. Lee also uses the Korean language name Lee Whi-soh.
  24. ^
    Examples of early papers using the term «Higgs boson» include

    • Ellis, Gaillard, & Nanopoulos (1976) «A phenomenological profile of the Higgs boson».
    • Bjorken (1977) «Weak interaction theory and neutral currents».
    • Wienberg (received, 1975) «Mass of the Higgs boson».

  25. ^
    Global financial partnerships could be the only way to salvage such a project. Some feel that Congress delivered a fatal blow.

    ‘We have to keep the momentum and optimism and start thinking about international collaboration,’ said Leon M. Lederman, the Nobel Prize-winning physicist who was the architect of the super collider plan.[193]

  26. ^ In Miller’s analogy, the Higgs field is compared to political party workers spread evenly throughout a room. There will be some people (in Miller’s example an anonymous person) who pass through the crowd with ease, paralleling the interaction between the field and particles that do not interact with it, such as massless photons. There will be other people (in Miller’s example the British prime minister) who would find their progress being continually slowed by the swarm of admirers crowding around, paralleling the interaction for particles that do interact with the field and by doing so, acquire a finite mass.[217][218]

References[edit]

  1. ^ R.L. Workman; et al. (Particle Data Group) (2022). «Gauge and Higgs Bosons» (PDF). Progress of Theoretical and Experimental Physics: 8. Retrieved 6 July 2022.
  2. ^ a b c d e f g h
    Dittmaier; Mariotti; Passarino; Tanaka; Alekhin; Alwall; Bagnaschi; Banfi; et al. (LHC Higgs Cross Section Working Group) (2012). Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (Report). CERN Report 2 (Tables A.1–A.20). Vol. 1201. p. 3084. arXiv:1201.3084. Bibcode:2012arXiv1201.3084L. doi:10.5170/CERN-2012-002. S2CID 119287417.
  3. ^ a b c «Life of the Higgs boson» (Press release). CMS Collaboration. Archived from the original on 2 December 2021. Retrieved 21 January 2021.
  4. ^ a b c d e «ATLAS finds evidence of a rare Higgs boson decay» (Press release). CERN. 8 February 2021. Archived from the original on 19 January 2022. Retrieved 21 January 2022.
  5. ^ ATLAS collaboration (2018). «Observation of H→bb decays and VH production with the ATLAS detector». Physics Letters B. 786: 59–86. arXiv:1808.08238. doi:10.1016/j.physletb.2018.09.013. S2CID 53658301.{{cite journal}}: CS1 maint: uses authors parameter (link)
  6. ^ CMS collaboration (2018). «Observation of Higgs boson decay to bottom quarks». Physical Review Letters. 121 (12): 121801. arXiv:1808.08242. Bibcode:2018PhRvL.121l1801S. doi:10.1103/PhysRevLett.121.121801. PMID 30296133. S2CID 118901756.{{cite journal}}: CS1 maint: uses authors parameter (link)
  7. ^ a b c d e f g O’Luanaigh, C. (14 March 2013). «New results indicate that new particle is a Higgs boson» (Press release). CERN. Archived from the original on 20 October 2015. Retrieved 9 October 2013.
  8. ^ a b c d e CMS Collaboration (2017). «Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state». Physics Letters B. 775 (2017): 1–24. arXiv:1707.00541. Bibcode:2017PhLB..775….1S. doi:10.1016/j.physletb.2017.10.021. S2CID 3221363.{{cite journal}}: CS1 maint: uses authors parameter (link)
  9. ^ Goulette, Marc (15 August 2012). «What should we know about the Higgs particle?» (blog). Atlas Experiment / CERN. Archived from the original on 13 January 2022. Retrieved 21 January 2022.
  10. ^ «Getting to know the Higgs particle: New discoveries!» (Press release). Institute of Physics. Archived from the original on 13 January 2022. Retrieved 21 January 2022.
  11. ^ a b c
    Onyisi, P. (23 October 2012). «Higgs boson FAQ». University of Texas ATLAS group. Archived from the original on 12 October 2013. Retrieved 8 January 2013.
  12. ^ a b c d
    Strassler, M. (12 October 2012). «The Higgs FAQ 2.0». ProfMattStrassler.com. Archived from the original on 12 October 2013. Retrieved 8 January 2013. [Q] Why do particle physicists care so much about the Higgs particle?
    [A] Well, actually, they don’t. What they really care about is the Higgs field, because it is so important. [emphasis in original]
  13. ^ a b c d e Adam Falkowski (writing as ‘Jester’) (27 February 2013). «When shall we call it Higgs?». Résonaances particle physics blog. Archived from the original on 29 June 2017. Retrieved 7 March 2013.
  14. ^ Lederman, L.M. (1993). The God Particle. Bantam Doubleday Dell. ISBN 0-385-31211-3.
  15. ^ a b c
    Sample, Ian (29 May 2009). «Anything but the God particle». The Guardian. Archived from the original on 25 July 2018. Retrieved 24 June 2009.
  16. ^ a b
    Evans, R. (14 December 2011). «The Higgs boson: Why scientists hate that you call it the ‘God particle’«. National Post. Archived from the original on 23 February 2015. Retrieved 3 November 2013.
  17. ^ Griffiths 2008, pp. 49–52
  18. ^ Tipler & Llewellyn 2003, pp. 603–604
  19. ^ From P.W. Anderson (1972) «More is different», Science.
  20. ^ Griffiths 2008, pp. 372–373
  21. ^ a b c Woit, Peter (13 November 2010). «The Anderson–Higgs Mechanism». Dr. Peter Woit (Senior Lecturer in Mathematics Columbia University and Ph.D. particle physics). Archived from the original on 23 November 2012. Retrieved 12 November 2012.
  22. ^ Shu, F. H. (1982). The Physical Universe: An introduction to astronomy. University Science Books. pp. 107–108. ISBN 978-0-935702-05-7. Archived from the original on 29 June 2016. Retrieved 27 June 2015.
  23. ^ a b José Luis Lucio; Arnulfo Zepeda (1987). Proceedings of the II Mexican School of Particles and Fields, Cuernavaca-Morelos, 1986. World Scientific. p. 29. ISBN 978-9971504342. Archived from the original on 25 January 2022. Retrieved 5 September 2020.
  24. ^ a b Gunion; Dawson; Kane; Haber (1990). The Higgs Hunter’s Guide (1st ed.). p. 11. ISBN 978-0-2015-0935-9. Archived from the original on 25 January 2022. Retrieved 5 September 2020. Cited by Peter Higgs in his talk «My Life as a Boson», 2001, ref#25.
  25. ^ a b c
    Lederman, Leon M.; Teresi, Dick (1993). The God Particle: If the universe is the answer, what is the question. Houghton Mifflin Company. ISBN 9780395558492.
  26. ^
    Strassler, M. (8 October 2011). «The known particles – if the Higgs field were zero». ProfMattStrassler.com. Archived from the original on 17 March 2021. Retrieved 13 November 2012. The Higgs field: So important it merited an entire experimental facility, the Large Hadron Collider, dedicated to understanding it.
  27. ^ a b c d
    Biever, C. (6 July 2012). «It’s a boson! But we need to know if it’s the Higgs». New Scientist. Retrieved 9 January 2013.
  28. ^
    Siegfried, T. (20 July 2012). «Higgs hysteria». Science News. Archived from the original on 31 October 2012. Retrieved 9 December 2012. In terms usually reserved for athletic achievements, news reports described the finding as a monumental milestone in the history of science.
  29. ^ a b c
    Del Rosso, A. (19 November 2012). «Higgs: The beginning of the exploration» (Press release). CERN. Archived from the original on 19 April 2019. Retrieved 9 January 2013. Even in the most specialized circles, the new particle discovered in July is not yet being called the «Higgs boson». Physicists still hesitate to call it that before they have determined that its properties fit with those the Higgs theory predicts the Higgs boson has.
  30. ^ a b
    Naik, G. (14 March 2013). «New data boosts case for Higgs boson find». The Wall Street Journal. Archived from the original on 4 January 2018. Retrieved 15 March 2013. ‘We’ve never seen an elementary particle with spin zero,’ said Tony Weidberg, a particle physicist at the University of Oxford who is also involved in the CERN experiments.
  31. ^
    Heilprin, J. (14 March 2013). «Higgs boson discovery confirmed after physicists review Large Hadron Collider data at CERN». The Huffington Post. Archived from the original on 17 March 2013. Retrieved 14 March 2013.
  32. ^ a b c d e «LHC experiments delve deeper into precision». Media and Press relations (Press release). CERN. 11 July 2017. Archived from the original on 22 November 2018. Retrieved 23 July 2017.
  33. ^ «CMS precisely measures the mass of the Higgs boson». CMS Collaboration/CERN. Archived from the original on 23 December 2021. Retrieved 21 January 2022.
  34. ^ D’Onofrio, Michela; Rummukainen, Kari (15 January 2016). «Standard model cross-over on the lattice». Physical Review D. 93 (2): 025003. arXiv:1508.07161. Bibcode:2016PhRvD..93b5003D. doi:10.1103/PhysRevD.93.025003. S2CID 119261776.
  35. ^ Demystifying the Higgs Boson with Leonard Susskind Archived 1 April 2019 at the Wayback Machine, Leonard Susskind presents an explanation of what the Higgs mechanism is, and what it means to «give mass to particles.» He also explains what’s at stake for the future of physics and cosmology. 30 July 2012.
  36. ^ D’Onofrio, Michela; Rummukainen, Kari (2016). «Standard model cross-over on the lattice». Phys. Rev. D93 (2): 025003. arXiv:1508.07161. Bibcode:2016PhRvD..93b5003D. doi:10.1103/PhysRevD.93.025003. S2CID 119261776.
  37. ^ Rao, Achintya (2 July 2012). «Why would I care about the Higgs boson?». CMS Public Website. CERN. Archived from the original on 9 July 2012. Retrieved 18 July 2012.
  38. ^ Jammer, Max (2000). Concepts of Mass in Contemporary Physics and Philosophy. Princeton, NJ: Princeton University Press. pp. 162–163. ISBN 9780691010175., who provides many references in support of this statement.
  39. ^ Dvorsky, George (2013). «Is there a link between the Higgs boson and dark energy?». io9. Archived from the original on 1 March 2018. Retrieved 1 March 2018.
  40. ^ «What Universe Is This, Anyway?». NPR.org. 2014. Archived from the original on 1 March 2018. Retrieved 1 March 2018.
  41. ^ a b c d Alekhin, S.; Djouadi, A.; Moch, S. (13 August 2012). «The top quark and Higgs boson masses and the stability of the electroweak vacuum». Physics Letters B. 716 (1): 214–219. arXiv:1207.0980. Bibcode:2012PhLB..716..214A. doi:10.1016/j.physletb.2012.08.024. S2CID 28216028.
  42. ^ Turner, M.S.; Wilczek, F. (1982). «Is our vacuum metastable?». Nature. 298 (5875): 633–634. Bibcode:1982Natur.298..633T. doi:10.1038/298633a0. S2CID 4274444.
  43. ^ Coleman, S.; de Luccia, F. (1980). «Gravitational effects on and of vacuum decay». Physical Review. D21 (12): 3305–3315. Bibcode:1980PhRvD..21.3305C. doi:10.1103/PhysRevD.21.3305. OSTI 1445512. S2CID 1340683.
  44. ^ Stone, M. (1976). «Lifetime and decay of excited vacuum states». Phys. Rev. D. 14 (12): 3568–3573. Bibcode:1976PhRvD..14.3568S. doi:10.1103/PhysRevD.14.3568.
  45. ^ Frampton, P.H. (1976). «Vacuum Instability and Higgs Scalar Mass». Physical Review Letters. 37 (21): 1378–1380. Bibcode:1976PhRvL..37.1378F. doi:10.1103/PhysRevLett.37.1378.
  46. ^ Frampton, P.H. (1977). «Consequences of Vacuum Instability in Quantum Field Theory». Phys. Rev. D. 15 (10): 2922–2928. Bibcode:1977PhRvD..15.2922F. doi:10.1103/PhysRevD.15.2922.
  47. ^ Klotz, Irene (18 February 2013). Adams, David; Eastham, Todd (eds.). «Universe has finite lifespan, Higgs boson calculations suggest». Huffington Post. Reuters. Archived from the original on 20 February 2013. Retrieved 21 February 2013. Earth will likely be long gone before any Higgs boson particles set off an apocalyptic assault on the universe
  48. ^ Hoffman, Mark (19 February 2013). «Higgs boson will destroy the universe, eventually». Science World Report. Archived from the original on 11 June 2019. Retrieved 21 February 2013.
  49. ^ Ellis, J.; Espinosa, J.R.; Giudice, G.F.; Hoecker, A.; Riotto, A. (2009). «The Probable Fate of the Standard Model». Physics Letters B. 679 (4): 369–375. arXiv:0906.0954. Bibcode:2009PhLB..679..369E. doi:10.1016/j.physletb.2009.07.054. S2CID 17422678.
  50. ^ Masina, Isabella (12 February 2013). «Higgs boson and top quark masses as tests of electroweak vacuum stability». Phys. Rev. D. 87 (5): 53001. arXiv:1209.0393. Bibcode:2013PhRvD..87e3001M. doi:10.1103/PhysRevD.87.053001. S2CID 118451972.
  51. ^ Buttazzo, Dario; Degrassi, Giuseppe; Giardino, Pier Paolo; Giudice, Gian F.; Sala, Filippo; Salvio, Alberto; Strumia, Alessandro (2013). «Investigating the near-criticality of the Higgs boson». JHEP. 2013 (12): 089. arXiv:1307.3536. Bibcode:2013JHEP…12..089B. doi:10.1007/JHEP12(2013)089. S2CID 54021743. Archived from the original on 28 August 2014. Retrieved 25 June 2014.
  52. ^ Salvio, Alberto (9 April 2015). «A simple, motivated completion of the Standard Model below the Planck scale: Axions and right-handed neutrinos». Physics Letters B. 743: 428–434. arXiv:1501.03781. Bibcode:2015PhLB..743..428S. doi:10.1016/j.physletb.2015.03.015. S2CID 119279576.
  53. ^ a b c Boyle, Alan (19 February 2013). «Will our universe end in a ‘big slurp’? Higgs-like particle suggests it might». NBC News’ Cosmic blog. Archived from the original on 21 February 2013. Retrieved 21 February 2013. [T]he bad news is that its mass suggests the universe will end in a fast-spreading bubble of doom. The good news? It’ll probably be tens of billions of years. The article quotes Fermilab’s Joseph Lykken: «[T]he parameters for our universe, including the Higgs [and top quark’s masses] suggest that we’re just at the edge of stability, in a «metastable» state. Physicists have been contemplating such a possibility for more than 30 years. Back in 1982, physicists Michael Turner and Frank Wilczek wrote in Nature that «without warning, a bubble of true vacuum could nucleate somewhere in the universe and move outwards …»
  54. ^ Peralta, Eyder (19 February 2013). «If Higgs boson calculations are right, a catastrophic ‘bubble’ could end universe». The Two-Way. NPR News. Archived from the original on 21 February 2013. Retrieved 21 February 2013. Article cites Fermilab’s Joseph Lykken: «The bubble forms through an unlikely quantum fluctuation, at a random time and place,» Lykken tells us. «So in principle it could happen tomorrow, but then most likely in a very distant galaxy, so we are still safe for billions of years before it gets to us.»
  55. ^ Bezrukov, F.; Shaposhnikov, M. (24 January 2008). «The Standard Model Higgs boson as the inflaton». Physics Letters B. 659 (3): 703–706. arXiv:0710.3755. Bibcode:2008PhLB..659..703B. doi:10.1016/j.physletb.2007.11.072. S2CID 14818281.
  56. ^ Salvio, Alberto (9 August 2013). «Higgs Inflation at NNLO after the Boson Discovery». Physics Letters B. 727 (1–3): 234–239. arXiv:1308.2244. Bibcode:2013PhLB..727..234S. doi:10.1016/j.physletb.2013.10.042. S2CID 56544999. Archived from the original on 26 January 2016. Retrieved 25 June 2014.
  57. ^ Cole, K.C. (14 December 2000). «One Thing Is Perfectly Clear: Nothingness Is Perfect». Los Angeles Times. Archived from the original on 25 January 2022. Retrieved 17 January 2013. [T]he Higgs’ influence (or the influence of something like it) could reach much further. For example, something like the Higgs—if not exactly the Higgs itself—may be behind many other unexplained «broken symmetries» in the universe as well … In fact, something very much like the Higgs may have been behind the collapse of the symmetry that led to the Big Bang, which created the universe. When the forces first began to separate from their primordial sameness—taking on the distinct characters they have today—they released energy in the same way as water releases energy when it turns to ice. Except in this case, the freezing packed enough energy to blow up the universe. … However it happened, the moral is clear: Only when the perfection shatters can everything else be born.
  58. ^ Sean Carroll (2012). The Particle at the End of the Universe: How the Hunt for the Higgs Boson Leads Us to the Edge of a New World. Penguin Group US. ISBN 978-1-101-60970-5.
  59. ^ Goldstone, J.; Salam, Abdus; Weinberg, Steven (1962). «Broken Symmetries». Physical Review. 127 (3): 965–970. Bibcode:1962PhRv..127..965G. doi:10.1103/PhysRev.127.965.
  60. ^ a b c Guralnik, G. S. (2011). «The Beginnings of Spontaneous Symmetry Breaking in Particle Physics». arXiv:1110.2253 [physics.hist-ph].
  61. ^ a b c d e Kibble, T.W.B. (2009). «Englert–Brout–Higgs–Guralnik–Hagen–Kibble Mechanism». Scholarpedia. 4 (1): 6441. Bibcode:2009SchpJ…4.6441K. doi:10.4249/scholarpedia.6441.
  62. ^ a b Kibble, T.W.B. (2009). «History of Englert–Brout–Higgs–Guralnik–Hagen–Kibble Mechanism (history)». Scholarpedia. 4 (1): 8741. Bibcode:2009SchpJ…4.8741K. doi:10.4249/scholarpedia.8741.
  63. ^ «The Nobel Prize in Physics 2008». Nobelprize.org. Archived from the original on 13 January 2009.
  64. ^ Ruegg, Henri; Ruiz-Altaba, Martí (2004). «The Stueckelberg Field». International Journal of Modern Physics A. 19 (20): 3265–3347. arXiv:hep-th/0304245. Bibcode:2004IJMPA..19.3265R. doi:10.1142/S0217751X04019755. S2CID 7017354.
  65. ^ List of Anderson 1958–1959 papers referencing ‘symmetry’, at APS Journals[dead link]
  66. ^ a b c Higgs, Peter (24 November 2010). «My Life as a Boson» (PDF). London: Kings College. pp. 4–5. Archived from the original (PDF) on 4 November 2013. Retrieved 17 January 2013. – Talk given by Peter Higgs at Kings College, London, expanding on a paper originally presented in 2001. The original 2001 paper may be found in: Higgs, Peter (25 May 2001). «My Life as a Boson: The Story of ‘The Higgs’«. In Michael J. Duff & James T. Liu (eds.). 2001 A Spacetime Odyssey: Proceedings of the Inaugural Conference of the Michigan Center for Theoretical Physics. Ann Arbor, Michigan: World Scientific. pp. 86–88. ISBN 978-9-8123-8231-3. Archived from the original on 25 January 2022. Retrieved 17 January 2013.
  67. ^ Anderson, P. (1963). «Plasmons, gauge invariance and mass». Physical Review. 130 (1): 439–442. Bibcode:1963PhRv..130..439A. doi:10.1103/PhysRev.130.439.
  68. ^ Klein, A.; Lee, B. (1964). «Does Spontaneous Breakdown of Symmetry Imply Zero-Mass Particles?». Physical Review Letters. 12 (10): 266–268. Bibcode:1964PhRvL..12..266K. doi:10.1103/PhysRevLett.12.266.
  69. ^ Englert, François; Brout, Robert (1964). «Broken Symmetry and the Mass of Gauge Vector Mesons». Physical Review Letters. 13 (9): 321–323. Bibcode:1964PhRvL..13..321E. doi:10.1103/PhysRevLett.13.321.
  70. ^ a b c Higgs, Peter (1964). «Broken Symmetries and the Masses of Gauge Bosons». Physical Review Letters. 13 (16): 508–509. Bibcode:1964PhRvL..13..508H. doi:10.1103/PhysRevLett.13.508.
  71. ^ a b c Guralnik, Gerald; Hagen, C. R.; Kibble, T. W. B. (1964). «Global Conservation Laws and Massless Particles». Physical Review Letters. 13 (20): 585–587. Bibcode:1964PhRvL..13..585G. doi:10.1103/PhysRevLett.13.585.
  72. ^ Higgs, Peter (1964). «Broken symmetries, massless particles, and gauge fields». Physics Letters. 12 (2): 132–133. Bibcode:1964PhL….12..132H. doi:10.1016/0031-9163(64)91136-9.
  73. ^ Higgs, Peter (24 November 2010). My Life as a Boson (PDF) (Report). Talk given by Peter Higgs at Kings College, London, 24 November 2010. Kings College, London. Archived from the original (PDF) on 4 November 2013. Retrieved 17 January 2013. Gilbert … wrote a response to [Klein and Lee’s paper] saying ‘No, you cannot do that in a relativistic theory. You cannot have a preferred unit time-like vector like that.’ This is where I came in, because the next month was when I responded to Gilbert’s paper by saying ‘Yes, you can have such a thing’ but only in a gauge theory with a gauge field coupled to the current.
  74. ^ Guralnik, G.S. (2011). «Gauge invariance and the Goldstone theorem – 1965 Feldafing talk». Modern Physics Letters A. 26 (19): 1381–1392. arXiv:1107.4592. Bibcode:2011MPLA…26.1381G. doi:10.1142/S0217732311036188. S2CID 118500709.
  75. ^ Higgs, Peter (1966). «Spontaneous symmetry breakdown without massless bosons». Physical Review. 145 (4): 1156–1163. Bibcode:1966PhRv..145.1156H. doi:10.1103/PhysRev.145.1156.
  76. ^ Kibble, Tom (1967). «Symmetry Breaking in Non-Abelian Gauge Theories». Physical Review. 155 (5): 1554–1561. Bibcode:1967PhRv..155.1554K. doi:10.1103/PhysRev.155.1554.
  77. ^ Guralnik, G.S.; Hagen, C.R.; Kibble, T.W.B. (1967). «Broken symmetries and the Goldstone theorem» (PDF). Advances in Physics. 2: 567. Archived from the original (PDF) on 24 September 2015. Retrieved 16 September 2014.
  78. ^ a b
    «Letters from the Past – A PRL Retrospective». Physical Review Letters. 12 February 2014. Archived from the original on 10 January 2010. Retrieved 7 May 2008.
  79. ^
    Weinberg, S. (1967). «A model of leptons». Physical Review Letters. 19 (21): 1264–1266. Bibcode:1967PhRvL..19.1264W. doi:10.1103/PhysRevLett.19.1264.
  80. ^
    Salam, A. (1968). Svartholm, N. (ed.). Elementary Particle Physics: Relativistic Groups and Analyticity. Eighth Nobel Symposium. Stockholm, SV: Almquvist and Wiksell. p. 367.
  81. ^
    Glashow, S.L. (1961). «Partial-symmetries of weak interactions». Nuclear Physics. 22 (4): 579–588. Bibcode:1961NucPh..22..579G. doi:10.1016/0029-5582(61)90469-2.
  82. ^ a b c
    Ellis, John; Gaillard, Mary K.; Nanopoulos, Dimitri V. (2012). «A historical profile of the Higgs boson». arXiv:1201.6045 [hep-ph].
  83. ^ Martin Veltman (8 December 1999). «From Weak Interactions to Gravitation» (PDF). The Nobel Prize. p. 391. Archived from the original (PDF) on 25 July 2018. Retrieved 9 October 2013.
  84. ^ a b c d e f Politzer, David (8 December 2004). «The Dilemma of Attribution». The Nobel Prize. Archived from the original on 21 March 2013. Retrieved 22 January 2013. Sidney Coleman published in Science magazine in 1979 a citation search he did documenting that essentially no one paid any attention to Weinberg’s Nobel Prize winning paper until the work of ‘t Hooft (as explicated by Ben Lee). In 1971 interest in Weinberg’s paper exploded. I had a parallel personal experience: I took a one-year course on weak interactions from Shelly Glashow in 1970, and he never even mentioned the Weinberg–Salam model or his own contributions.
  85. ^ Coleman, Sidney (14 December 1979). «The 1979 Nobel Prize in Physics». Science. 206 (4424): 1290–1292. Bibcode:1979Sci…206.1290C. doi:10.1126/science.206.4424.1290. PMID 17799637.
  86. ^ a b [1]Archived 10 January 2010 at archive.today Letters from the Past – A PRL Retrospective (50 year celebration, 2008)
  87. ^ Bernstein 1974, p. 9
  88. ^ Bernstein 1974, pp. 9, 36 (footnote), 43–44, 47
  89. ^ a b American Physical Society – «J. J. Sakurai Prize for Theoretical Particle Physics». Archived from the original on 12 February 2010. Retrieved 2 October 2009.
  90. ^ Merali, Zeeya (4 August 2010). «Physicists get political over Higgs». Nature. doi:10.1038/news.2010.390. Archived from the original on 25 January 2022. Retrieved 28 December 2011.
  91. ^ a b c d e f g h i Close, Frank (2011). The Infinity Puzzle: Quantum Field Theory and the Hunt for an Orderly Universe. Oxford: Oxford University Press. ISBN 978-0-19-959350-7.
  92. ^ a b G.S. Guralnik (2009). «The History of the Guralnik, Hagen and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles». International Journal of Modern Physics A. 24 (14): 2601–2627. arXiv:0907.3466. Bibcode:2009IJMPA..24.2601G. doi:10.1142/S0217751X09045431. S2CID 16298371.
  93. ^ a b c d e f Baglio, Julien; Djouadi, Abdelhak (2011). «Higgs production at the lHC». Journal of High Energy Physics. 1103 (3): 055. arXiv:1012.0530. Bibcode:2011JHEP…03..055B. doi:10.1007/JHEP03(2011)055. S2CID 119295294.
  94. ^
    «Collisions». LHC machine outreach. CERN. Archived from the original on 26 March 2020. Retrieved 26 July 2012.
  95. ^ a b c «Hunt for Higgs boson hits key decision point». NBC News. 6 December 2012. Archived from the original on 18 May 2020. Retrieved 19 January 2013.
  96. ^ «Welcome to the Worldwide LHC Computing Grid». WLCG – Worldwide LHC Computing Grid. CERN. Archived from the original on 25 July 2018. Retrieved 14 November 2012. [A] global collaboration of more than 170 computing centres in 36 countries … to store, distribute and analyse the ~25 Petabytes (25 million Gigabytes) of data annually generated by the Large Hadron Collider
  97. ^ «The Worldwide LHC Computing Grid». The Worldwide LHC Computing Grid. CERN. November 2017. Archived from the original on 7 November 2017. Retrieved 5 November 2017. It now links thousands of computers and storage systems in over 170 centres across 41 countries. … The WLCG is the world’s largest computing grid
  98. ^ Yao, W.-M.; et al. (2006). «Review of Particle Physics» (PDF). Journal of Physics G. 33 (1): 1–1232. arXiv:astro-ph/0601168. Bibcode:2006JPhG…33….1Y. doi:10.1088/0954-3899/33/1/001. Archived (PDF) from the original on 27 January 2017. Retrieved 25 October 2006.
  99. ^ The CDF Collaboration; The D0 Collaboration; The Tevatron New Physics, Higgs Working Group (2012). «Updated combination of CDF and D0 searches for Standard Model Higgs boson production with up to 10.0 fb−1 of data». arXiv:1207.0449 [hep-ex].
  100. ^ «Interim Summary Report on the Analysis of the 19 September 2008 Incident at the LHC» (PDF). CERN. 15 October 2008. EDMS 973073. Archived (PDF) from the original on 20 August 2013. Retrieved 28 September 2009.
  101. ^ «CERN releases analysis of LHC incident». Media and Press relations (Press release). CERN. 16 October 2008. Archived from the original on 12 November 2016. Retrieved 12 November 2016.
  102. ^ «LHC to restart in 2009». Media and Press relations (Press release). CERN. 5 December 2008. Archived from the original on 12 November 2016. Retrieved 12 November 2016.
  103. ^ «LHC progress report». CERN Bulletin (18). 3 May 2010. Archived from the original on 26 May 2018. Retrieved 7 December 2011.
  104. ^ «ATLAS experiment presents latest Higgs search status». ATLAS homepage. CERN. 13 December 2011. Archived from the original on 23 November 2016. Retrieved 13 December 2011.
  105. ^ Taylor, Lucas (13 December 2011). «CMS search for the Standard Model Higgs Boson in LHC data from 2010 and 2011». CMS public website. CERN. Archived from the original on 7 January 2012. Retrieved 13 December 2011.
  106. ^ a b c d e Overbye, D. (5 March 2013). «Chasing The Higgs Boson». The New York Times. Archived from the original on 5 March 2013. Retrieved 5 March 2013.
  107. ^ a b «ATLAS and CMS experiments present Higgs search status» (Press release). CERN Press Office. 13 December 2011. Archived from the original on 13 December 2012. Retrieved 14 September 2012. the statistical significance is not large enough to say anything conclusive. As of today what we see is consistent either with a background fluctuation or with the presence of the boson. Refined analyses and additional data delivered in 2012 by this magnificent machine will definitely give an answer
  108. ^ «Welcome». WLCG – Worldwide LHC Computing Grid. CERN. Archived from the original on 10 November 2012. Retrieved 29 October 2012.
  109. ^ CMS collaboration (2015). «Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV». The European Physical Journal C. 75 (5): 212. arXiv:1412.8662. Bibcode:2015EPJC…75..212K. doi:10.1140/epjc/s10052-015-3351-7. PMC 4433454. PMID 25999783.
  110. ^ ATLAS collaboration (2015). «Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector». Physical Review D. 91 (1): 012006. arXiv:1408.5191. Bibcode:2015PhRvD..91a2006A. doi:10.1103/PhysRevD.91.012006. S2CID 8672143.
  111. ^ ATLAS collaboration (2014). «Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector». Physical Review D. 90 (11): 112015. arXiv:1408.7084. Bibcode:2014PhRvD..90k2015A. doi:10.1103/PhysRevD.90.112015. S2CID 8202688.
  112. ^ «Press Conference: Update on the search for the Higgs boson at CERN on 4 July 2012». Indico.cern.ch. 22 June 2012. Archived from the original on 21 July 2012. Retrieved 4 July 2012.
  113. ^ «CERN to give update on Higgs search as curtain raiser to ICHEP conference». Media and Press relations (Press release). CERN. 22 June 2012. Archived from the original on 12 November 2016. Retrieved 12 November 2016.
  114. ^ «Scientists analyse global Twitter gossip around Higgs boson discovery». Phys.org. 23 January 2013. Archived from the original on 29 October 2013. Retrieved 6 February 2013. For the first time scientists have been able to analyse the dynamics of social media on a global scale before, during and after the announcement of a major scientific discovery.
    De Domenico, M.; Lima, A.; Mougel, P.; Musolesi, M. (2013). «The Anatomy of a Scientific Gossip». Scientific Reports. 3 (2013): 2980. arXiv:1301.2952. Bibcode:2013NatSR…3E2980D. doi:10.1038/srep02980. PMC 3798885. PMID 24135961.
  115. ^ «Higgs boson particle results could be a quantum leap». Times LIVE. 28 June 2012. Archived from the original on 4 July 2012. Retrieved 4 July 2012.
  116. ^ CERN prepares to deliver Higgs particle findings Archived 17 March 2021 at the Wayback Machine, Australian Broadcasting Corporation. Retrieved 4 July 2012.
  117. ^ «God Particle Finally Discovered? Higgs Boson News At Cern Will Even Feature Scientist It’s Named After». Huffingtonpost.co.uk. 3 July 2012. Archived from the original on 11 March 2013. Retrieved 19 January 2013.
  118. ^ Our Bureau (4 July 2012). «Higgs on way, theories thicken – Wait for news on God particle». The Telegraph – India. Archived from the original on 7 July 2012. Retrieved 19 January 2013.
  119. ^ Thornhill, Ted (3 July 2013). «God Particle Finally Discovered? Higgs Boson News At Cern Will Even Feature Scientist It’s Named After». Huffington Post. Archived from the original on 11 September 2013. Retrieved 23 July 2013.
  120. ^ Adrian Cho (13 July 2012). «Higgs Boson Makes Its Debut After Decades-Long Search». Science. 337 (6091): 141–143. Bibcode:2012Sci…337..141C. doi:10.1126/science.337.6091.141. PMID 22798574.
  121. ^ a b CMS collaboration (2012). «Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC». Physics Letters B. 716 (1): 30–61. arXiv:1207.7235. Bibcode:2012PhLB..716…30C. doi:10.1016/j.physletb.2012.08.021.
  122. ^ a b Taylor, Lucas (4 July 2012). «Observation of a New Particle with a Mass of 125 GeV». CMS Public Website. CERN. Archived from the original on 5 July 2012. Retrieved 4 July 2012.
  123. ^ «Latest Results from ATLAS Higgs Search». ATLAS News. CERN. 4 July 2012. Archived from the original on 23 November 2016. Retrieved 4 July 2012.
  124. ^ a b ATLAS collaboration (2012). «Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC». Physics Letters B. 716 (1): 1–29. arXiv:1207.7214. Bibcode:2012PhLB..716….1A. doi:10.1016/j.physletb.2012.08.020. S2CID 119169617.
  125. ^ a b c d e «Higgs bosons: theory and searches» (PDF). PDGLive. Particle Data Group. 12 July 2012. Archived (PDF) from the original on 8 March 2021. Retrieved 15 August 2012.
  126. ^ Gillies, James (23 July 2012). «LHC 2012 proton run extended by seven weeks». CERN Bulletin (30). Archived from the original on 26 May 2018. Retrieved 29 August 2012.
  127. ^ a b «Higgs boson behaving as expected». 3 News NZ. 15 November 2012. Archived from the original on 1 May 2014. Retrieved 15 November 2012.
  128. ^ Strassler, Matt (14 November 2012). «Higgs Results at Kyoto». Of Particular Significance: Conversations about science with theoretical physicist Matt Strassler (personal website). Archived from the original on 8 March 2021. Retrieved 10 January 2013.
  129. ^ Sample, Ian (14 November 2012). «Higgs particle looks like a bog Standard Model boson, say scientists». The Guardian. London, UK. Archived from the original on 26 January 2016. Retrieved 15 November 2012.
  130. ^ «CERN experiments observe particle consistent with long-sought Higgs boson». Media and Press relations (Press release). CERN. 4 July 2012. Archived from the original on 21 November 2017. Retrieved 12 November 2016.
  131. ^ «Person of the year 2012». Time. 19 December 2012. Archived from the original on 12 February 2013. Retrieved 13 February 2013.
  132. ^ «Higgs boson discovery has been confirmed». Forbes. Archived from the original on 25 October 2013. Retrieved 9 October 2013.
  133. ^ «Higgs boson confirmed; CERN discovery passes test». Slate.com. 11 September 2012. Archived from the original on 9 July 2013. Retrieved 9 October 2013.
  134. ^ «The year of the Higgs, and other tiny advances in science». NPR.org. National Public Radio. 1 January 2013. Archived from the original on 5 March 2014. Retrieved 9 October 2013.
  135. ^ «Confirmed: The Higgs boson does exist». The Sydney Morning Herald. 4 July 2012. Archived from the original on 25 January 2022. Retrieved 21 February 2020.
  136. ^ The discovery of the Higgs boson was announced in articles in Time,[131] Forbes,[132] Slate,[133] NPR,[134] and others.[135]
  137. ^ John Heilprin (27 January 2013). «CERN chief: Higgs boson quest could wrap up by midyear». NBCNews.com. AP. Archived from the original on 21 February 2013. Retrieved 20 February 2013. Rolf Heuer, director of [CERN], said he is confident that «towards the middle of the year, we will be there.» – Interview by AP, at the World Economic Forum, 26 January 2013.
  138. ^ Boyle, Alan (16 February 2013). «Will our universe end in a ‘big slurp’? Higgs-like particle suggests it might». NBCNews.com. Archived from the original on 21 February 2013. Retrieved 20 February 2013. ‘It’s going to take another few years’ after the collider is restarted to confirm definitively that the newfound particle is the Higgs boson.
  139. ^ Gillies, James (6 March 2013). «A question of spin for the new boson». CERN. Archived from the original on 8 March 2013. Retrieved 7 March 2013.
  140. ^ a b c
    Chatrchyan, S.; et al. (CMS Collaboration) (February 2013). «Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs». Physical Review Letters. 110 (8): 081803. arXiv:1212.6639. Bibcode:2013PhRvL.110h1803C. doi:10.1103/PhysRevLett.110.081803. PMID 23473131. S2CID 2621524.
  141. ^ a b c
    Aad, G.; et al. (ATLAS Collaboration) (7 October 2013). «Evidence for the spin-0 nature of the Higgs boson using ATLAS data». Phys. Lett. B. 726 (1–3): 120–144. arXiv:1307.1432. Bibcode:2013PhLB..726..120A. doi:10.1016/j.physletb.2013.08.026. S2CID 11562016.
  142. ^ Chatrchyan, S.; et al. (CMS collaboration) (2013). «Higgs-like Particle in a Mirror». Physical Review Letters. 110 (8): 081803. arXiv:1212.6639. Bibcode:2013PhRvL.110h1803C. doi:10.1103/PhysRevLett.110.081803. PMID 23473131. S2CID 2621524.
  143. ^ ATLAS; CMS Collaborations (2016). «Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s = 7 and 8 TeV». Journal of High Energy Physics. 2016 (8): 45. arXiv:1606.02266. Bibcode:2016JHEP…08..045A. doi:10.1007/JHEP08(2016)045. S2CID 118523967.
  144. ^ Heinemeyer, S.; Mariotti, C.; Passarino, G.; Tanaka, R.; Andersen, J. R.; Artoisenet, P.; Bagnaschi, E. A.; Banfi, A.; Becher, T. (2013). Handbook of LHC Higgs Cross Sections: 3. Higgs Properties: Report of the LHC Higgs Cross Section Working Group. CERN Yellow Reports: Monographs. doi:10.5170/cern-2013-004. ISBN 978-92-9083-389-5.
  145. ^ The ATLAS Collaboration (4 July 2022). «A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery». Nature. 607 (7917): 52–59. arXiv:2207.00092. Bibcode:2022Natur.607…52A. doi:10.1038/s41586-022-04893-w. ISSN 1476-4687. PMC 9259483. PMID 35788192.
  146. ^ «Highlights from the 2019 Moriond conference (electroweak physics)». 29 March 2019. Archived from the original on 21 April 2019. Retrieved 24 April 2019.
  147. ^ «All together now: adding more pieces to the Higgs boson puzzle». ATLAS collaboration. 18 March 2019. Archived from the original on 16 April 2019. Retrieved 24 April 2019.
  148. ^ «Long-sought decay of Higgs boson observed». Media and Press relations (Press release). CERN. 28 August 2018. Archived from the original on 22 November 2018. Retrieved 30 August 2018.
  149. ^ Atlas Collaboration (28 August 2018). «ATLAS observes elusive Higgs boson decay to a pair of bottom quarks». Atlas (Press release). CERN. Archived from the original on 28 August 2018. Retrieved 28 August 2018.
  150. ^ CMS Collaboration (August 2018). «Observation of Higgs boson decay to bottom quarks». CMS. Archived from the original on 30 August 2018. Retrieved 30 August 2018.
    CMS Collaboration (24 August 2018). «Observation of Higgs boson decay to bottom quarks». CERN Document Server. CERN. Archived from the original on 25 January 2022. Retrieved 30 August 2018.
    CMS Collaboration (24 August 2018). «Observation of Higgs boson decay to bottom quarks». Physical Review Letters. 121 (12): 121801. arXiv:1808.08242. Bibcode:2018PhRvL.121l1801S. doi:10.1103/PhysRevLett.121.121801. PMID 30296133. S2CID 118901756.
  151. ^ Peskin & Schroeder 1995, pp. 717–719, 787–791
  152. ^ Peskin & Schroeder 1995, pp. 715–716
  153. ^ Branco, G. C.; Ferreira, P.M.; Lavoura, L.; Rebelo, M.N.; Sher, Marc; Silva, João P. (July 2012). «Theory and phenomenology of two-Higgs-doublet models». Physics Reports. 516 (1): 1–102. arXiv:1106.0034. Bibcode:2012PhR…516….1B. doi:10.1016/j.physrep.2012.02.002. S2CID 119214990.
  154. ^ Csaki, C.; Grojean, C.; Pilo, L.; Terning, J. (2004). «Towards a realistic model of Higgsless electroweak symmetry breaking». Physical Review Letters. 92 (10): 101802. arXiv:hep-ph/0308038. Bibcode:2004PhRvL..92j1802C. doi:10.1103/PhysRevLett.92.101802. PMID 15089195. S2CID 6521798.
  155. ^ Csaki, C.; Grojean, C.; Pilo, L.; Terning, J.; Terning, John (2004). «Gauge theories on an interval: Unitarity without a Higgs». Physical Review D. 69 (5): 055006. arXiv:hep-ph/0305237. Bibcode:2004PhRvD..69e5006C. doi:10.1103/PhysRevD.69.055006. S2CID 119094852.
  156. ^ a b «The Hierarchy Problem: why the Higgs has a snowball’s chance in hell». Quantum Diaries. 1 July 2012. Archived from the original on 29 March 2013. Retrieved 19 March 2013.
  157. ^ «The Hierarchy Problem | Of Particular Significance». Profmattstrassler.com. 16 August 2011. Archived from the original on 7 March 2013. Retrieved 9 October 2013.
  158. ^
    D. J. E. Callaway (1988). «Triviality Pursuit: Can Elementary Scalar Particles Exist?». Physics Reports. 167 (5): 241–320. Bibcode:1988PhR…167..241C. doi:10.1016/0370-1573(88)90008-7.
  159. ^ Gunion, John (2000). The Higgs Hunter’s Guide (illustrated, reprint ed.). Westview Press. pp. 1–3. ISBN 978-0-7382-0305-8.
  160. ^ Randall, Lisa (19 September 2006). Warped Passages: Unraveling the mysteries of the universe’s hidden dimensions. Ecco. p. 286. ISBN 978-006053109-6.
  161. ^ Sen, Ashoke (May 2002). «Rolling tachyon». J. High Energy Phys. 2002 (204): 48. arXiv:hep-th/0203211. Bibcode:2002JHEP…04..048S. doi:10.1088/1126-6708/2002/04/048. S2CID 12023565.
  162. ^ Kutasov, David; Marino, Marcos & Moore, Gregory W. (2000). «Some exact results on tachyon condensation in string field theory». JHEP. 2000 (10): 045. arXiv:hep-th/0009148. Bibcode:2000JHEP…10..045K. doi:10.1088/1126-6708/2000/10/045. S2CID 15664546.
  163. ^ Aharonov, Y.; Komar, A.; Susskind, L. (1969). «Superluminal Behavior, Causality, and Instability». Phys. Rev. 182 (5): 1400–1403. Bibcode:1969PhRv..182.1400A. doi:10.1103/PhysRev.182.1400.
  164. ^ Feinberg, Gerald (1967). «Possibility of faster-than-light particles». Physical Review. 159 (5): 1089–1105. Bibcode:1967PhRv..159.1089F. doi:10.1103/PhysRev.159.1089.
  165. ^ Peskin & Schroeder 1995
  166. ^ Flatow, Ira (6 July 2012). «At long last, the Higgs particle … maybe». NPR. Archived from the original on 10 July 2012. Retrieved 10 July 2012.
  167. ^ «Explanatory figures for the Higgs boson exclusion plots». ATLAS News (Press release). CERN. 2011. Archived from the original on 16 September 2017. Retrieved 6 July 2012.
  168. ^
    Carena, M.; Grojean, C.; Kado, M.; Sharma, V. (2013). Status of Higgs boson physics (PDF). Lawrence Berkeley Laboratory (Report). Berkeley, CA: University of California. p. 192. Archived (PDF) from the original on 10 December 2017. Retrieved 5 November 2017.
  169. ^
    Lykken, Joseph D. (27 June 2009). «Beyond the Standard Model». Proceedings of the 2009 European School of High-Energy Physics. Bautzen, Germany. arXiv:1005.1676. Bibcode:2010arXiv1005.1676L.
  170. ^
    Plehn, Tilman (2012). Lectures on LHC Physics. Lecture Notes in Physics. Vol. 844. Springer. §1.2.2. arXiv:0910.4182. Bibcode:2012LNP…844…..P. doi:10.1007/978-3-642-24040-9. ISBN 978-3-642-24039-3. S2CID 118019449.
  171. ^
    «LEP Electroweak Working Group». CERN. Archived from the original on 3 April 2008. Retrieved 4 April 2006.
  172. ^
    Peskin, Michael E.; Wells, James D. (2001). «How can a heavy Higgs boson be consistent with the precision electroweak measurements?». Physical Review D. 64 (9): 093003. arXiv:hep-ph/0101342. Bibcode:2001PhRvD..64i3003P. doi:10.1103/PhysRevD.64.093003. S2CID 5932066.
  173. ^ a b c d Baglio, Julien; Djouadi, Abdelhak (2010). «Predictions for Higgs production at the Tevatron and the associated uncertainties». Journal of High Energy Physics. 1010 (10): 063. arXiv:1003.4266. Bibcode:2010JHEP…10..064B. doi:10.1007/JHEP10(2010)064. S2CID 119199894.
  174. ^ a b c Teixeira-Dias (LEP Higgs working group), P. (2008). «Higgs boson searches at LEP». Journal of Physics: Conference Series. 110 (4): 042030. arXiv:0804.4146. Bibcode:2008JPhCS.110d2030T. doi:10.1088/1742-6596/110/4/042030. S2CID 16443715.
  175. ^ Asquith, Lily (22 June 2012). «Why does the Higgs decay?». Life and Physics. London: The Guardian. Archived from the original on 1 November 2013. Retrieved 14 August 2012.
  176. ^ The CMS Collaboration (4 July 2022). «A portrait of the Higgs boson by the CMS experiment ten years after the discovery». Nature. 607 (7917): 60–68. arXiv:2207.00043. Bibcode:2022Natur.607…60C. doi:10.1038/s41586-022-04892-x. ISSN 1476-4687. PMC 9259501. PMID 35788190.
  177. ^
    Liu, G.Z.; Cheng, G. (2002). «Extension of the Anderson-Higgs mechanism». Physical Review B. 65 (13): 132513. arXiv:cond-mat/0106070. Bibcode:2002PhRvB..65m2513L. CiteSeerX 10.1.1.242.3601. doi:10.1103/PhysRevB.65.132513. S2CID 118551025.
  178. ^ a b c d e
    «Mass appeal: As physicists close in on the Higgs boson, they should resist calls to change its name». Nature (editorial). 483, 374 (7390): 374. 21 March 2012. Bibcode:2012Natur.483..374.. doi:10.1038/483374a. PMID 22437571.
  179. ^ a b c d
    Becker, Kate (29 March 2012). «A Higgs by any other name». Physics (blog). NOVA. PBS. Archived from the original on 17 December 2012. Retrieved 21 January 2013.
  180. ^
    «Frequently asked questions: The Higgs!». CERN Bulletin. No. 28. 2012. Archived from the original on 5 July 2012. Retrieved 18 July 2012.
  181. ^ a b
    Woit, Peter (13 April 2013). ««Not even wrong»: Anderson on Anderson-Higgs». Mathematics. Woit’s physics blog (blog). New York, NY: Columbia University. Archived from the original on 19 October 2013. Retrieved 6 August 2013.
  182. ^
    Sample, Ian (4 July 2012). «Higgs boson’s many great minds cause a Nobel prize headache». The Guardian. London, UK. Archived from the original on 17 October 2013. Retrieved 23 July 2013.
  183. ^ a b
    Peskin, M. (July 2012). «40 years of the Higgs boson» (PDF). 2012 SLAC Summer Institute Conferences. Presentation at SSI 2012. Stanford University. pp. 3–5. Archived (PDF) from the original on 1 May 2014. Retrieved 21 January 2013. quoting Lee’s ICHEP 1972 presentation at Fermilab: «… which is known as the Higgs mechanism …» and «Lee’s locution» – his footnoted explanation of this shorthand.
  184. ^
    U.R. Phys. & Astro. press office (8 October 2007). «Nobelist Steven Weinberg praises professor Carl Hagen and collaborators for Higgs Boson theory». Department of Physics and Astronomy (Press release). Rochester, NY: University of Rochester. Archived from the original on 16 April 2008. — Rochester’s Hagen Sakurai Prize announcement
  185. ^
    Hagen, C.R. (2010). Sakurai Prize talk (video) – via YouTube.
  186. ^ a b
    Cho, A. (14 September 2012). «Why the ‘Higgs’?» (PDF). Particle physics. Science. 337 (6100): 1287. doi:10.1126/science.337.6100.1287. PMID 22984044. Archived from the original (PDF) on 4 July 2013. Retrieved 12 February 2013. Lee … apparently used the term ‘Higgs boson’ as early as 1966 … but what may have made the term stick is a seminal paper Steven Weinberg … published in 1967 … Weinberg acknowledged the mix-up in an essay in the New York Review of Books in May 2012.
    (See also original article in

    • New York Review of Books (2012)[187]
    • Close, Frank (2011). «[see book extract]». The Infinity Puzzle. Oxford University Press. p. 372 – via Google Books.)[91]

    which identified the error).

  187. ^ a b
    Weinberg, Steven (10 May 2012). «The crisis of big science». The New York Review of Books. footnote 1. Archived from the original on 21 January 2013. Retrieved 12 February 2013.
  188. ^
    Lederman, Leon; Teresi, Dick (2006). The God Particle: If the universe is the answer, what is the question?. Houghton Mifflin Harcourt. ISBN 978-0-547-52462-7. Archived from the original on 13 May 2016. Retrieved 27 June 2015.
  189. ^
    Dickerson, Kelly (8 September 2014). «Stephen Hawking says ‘god particle’ could wipe out the universe». livescience.com. Archived from the original on 28 January 2015. Retrieved 23 February 2015.
  190. ^
    Baggott, Jim (2012). Higgs: The invention and discovery of the ‘God particle’. Oxford University Press. ISBN 978-0-19-165003-1. Archived from the original on 20 May 2016. Retrieved 27 June 2015.
  191. ^
    The Higgs Boson: Searching for the God Particle. Scientific American / Macmillan. 2012. ISBN 978-1-4668-2413-3. Archived from the original on 9 June 2016. Retrieved 27 June 2015.
  192. ^
    Jaeckel, Ted (2007). The God Particle: The discovery and modeling of the ultimate prime particle. Universal-Publishers. ISBN 978-1-58112-959-5. Archived from the original on 29 April 2016. Retrieved 27 June 2015.
  193. ^ a b c Aschenbach, Joy (5 December 1993). «No resurrection in sight for moribund super collider». Science. Los Angeles Times. Archived from the original on 6 November 2013. Retrieved 16 January 2013.
  194. ^
    «A supercompetition for Illinois». Chicago Tribune. 31 October 1986. Archived from the original on 15 May 2013. Retrieved 16 January 2013. The SSC, proposed by the U.S. Department of Energy in 1983, is a mind-bending project … this gigantic laboratory … this titanic project
  195. ^
    Diaz, Jesus (15 December 2012). «This is [the] world’s largest super collider that never was». Gizmodo. Archived from the original on 18 January 2013. Retrieved 16 January 2013. … this titanic complex …
  196. ^
    Abbott, Charles (June 1987). «[no title cited]«. Illinois Issues Journal. p. 18. Archived from the original on 1 November 2013. Retrieved 16 January 2013. Lederman, who considers himself an unofficial propagandist for the super collider, said the SSC could reverse the physics brain drain in which bright young physicists have left America to work in Europe and elsewhere.
  197. ^ Kevles, Dan (Winter 1995). «Good-bye to the SSC: On the life and death of the superconducting super collider» (PDF). Engineering & Science. California Institute of Technology. 58 (2): 16–25. Archived (PDF) from the original on 11 May 2013. Retrieved 16 January 2013. Lederman, one of the principal spokesmen for the SSC, was an accomplished high-energy experimentalist who had made Nobel Prize-winning contributions to the development of the Standard Model during the 1960s (although the prize itself did not come until 1988). He was a fixture at congressional hearings on the collider, an unbridled advocate of its merits.
  198. ^
    Calder, Nigel (2005). Magic Universe: A grand tour of modern science. pp. 369–370. ISBN 978-0-19-162235-9. Archived from the original on 25 January 2022. Retrieved 5 September 2020. The possibility that the next big machine would create the Higgs became a carrot to dangle in front of funding agencies and politicians. A prominent American physicist, Leon lederman [sic], advertised the Higgs as The God Particle in the title of a book published in 1993 … Lederman was involved in a campaign to persuade the US government to continue funding the Superconducting Super Collider … the ink was not dry on Lederman’s book before the US Congress decided to write off the billions of dollars already spent
  199. ^
    Lederman, Leon (1993). The God Particle: If the universe is the answer, what is the question?. Dell Publishing. chapter 2, p. 2. ISBN 978-0-385-31211-0. Retrieved 30 July 2015.
  200. ^
    Alister McGrath (15 December 2011). «[The] Higgs boson: The particle of faith». The Daily Telegraph. Archived from the original on 15 December 2011. Retrieved 15 December 2011.
  201. ^
    Sample, Ian (3 March 2009). «Father of the god particle: Portrait of Peter Higgs unveiled». The Guardian. London, UK. Archived from the original on 12 September 2014. Retrieved 24 June 2009.
  202. ^ a b
    Chivers, Tom (13 December 2011). «How the ‘God particle’ got its name». The Telegraph. London, UK. Archived from the original on 9 January 2012. Retrieved 3 December 2012.
  203. ^
    «Key scientist sure «God particle» will be found soon». Reuters News Service. 7 April 2008. Archived from the original on 23 February 2021. Retrieved 2 July 2017.
  204. ^
    «The man behind the ‘God particle’«. New Scientist (interview). 13 September 2008. pp. 44–45. Archived from the original on 13 September 2008. Retrieved 29 August 2017.

    ORIGINAL INTERVIEW

    «Father of the ‘God particle’«. The Guardian. 30 June 2008. Archived from the original on 1 December 2016. Retrieved 14 December 2016.
  205. ^
    Borowitz, Andy (13 July 2012). «5 questions for the Higgs boson». The New Yorker. Archived from the original on 12 November 2020. Retrieved 12 December 2019.
  206. ^
    Sample, Ian (2010). Massive: The hunt for the God particle. pp. 148–149, & 278–279. ISBN 978-1-905264-95-7. Archived from the original on 25 January 2022. Retrieved 5 September 2020.
  207. ^
    Cole, K. (14 December 2000). «One thing is perfectly clear: Nothingness is perfect». Science File. Los Angeles Times. Archived from the original on 5 October 2015. Retrieved 17 January 2013. Consider the early universe–a state of pure, perfect nothingness; a formless fog of undifferentiated stuff … ‘perfect symmetry’ … What shattered this primordial perfection? One likely culprit is the so-called Higgs field … Physicist Leon Lederman compares the way the Higgs operates to the biblical story of Babel [whose citizens] all spoke the same language … Like God, says Lederman, the Higgs differentiated the perfect sameness, confusing everyone (physicists included) … [Nobel Prizewinner Richard] Feynman wondered why the universe we live in was so obviously askew … Perhaps, he speculated, total perfection would have been unacceptable to God. And so, just as God shattered the perfection of Babel, ‘God made the laws only nearly symmetrical’
  208. ^ Lederman, p. 22 et seq.:
    Something we cannot yet detect and which, one might say, has been put there to test and confuse us … The issue is whether physicists will be confounded by this puzzle or whether, in contrast to the unhappy Babylonians, we will continue to build the tower and, as Einstein put it, «know the mind of God».
    And the Lord said, Behold the people are un-confounding my confounding. And the Lord sighed and said, Go to, let us go down, and there give them the God Particle so that they may see how beautiful is the universe I have made.

  209. ^
    Sample, Ian (12 June 2009). «Higgs competition: Crack open the bubbly, the God particle is dead». The Guardian. London, UK. Archived from the original on 12 January 2015. Retrieved 4 May 2010.
  210. ^
    Gordon, Fraser (5 July 2012). «Introducing the higgson». physicsworld.com. Archived from the original on 8 July 2012. Retrieved 25 August 2012.
  211. ^
    Wolchover, Natalie (3 July 2012). «Higgs boson explained: How the ‘God particle’ gives things mass». Huffington Post. Archived from the original on 20 April 2013. Retrieved 21 January 2013.
  212. ^
    Oliver, Laura (4 July 2012). «Higgs boson: How would you explain it to a seven-year-old?». The Guardian. London, UK. Archived from the original on 22 October 2014. Retrieved 21 January 2013.
  213. ^
    Zimmer, Ben (15 July 2012). «Higgs boson metaphors as clear as molasses». The Boston Globe. Archived from the original on 4 February 2013. Retrieved 21 January 2013.
  214. ^ «The Higgs particle: an analogy for Physics classroom (section)». www.lhc-closer.es (a collaboration website of LHCb physicist Xabier Vidal and High School Teachers and CERN educator Ramon Manzano). Archived from the original on 5 July 2012. Retrieved 9 January 2013.
  215. ^ Flam, Faye (12 July 2012). «Finally – a Higgs boson story anyone can understand». The Philadelphia Inquirer (philly.com). Archived from the original on 23 March 2013. Retrieved 21 January 2013.
  216. ^
    Sample, Ian (28 April 2011). «How will we know when the Higgs particle has been detected?». The Guardian. London, UK. Archived from the original on 26 January 2016. Retrieved 21 January 2013.
  217. ^ a b
    Miller, David (1993). «A quasi-political explanation of the Higgs boson; for Mr. Waldegrave, UK Science Minister». Archived from the original on 15 March 2010. Retrieved 10 July 2012.
  218. ^
    Jepsen, Kathryn (1 March 2012). «Ten things you may not know about the Higgs boson». Symmetry Magazine. Archived from the original on 14 August 2012. Retrieved 10 July 2012.
  219. ^
    Goldberg, David (17 November 2010). «What’s the matter with the Higgs boson?». io9.com. Archived from the original on 21 January 2013. Retrieved 21 January 2013.{{cite web}}: CS1 maint: unfit URL (link)
  220. ^
    «The Nobel Prize in Physics 1979». official Nobel Prize website (Press release). Archived from the original on 17 June 2017. Retrieved 13 June 2017.
  221. ^
    «The Nobel Prize in Physics 1999». official Nobel Prize website (Press release). Archived from the original on 16 June 2017. Retrieved 13 June 2017.
  222. ^
    «Special Breakthrough Prize Laureates». breakthroughprize.org. 2013. Archived from the original on 15 January 2017.
  223. ^
    «2013 Nobel Prize in Physics». official Nobel Prize website (Press release). Archived from the original on 11 June 2017. Retrieved 13 June 2017.
  224. ^
    Overbye, D. (8 October 2013). «For Nobel, they can thank the ‘god particle’«. The New York Times. Archived from the original on 30 June 2017. Retrieved 3 November 2013.
  225. ^
    Daigle, Katy (10 July 2012). «India: Enough about Higgs, let’s discuss the boson». AP News. Archived from the original on 23 September 2012. Retrieved 10 July 2012.
  226. ^
    Bal, Hartosh Singh (19 September 2012). «The Bose in the Boson». The New York Times. Archived from the original on 29 December 2019. Retrieved 21 September 2012.
  227. ^
    Alikhan, Anvar (16 July 2012). «The spark in a crowded field». Outlook India. Archived from the original on 9 July 2012. Retrieved 10 July 2012.
  228. ^ a b c d Peskin & Schroeder 1995, Chapter 20
  229. ^
    Nakano, T.; Nishijima, N. (1953). «Charge independence for V-particles». Progress of Theoretical Physics. 10 (5): 581. Bibcode:1953PThPh..10..581N. doi:10.1143/PTP.10.581.
  230. ^
    Nishijima, K. (1955). «Charge independence theory of V-particles». Progress of Theoretical Physics. 13 (3): 285–304. Bibcode:1955PThPh..13..285N. doi:10.1143/PTP.13.285.
  231. ^
    Gell-Mann, M. (1956). «The interpretation of the new particles as displaced charged multiplets». Il Nuovo Cimento. 4 (S2): 848–866. Bibcode:1956NCim….4S.848G. doi:10.1007/BF02748000. S2CID 121017243.

Sources[edit]

  • Bernstein, Jeremy (January 1974). «Spontaneous symmetry breaking, gauge theories, the Higgs mechanism and all that» (PDF). Reviews of Modern Physics. 46 (1): 7–48. Bibcode:1974RvMP…46….7B. doi:10.1103/RevModPhys.46.7. Archived from the original (PDF) on 21 January 2013. Retrieved 10 December 2012.
  • Peskin, Michael E.; Schroeder, Daniel V. (1995). An Introduction to Quantum Field Theory. Reading, MA: Addison-Wesley Publishing Company. ISBN 978-0-201-50397-5.
  • Tipler, Paul; Llewellyn, Ralph (2003). Modern Physics. W. H. Freeman. ISBN 978-0-7167-4345-3.
  • Griffiths, David (2008). Introduction to Elementary Particles (2nd revised ed.). WILEY-VCH. ISBN 978-3-527-40601-2.

Further reading[edit]

  • Nambu, Yoichiro; Jona-Lasinio, Giovanni (1961). «Dynamical model of elementary particles based on an analogy with superconductivity». Physical Review. 122 (1): 345–358. Bibcode:1961PhRv..122..345N. doi:10.1103/PhysRev.122.345.
  • Anderson, Philip W. (1963). «Plasmons, gauge invariance, and mass». Physical Review. 130 (1): 439–442. Bibcode:1963PhRv..130..439A. doi:10.1103/PhysRev.130.439.
  • Klein, Abraham; Lee, Benjamin W. (1964). «Does spontaneous breakdown of symmetry imply zero-mass particles?». Physical Review Letters. 12 (10): 266–268. Bibcode:1964PhRvL..12..266K. doi:10.1103/PhysRevLett.12.266.
  • Gilbert, Walter (1964). «Broken symmetries and massless particles». Physical Review Letters. 12 (25): 713–714. Bibcode:1964PhRvL..12..713G. doi:10.1103/PhysRevLett.12.713.
  • Higgs, Peter (1964). «Broken symmetries, massless particles and gauge fields». Physics Letters. 12 (2): 132–133. Bibcode:1964PhL….12..132H. doi:10.1016/0031-9163(64)91136-9.
  • Guralnik, Gerald S.; Hagen, C.R.; Kibble, Tom W.B. (1968). «Broken symmetries and the Goldstone theorem». In Cool, R.L.; Marshak, R.E. (eds.). Advances in Physics. Vol. 2. Interscience Publishers. pp. 567–708. ISBN 978-0-470-17057-1. Archived from the original on 23 April 2012. Retrieved 18 June 2011.
  • Carroll, Sean (2013). The Particle at the End of the Universe: How the hunt for the Higgs boson leads us to the edge of a new world. Dutton. ISBN 978-0-14-218030-3.
  • Jakobs, Karl; Seez, Chris (2015). «The Higgs boson discovery». Scholarpedia. 10 (9): 32413. doi:10.4249/scholarpedia.32413.

External links[edit]

Look up higgs boson in Wiktionary, the free dictionary.

Popular science, mass media, and general coverage[edit]

  • Higgs Boson observation at CERN
  • Hunting the Higgs Boson at C.M.S. Experiment, at CERN
  • The Higgs Boson by the CERN exploratorium.
  • Particle Fever, documentary film about the search for the Higgs Boson.
  • The Atom Smashers, documentary film about the search for the Higgs Boson at Fermilab.
  • Collected Articles at the Guardian
  • Video (04:38) – CERN Announcement on 4 July 2012, of the discovery of a particle which is suspected will be a Higgs Boson.
  • Video1 (07:44) + Video2 (07:44) – Higgs Boson Explained by CERN Physicist, Dr. Daniel Whiteson (16 June 2011).
  • HowStuffWorks: What exactly is the Higgs Boson?
  • Carroll, Sean. «Higgs Boson with Sean Carroll». Sixty Symbols. University of Nottingham.
  • Overbye, Dennis (5 March 2013). «Chasing the Higgs Boson: How 2 teams of rivals at CERN searched for physics’ most elusive particle». New York Times Science pages. Retrieved 22 July 2013. – New York Times «behind the scenes» style article on the Higgs’ search at ATLAS and CMS
  • The story of the Higgs theory by the authors of the PRL papers and others closely associated:
    • Higgs, Peter (2010). «My Life as a Boson» (PDF). Talk given at Kings College, London, 24 November 2010. Archived from the original (PDF) on 4 November 2013. Retrieved 17 January 2013. (also: Higgs, Peter (24 November 2010). «My Life As a Boson: The Story of «the Higgs»«. International Journal of Modern Physics A. 17: 86–88. Bibcode:2002IJMPA..17S..86H. doi:10.1142/S0217751X02013046.)
    • Kibble, Tom (2009). «Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism (history)». Scholarpedia. Retrieved 17 January 2013. (also: Kibble, Tom (2009). «Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism (history)». Scholarpedia. 4 (1): 8741. Bibcode:2009SchpJ…4.8741K. doi:10.4249/scholarpedia.8741.)
    • Guralnik, Gerald (2009). «The History of the Guralnik, Hagen and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles». International Journal of Modern Physics A. 24 (14): 2601–2627. arXiv:0907.3466. Bibcode:2009IJMPA..24.2601G. doi:10.1142/S0217751X09045431. S2CID 16298371., Guralnik, Gerald (2011). «The Beginnings of Spontaneous Symmetry Breaking in Particle Physics. Proceedings of the DPF-2011 Conference, Providence, RI, 8–13 August 2011». arXiv:1110.2253v1 [physics.hist-ph]., and Guralnik, Gerald (2013). «Heretical Ideas that Provided the Cornerstone for the Standard Model of Particle Physics». Archived 15 October 2013 at the Wayback Machine SPG Mitteilungen March 2013, No. 39, (p. 14), and Talk at Brown University about the 1964 PRL papers
    • Philip Anderson (not one of the PRL authors) on symmetry breaking in superconductivity and its migration into particle physics and the PRL papers
  • Cartoon about the search
  • Cham, Jorge (19 February 2014). «True Tales from the Road: The Higgs Boson Re-Explained». Piled Higher and Deeper. Retrieved 25 February 2014.
  • Higgs Boson, BBC Radio 4 discussion with Jim Al-Khalili, David Wark & Roger Cashmore (In Our Time, 18 November 2004)

Significant papers and other[edit]

  • «Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC». Physics Letters B. 716 (2012): 1–29. 2012. arXiv:1207.7214. Bibcode:2012PhLB..716….1A. doi:10.1016/j.physletb.2012.08.020. S2CID 119169617.
  • «Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC». Physics Letters B. 716 (2012): 30–61. 2012. arXiv:1207.7235. Bibcode:2012PhLB..716…30C. doi:10.1016/j.physletb.2012.08.021.
  • Particle Data Group: Review of searches for Higgs Bosons.
  • 2001, a spacetime odyssey: proceedings of the Inaugural Conference of the Michigan Center for Theoretical Physics : Michigan, 21–25 May 2001, (pp. 86–88), ed. Michael J. Duff, James T. Liu, ISBN 978-981-238-231-3, containing Higgs’ story of the Higgs Boson.
  • Migdal, A. A.; Polyakov, A. M. (1966). «Spontaneous Breakdown of Strong Interaction Symmetry and the Absence of Massless Particles» (PDF). Soviet Physics JETP. 24 (1): 91. Bibcode:1967JETP…24…91M. S2CID 34510322. Archived from the original (PDF) on 21 September 2018. – example of a 1966 Russian paper on the subject.
  • The Department of Energy Explains … the Higgs Boson

Introductions to the field[edit]

  • Electroweak Symmetry Breaking – A pedagogic introduction to electroweak symmetry breaking with step by step derivations of many key relations, by Robert D. Klauber, 15 January 2018 (archived at Wayback Machine)
  • Spontaneous symmetry breaking, gauge theories, the Higgs mechanism and all that (Bernstein, Reviews of Modern Physics Jan 1974) – an introduction of 47 pages covering the development, history and mathematics of Higgs theories from around 1950 to 1974.
Higgs boson

Candidate Higgs Events in ATLAS and CMS.png

Candidate Higgs boson events from collisions between protons in the LHC. The top event in the CMS experiment shows a decay into two photons (dashed yellow lines and green towers). The lower event in the ATLAS experiment shows a decay into four muons (red tracks).[a]

Composition Elementary particle
Statistics Bosonic
Symbol
H0
Theorised R. Brout, F. Englert, P. Higgs, G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble (1964)
Discovered Large Hadron Collider (2011–2013)
Mass 125.25 ± 0.17 GeV/c2[1]
Mean lifetime 1.56×10−22 s[b]
(predicted)
1.2 ~ 4.6 × 10−22 s (tentatively measured at 3.2 sigma (1 in 1000) significance)[3][4]
Decays into
  • Bottom–antibottom
    pair (observed)[5][6]
  • Two W bosons (observed)
  • Two gluons (predicted)
  • Tau–antitau pair (observed)
  • Two Z bosons (observed)
  • Two photons (observed)
  • Two leptons and a photon (Dalitz decay via virtual photon) (tentatively observed at sigma 3.2 (1 in 1000) significance) [4]
  • Muon–antimuon pair (predicted)
  • Various other decays (predicted)
Electric charge 0 e
Colour charge 0
Spin 0[7][8]
Weak isospin 1/2
Weak hypercharge +1
Parity +1[7][8]

The Higgs boson, sometimes called the Higgs particle,[9][10] is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field,[11][12] one of the fields in particle physics theory.[12] In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge that couples to (interacts with) mass.[13] It is also very unstable, decaying into other particles almost immediately.

The Higgs field is a scalar field, with two neutral and two electrically charged components that form a complex doublet of the weak isospin SU(2) symmetry. Its «Mexican hat-shaped» potential leads it to take a nonzero value everywhere (including otherwise empty space), which breaks the weak isospin symmetry of the electroweak interaction, and via the Higgs mechanism gives mass to many particles.

Both the field and the boson are named after physicist Peter Higgs, who in 1964, along with five other scientists in three teams, proposed the Higgs mechanism, a way that some particles can acquire mass. (All fundamental particles that were known at the time[c] should be massless at very high energies, but fully explaining how some particles gain mass at lower energies had been extremely difficult.) If these ideas were correct, a particle known as a scalar boson should also exist, with certain properties. This particle was called the Higgs boson, and could be used to test whether the Higgs field was the correct explanation.

After a 40 year search, a subatomic particle with the expected properties was discovered in 2012 by the ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN near Geneva, Switzerland. The new particle was subsequently confirmed to match the expected properties of a Higgs boson. Physicists from two of the three teams, Peter Higgs and François Englert, were awarded the Nobel Prize in Physics in 2013 for their theoretical predictions. Although Higgs’s name has come to be associated with this theory, several researchers between about 1960 and 1972 independently developed different parts of it.

In the mainstream media, the Higgs boson is sometimes called the «God particle» after the 1993 book The God Particle by Nobel Laureate Leon Lederman,[14] although the nickname has been criticised by many physicists.[15][16]

Introduction[edit]

The Standard Model[edit]

Physicists explain the fundamental particles and forces of our universe in terms of the Standard Model – a widely accepted framework based on quantum field theory that predicts almost all known particles and forces other than gravity with great accuracy. (A separate theory, general relativity, is used for gravity.) In the Standard Model, the particles and forces in nature (other than gravity) arise from properties of quantum fields, known as gauge invariance and symmetries. Forces in the Standard Model are transmitted by particles known as gauge bosons.[17][18]

Gauge invariant theories and symmetries[edit]

«It is only slightly overstating the case to say that physics is the study of symmetry» – Philip Anderson, Nobel Prize Physics[19]

Gauge invariant theories are theories which have a useful feature, that some kinds of changes to the value of certain items don’t make any difference to the outcomes or the measurements we make. An example is that changing voltages in an electromagnet by +100 Volts, doesn’t cause any change to the magnetic field it produces. Similarly, measuring the speed of light in vacuum seems to give the identical result whatever the location in time and space, and whatever the local gravitational field.

In these kinds of theories, the gauge is an item whose value we can change, the fact that some changes leave the results we measure unchanged means it is a gauge invariant theory, and symmetries are the specific kinds of changes to the gauge, which have this effect of leaving measurements unchanged. (More precisely, these transformations of the gauge component do not change the energy). Symmetries of this kind are powerful tools for deep understanding of the fundamental forces and particles of our physical world, and gauge invariance is therefore an important property within particle physics theory. They are closely connected to conservation laws, and are described mathematically using group theory. Quantum field theory and the Standard Model are both gauge invariant theories – meaning they focus on properties of our universe that demonstrate this property of gauge invariance, and the symmetries which are involved.

The problem of gauge boson mass[edit]

Quantum field theories based on gauge invariance had been used with great success in understanding the electromagnetic and strong forces, but by around 1960 all attempts to create a gauge invariant theory for the weak force (and its combination with the electromagnetic force, known together as the electroweak interaction) had consistently failed, with gauge theories thereby starting to fall into disrepute as a result. The problem was that the symmetry requirements for these two forces incorrectly predicted that the weak force’s gauge bosons (W and Z) would have zero mass. But experiments showed that the W and Z gauge bosons had non-zero mass.[20]

A further problem was that many promising solutions seemed to require extra particles known as Goldstone bosons to exist. But evidence suggested these did not exist either. This meant that either gauge invariance was an incorrect approach, or something unknown was giving the weak force’s W and Z bosons their mass, and doing it in a way that did not create Goldstone bosons. By the late 1950s and early 1960s, physicists were still completely at a loss how to resolve these issues, or how to create a comprehensive theory for particle physics.

Symmetry breaking[edit]

In the late 1950s, Yoichiro Nambu recognised that spontaneous symmetry breaking, a process where a symmetric system becomes asymmetric, could occur under certain conditions.[d]
Symmetry breaking is when a change that previously didn’t change the measured results (it was originally a «symmetry») now does change the measured results (it’s now «broken» and no longer a symmetry). In 1962 physicist Philip Anderson, an expert in condensed matter physics, observed that symmetry breaking played a role in superconductivity, and suggested it could also be part of the answer to the problem of gauge invariance in particle physics.

Specifically, Anderson suggested that the Goldstone bosons that would result from symmetry breaking might instead, in some circumstances, be «absorbed» by the massless W and Z bosons. If so, perhaps the Goldstone bosons would not exist, and the W and Z bosons could gain mass, solving both problems at once. Similar behaviour was already theorised in superconductivity.[21] In 1963, this was shown to be theoretically possible by physicists Abraham Klein and Benjamin Lee, at least for some limited (non-relativistic) cases. These findings were formally published in April 1963 (Anderson) and March 1964 (Klein and Lee).

Higgs mechanism[edit]

Following the 1963 and early 1964 papers, three groups of researchers independently developed these theories more completely, in what became known as the 1964 PRL symmetry breaking papers. All three groups reached similar conclusions and for all cases, not just some limited cases. They showed that the conditions for electroweak symmetry would be «broken» if an unusual type of field existed throughout the universe, and indeed, there would be no Goldstone bosons and some existing bosons would acquire mass.

The field required for this to happen (which was purely hypothetical at the time) became known as the Higgs field (after Peter Higgs, one of the researchers) and the mechanism by which it led to symmetry breaking, known as the Higgs mechanism. A key feature of the necessary field is that it would take less energy for the field to have a non-zero value than a zero value, unlike all other known fields, therefore, the Higgs field has a non-zero value (or vacuum expectation) everywhere. This non-zero value could in theory break electroweak symmetry. It was the first proposal capable of showing how the weak force gauge bosons could have mass despite their governing symmetry, within a gauge invariant theory.

Although these ideas did not gain much initial support or attention, by 1972 they had been developed into a comprehensive theory and proved capable of giving «sensible» results that accurately described particles known at the time, and which, with exceptional accuracy, predicted several other particles discovered during the following years.[e]
During the 1970s these theories rapidly became the Standard Model of particle physics.

Higgs field[edit]

The Standard Model includes a field of the kind needed to «break» electroweak symmetry and give particles their correct mass. This field, called the «Higgs Field», exists throughout space, and it breaks some symmetry laws of the electroweak interaction, triggering the Higgs mechanism. It therefore causes the W and Z gauge bosons of the weak force to be massive at all temperatures below an extreme high value.[f]
When the weak force bosons acquire mass, this affects the distance they can freely travel, which becomes very small, also matching experimental findings.[g]
Furthermore, it was later realised that the same field would also explain, in a different way, why other fundamental constituents of matter (including electrons and quarks) have mass.

Unlike all other known fields such as the electromagnetic field, the Higgs field is a scalar field, and has a non-zero average value in vacuum.

The «central problem»[edit]

There was not yet any direct evidence that the Higgs field existed, but even without direct proof, the accuracy of its predictions led scientists to believe the theory might be true. By the 1980s, the question of whether the Higgs field existed, and therefore whether the entire Standard Model was correct, had come to be regarded as one of the most important unanswered questions in particle physics.

For many decades, scientists had no way to determine whether the Higgs field existed, because the technology needed for its detection did not exist at that time. If the Higgs field did exist, then it would be unlike any other known fundamental field, but it also was possible that these key ideas, or even the entire Standard Model, were somehow incorrect.[h]

The existence of the Higgs field became the last unverified part of the Standard Model of particle physics, and for several decades was considered «the central problem in particle physics».[23][24]

The hypothesised Higgs theory made several key predictions.[e][25]: 22  One crucial prediction was that a matching particle, called the «Higgs boson», should also exist. Proving the existence of the Higgs boson would prove whether the Higgs field existed, and therefore finally prove whether the Standard Model’s explanation was correct. Therefore, there was an extensive search for the Higgs boson, as a way to prove the Higgs field itself existed.[11][12]

Search and discovery[edit]

Although the Higgs field would exist everywhere, proving its existence was far from easy. In principle, it can be proved to exist by detecting its excitations, which manifest as Higgs particles (the Higgs boson), but these are extremely difficult to produce and detect, due to the energy required to produce them and their very rare production even if the energy is sufficient. It was therefore several decades before the first evidence of the Higgs boson could be found. Particle colliders, detectors, and computers capable of looking for Higgs bosons took more than 30 years (c. 1980~2010) to develop.

The importance of this fundamental question led to a 40-year search, and the construction of one of the world’s most expensive and complex experimental facilities to date, CERN’s Large Hadron Collider,[26]
in an attempt to create Higgs bosons and other particles for observation and study. On 4 July 2012, the discovery of a new particle with a mass between 125 and 127 GeV/c2 was announced; physicists suspected that it was the Higgs boson.[27][i]
[28][29]

Since then, the particle has been shown to behave, interact, and decay in many of the ways predicted for Higgs particles by the Standard Model, as well as having even parity and zero spin,[7][8] two fundamental attributes of a Higgs boson. This also means it is the first elementary scalar particle discovered in nature.[30]

By March 2013, the existence of the Higgs boson was confirmed, and therefore, the concept of some type of Higgs field throughout space is strongly supported.[27][29][7]

The presence of the field, now confirmed by experimental investigation, explains why some fundamental particles have mass, despite the symmetries controlling their interactions implying that they should be massless. It also resolves several other long-standing puzzles, such as the reason for the extremely short distance travelled by the weak force bosons, and therefore the weak force’s extremely short range.

As of 2018, in-depth research shows the particle continuing to behave in line with predictions for the Standard Model Higgs boson. More studies are needed to verify with higher precision that the discovered particle has all of the properties predicted, or whether, as described by some theories, multiple Higgs bosons exist.[31]

The nature and properties of this field are now being investigated further, using more data collected at the LHC.[32]

Interpretation[edit]

Various analogies have been used to describe the Higgs field and boson, including analogies with well-known symmetry-breaking effects such as the rainbow and prism, electric fields, and ripples on the surface of water.

Other analogies based on resistance of macro objects moving through media (such as people moving through crowds, or some objects moving through syrup or molasses) are commonly used but misleading, since the Higgs field does not actually resist particles, and the effect of mass is not caused by resistance.

Overview of Higgs boson and field properties[edit]

The «Mexican hat-shaped» potential of the Higgs field is responsible for some particles gaining mass.

In the Standard Model, the Higgs boson is a massive scalar boson whose mass must be found experimentally. Its mass has been determined to be 125.35±0.15 GeV/c2.[33] It is the only particle that remains massive even at very high energies. It has zero spin, even (positive) parity, no electric charge, and no colour charge, and it couples to (interacts with) mass.[13] It is also very unstable, decaying into other particles almost immediately via several possible pathways.

The Higgs field is a scalar field, with two neutral and two electrically charged components that form a complex doublet of the weak isospin SU(2) symmetry. Unlike any other known quantum field, it has a «Mexican hat-shaped» potential. This shape means that below extremely high energies of about 159.5±1.5 GeV[34] such as those seen during the first picosecond (10−12 s) of the Big Bang, the Higgs field in its ground state takes less energy to have a nonzero vacuum expectation (value) than a zero value. Therefore in today’s universe the Higgs field has a nonzero value everywhere (including otherwise empty space). This nonzero value in turn breaks the weak isospin SU(2) symmetry of the electroweak interaction everywhere. (Technically the non-zero expectation value converts the Lagrangian’s Yukawa coupling terms into mass terms.) When this happens, three components of the Higgs field are «absorbed» by the SU(2) and U(1) gauge bosons (the «Higgs mechanism») to become the longitudinal components of the now-massive W and Z bosons of the weak force. The remaining electrically neutral component either manifests as a Higgs boson, or may couple separately to other particles known as fermions (via Yukawa couplings), causing these to acquire mass as well.[35]

Significance[edit]

Evidence of the Higgs field and its properties has been extremely significant for many reasons. The importance of the Higgs boson is largely that it is able to be examined using existing knowledge and experimental technology, as a way to confirm and study the entire Higgs field theory.[11][12] Conversely, proof that the Higgs field and boson did not exist would have also been significant.

Particle physics[edit]

Validation of the Standard Model[edit]

The Higgs boson validates the Standard Model through the mechanism of mass generation. As more precise measurements of its properties are made, more advanced extensions may be suggested or excluded. As experimental means to measure the field’s behaviours and interactions are developed, this fundamental field may be better understood. If the Higgs field had not been discovered, the Standard Model would have needed to be modified or superseded.

Related to this, a belief generally exists among physicists that there is likely to be «new» physics beyond the Standard Model, and the Standard Model will at some point be extended or superseded. The Higgs discovery, as well as the many measured collisions occurring at the LHC, provide physicists a sensitive tool to search their data for any evidence that the Standard Model seems to fail, and could provide considerable evidence guiding researchers into future theoretical developments.

Symmetry breaking of the electroweak interaction[edit]

Below an extremely high temperature, electroweak symmetry breaking causes the electroweak interaction to manifest in part as the short-ranged weak force, which is carried by massive gauge bosons. In the history of the universe, electroweak symmetry breaking is believed to have happened at about 1 picosecond (10−12 s) after the Big Bang, when the universe was at a temperature 159.5±1.5 GeV/kB.[36] This symmetry breaking is required for atoms and other structures to form, as well as for nuclear reactions in stars, such as the Sun. The Higgs field is responsible for this symmetry breaking.

Particle mass acquisition[edit]

The Higgs field is pivotal in generating the masses of quarks and charged leptons (through Yukawa coupling) and the W and Z gauge bosons (through the Higgs mechanism).

It is worth noting that the Higgs field does not «create» mass out of nothing (which would violate the law of conservation of energy), nor is the Higgs field responsible for the mass of all particles. For example, approximately 99% of the mass of baryons (composite particles such as the proton and neutron), is due instead to quantum chromodynamic binding energy, which is the sum of the kinetic energies of quarks and the energies of the massless gluons mediating the strong interaction inside the baryons.[37] In Higgs-based theories, the property of «mass» is a manifestation of potential energy transferred to fundamental particles when they interact («couple») with the Higgs field, which had contained that mass in the form of energy.[38]

Scalar fields and extension of the Standard Model[edit]

The Higgs field is the only scalar (spin 0) field to be detected; all the other fields in the Standard Model are spin 12 fermions or spin 1 bosons. According to Rolf-Dieter Heuer, director general of CERN when the Higgs boson was discovered, this existence proof of a scalar field is almost as important as the Higgs’s role in determining the mass of other particles. It suggests that other hypothetical scalar fields suggested by other theories, from the inflaton to quintessence, could perhaps exist as well.[39][40]

Cosmology[edit]

Inflaton[edit]

There has been considerable scientific research on possible links between the Higgs field and the inflaton – a hypothetical field suggested as the explanation for the expansion of space during the first fraction of a second of the universe (known as the «inflationary epoch»). Some theories suggest that a fundamental scalar field might be responsible for this phenomenon; the Higgs field is such a field, and its existence has led to papers analysing whether it could also be the inflaton responsible for this exponential expansion of the universe during the Big Bang. Such theories are highly tentative and face significant problems related to unitarity, but may be viable if combined with additional features such as large non-minimal coupling, a Brans–Dicke scalar, or other «new» physics, and they have received treatments suggesting that Higgs inflation models are still of interest theoretically.

Nature of the universe, and its possible fates[edit]

Diagram showing the Higgs boson and top quark masses, which could indicate whether our universe is stable, or a long-lived ‘bubble’. As of 2012, the 2 σ ellipse based on Tevatron and LHC data still allows for both possibilities.[41]

In the Standard Model, there exists the possibility that the underlying state of our universe – known as the «vacuum» – is long-lived, but not completely stable. In this scenario, the universe as we know it could effectively be destroyed by collapsing into a more stable vacuum state.[42][43][44][45][46] This was sometimes misreported as the Higgs boson «ending» the universe.[j] If the masses of the Higgs boson and top quark are known more precisely, and the Standard Model provides an accurate description of particle physics up to extreme energies of the Planck scale, then it is possible to calculate whether the vacuum is stable or merely long-lived.[49][50][51] A Higgs mass of 125–127 GeV/c2 seems to be extremely close to the boundary for stability, but a definitive answer requires much more precise measurements of the pole mass of the top quark.[41] New physics can change this picture.[52]

If measurements of the Higgs boson suggest that our universe lies within a false vacuum of this kind, then it would imply – more than likely in many billions of years[53][k] – that the universe’s forces, particles, and structures could cease to exist as we know them (and be replaced by different ones), if a true vacuum happened to nucleate.[53][l] It also suggests that the Higgs self-coupling λ and its βλ function could be very close to zero at the Planck scale, with «intriguing» implications, including theories of gravity and Higgs-based inflation.[41]: 218 [55][56] A future electron–positron collider would be able to provide the precise measurements of the top quark needed for such calculations.[41]

Vacuum energy and the cosmological constant[edit]

More speculatively, the Higgs field has also been proposed as the energy of the vacuum, which at the extreme energies of the first moments of the Big Bang caused the universe to be a kind of featureless symmetry of undifferentiated, extremely high energy. In this kind of speculation, the single unified field of a Grand Unified Theory is identified as (or modelled upon) the Higgs field, and it is through successive symmetry breakings of the Higgs field, or some similar field, at phase transitions that the presently known forces and fields of the universe arise.[57]

The relationship (if any) between the Higgs field and the presently observed vacuum energy density of the universe has also come under scientific study. As observed, the present vacuum energy density is extremely close to zero, but the energy densities predicted from the Higgs field, supersymmetry, and other current theories are typically many orders of magnitude larger. It is unclear how these should be reconciled. This cosmological constant problem remains a major unanswered problem in physics.

History[edit]

Theorisation[edit]

Particle physicists study matter made from fundamental particles whose interactions are mediated by exchange particles – gauge bosons – acting as force carriers. At the beginning of the 1960s a number of these particles had been discovered or proposed, along with theories suggesting how they relate to each other, some of which had already been reformulated as field theories in which the objects of study are not particles and forces, but quantum fields and their symmetries.[58]: 150  However, attempts to produce quantum field models for two of the four known fundamental forces – the electromagnetic force and the weak nuclear force – and then to unify these interactions, were still unsuccessful.

One known problem was that gauge invariant approaches, including non-abelian models such as Yang–Mills theory (1954), which held great promise for unified theories, also seemed to predict known massive particles as massless.[21] Goldstone’s theorem, relating to continuous symmetries within some theories, also appeared to rule out many obvious solutions,[59] since it appeared to show that zero-mass particles known as Goldstone bosons would also have to exist that simply were «not seen».[60] According to Guralnik, physicists had «no understanding» how these problems could be overcome.[60]

Nobel Prize Laureate Peter Higgs in Stockholm, December 2013

Particle physicist and mathematician Peter Woit summarised the state of research at the time:

Yang and Mills work on non-abelian gauge theory had one huge problem: in perturbation theory it has massless particles which don’t correspond to anything we see. One way of getting rid of this problem is now fairly well understood, the phenomenon of confinement realized in QCD, where the strong interactions get rid of the massless «gluon» states at long distances. By the very early sixties, people had begun to understand another source of massless particles: spontaneous symmetry breaking of a continuous symmetry. What Philip Anderson realized and worked out in the summer of 1962 was that, when you have both gauge symmetry and spontaneous symmetry breaking, the massless Nambu–Goldstone mode [which give rise to Goldstone bosons] can combine with the massless gauge field modes [which give rise to massless gauge bosons] to produce a physical massive vector field [gauge bosons with mass]. This is what happens in superconductivity, a subject about which Anderson was (and is) one of the leading experts.[21] [text condensed]

The Higgs mechanism is a process by which vector bosons can acquire rest mass without explicitly breaking gauge invariance, as a byproduct of spontaneous symmetry breaking.[61][62] Initially, the mathematical theory behind spontaneous symmetry breaking was conceived and published within particle physics by Yoichiro Nambu in 1960[63] (and somewhat anticipated by Ernst Stueckelberg in 1938[64]), and the concept that such a mechanism could offer a possible solution for the «mass problem» was originally suggested in 1962 by Philip Anderson, who had previously written papers on broken symmetry and its outcomes in superconductivity.[65] Anderson concluded in his 1963 paper on the Yang–Mills theory, that «considering the superconducting analog… [t]hese two types of bosons seem capable of canceling each other out… leaving finite mass bosons»),[66][67] and in March 1964, Abraham Klein and Benjamin Lee showed that Goldstone’s theorem could be avoided this way in at least some non-relativistic cases, and speculated it might be possible in truly relativistic cases.[68]

These approaches were quickly developed into a full relativistic model, independently and almost simultaneously, by three groups of physicists: by François Englert and Robert Brout in August 1964;[69] by Peter Higgs in October 1964;[70] and by Gerald Guralnik, Carl Hagen, and Tom Kibble (GHK) in November 1964.[71] Higgs also wrote a short, but important,[61] response published in September 1964 to an objection by Gilbert,[72] which showed that if calculating within the radiation gauge, Goldstone’s theorem and Gilbert’s objection would become inapplicable.[m] Higgs later described Gilbert’s objection as prompting his own paper.[73] Properties of the model were further considered by Guralnik in 1965,[74] by Higgs in 1966,[75] by Kibble in 1967,[76] and further by GHK in 1967.[77] The original three 1964 papers demonstrated that when a gauge theory is combined with an additional charged scalar field that spontaneously breaks the symmetry, the gauge bosons may consistently acquire a finite mass.[61][62][78]
In 1967, Steven Weinberg[79]
and Abdus Salam[80]
independently showed how a Higgs mechanism could be used to break the electroweak symmetry of Sheldon Glashow’s unified model for the weak and electromagnetic interactions,[81]
(itself an extension of work by Schwinger), forming what became the Standard Model of particle physics. Weinberg was the first to observe that this would also provide mass terms for the fermions.[82][n]

At first, these seminal papers on spontaneous breaking of gauge symmetries were largely ignored, because it was widely believed that the (non-Abelian gauge) theories in question were a dead-end, and in particular that they could not be renormalised. In 1971–72, Martinus Veltman and Gerard ‘t Hooft proved renormalisation of Yang–Mills was possible in two papers covering massless, and then massive, fields.[82] Their contribution, and the work of others on the renormalisation group – including «substantial» theoretical work by Russian physicists Ludvig Faddeev, Andrei Slavnov, Efim Fradkin, and Igor Tyutin[83] – was eventually «enormously profound and influential»,[84] but even with all key elements of the eventual theory published there was still almost no wider interest. For example, Coleman found in a study that «essentially no-one paid any attention» to Weinberg’s paper prior to 1971[85] and discussed by David Politzer in his 2004 Nobel speech.[84] – now the most cited in particle physics[86] – and even in 1970 according to Politzer, Glashow’s teaching of the weak interaction contained no mention of Weinberg’s, Salam’s, or Glashow’s own work.[84] In practice, Politzer states, almost everyone learned of the theory due to physicist Benjamin Lee, who combined the work of Veltman and ‘t Hooft with insights by others, and popularised the completed theory.[84] In this way, from 1971, interest and acceptance «exploded»[84] and the ideas were quickly absorbed in the mainstream.[82][84]

The resulting electroweak theory and Standard Model have accurately predicted (among other things) weak neutral currents, three bosons, the top and charm quarks, and with great precision, the mass and other properties of some of these.[e] Many of those involved eventually won Nobel Prizes or other renowned awards. A 1974 paper and comprehensive review in Reviews of Modern Physics commented that «while no one doubted the [mathematical] correctness of these arguments, no one quite believed that nature was diabolically clever enough to take advantage of them»,[87] adding that the theory had so far produced accurate answers that accorded with experiment, but it was unknown whether the theory was fundamentally correct.[88] By 1986 and again in the 1990s it became possible to write that understanding and proving the Higgs sector of the Standard Model was «the central problem today in particle physics».[23][24]

Summary and impact of the PRL papers[edit]

The three papers written in 1964 were each recognised as milestone papers during Physical Review Letters‘s 50th anniversary celebration.[78] Their six authors were also awarded the 2010 J. J. Sakurai Prize for Theoretical Particle Physics for this work.[89] (A controversy also arose the same year, because in the event of a Nobel Prize only up to three scientists could be recognised, with six being credited for the papers.[90]) Two of the three PRL papers (by Higgs and by GHK) contained equations for the hypothetical field that eventually would become known as the Higgs field and its hypothetical quantum, the Higgs boson.[70][71] Higgs’ subsequent 1966 paper showed the decay mechanism of the boson; only a massive boson can decay and the decays can prove the mechanism.[citation needed]

In the paper by Higgs the boson is massive, and in a closing sentence Higgs writes that «an essential feature» of the theory «is the prediction of incomplete multiplets of scalar and vector bosons».[70] (Frank Close comments that 1960s gauge theorists were focused on the problem of massless vector bosons, and the implied existence of a massive scalar boson was not seen as important; only Higgs directly addressed it.[91]: 154, 166, 175 ) In the paper by GHK the boson is massless and decoupled from the massive states.[71] In reviews dated 2009 and 2011, Guralnik states that in the GHK model the boson is massless only in a lowest-order approximation, but it is not subject to any constraint and acquires mass at higher orders, and adds that the GHK paper was the only one to show that there are no massless Goldstone bosons in the model and to give a complete analysis of the general Higgs mechanism.[60][92] All three reached similar conclusions, despite their very different approaches: Higgs’ paper essentially used classical techniques, Englert and Brout’s involved calculating vacuum polarisation in perturbation theory around an assumed symmetry-breaking vacuum state, and GHK used operator formalism and conservation laws to explore in depth the ways in which Goldstone’s theorem may be worked around.[61] Some versions of the theory predicted more than one kind of Higgs fields and bosons, and alternative «Higgsless» models were considered until the discovery of the Higgs boson.

Experimental search[edit]

To produce Higgs bosons, two beams of particles are accelerated to very high energies and allowed to collide within a particle detector. Occasionally, although rarely, a Higgs boson will be created fleetingly as part of the collision byproducts. Because the Higgs boson decays very quickly, particle detectors cannot detect it directly. Instead the detectors register all the decay products (the decay signature) and from the data the decay process is reconstructed. If the observed decay products match a possible decay process (known as a decay channel) of a Higgs boson, this indicates that a Higgs boson may have been created. In practice, many processes may produce similar decay signatures. Fortunately, the Standard Model precisely predicts the likelihood of each of these, and each known process, occurring. So, if the detector detects more decay signatures consistently matching a Higgs boson than would otherwise be expected if Higgs bosons did not exist, then this would be strong evidence that the Higgs boson exists.

Because Higgs boson production in a particle collision is likely to be very rare (1 in 10 billion at the LHC),[o]
and many other possible collision events can have similar decay signatures, the data of hundreds of trillions of collisions needs to be analysed and must «show the same picture» before a conclusion about the existence of the Higgs boson can be reached. To conclude that a new particle has been found, particle physicists require that the statistical analysis of two independent particle detectors each indicate that there is lesser than a one-in-a-million chance that the observed decay signatures are due to just background random Standard Model events – i.e., that the observed number of events is more than five standard deviations (sigma) different from that expected if there was no new particle. More collision data allows better confirmation of the physical properties of any new particle observed, and allows physicists to decide whether it is indeed a Higgs boson as described by the Standard Model or some other hypothetical new particle.

To find the Higgs boson, a powerful particle accelerator was needed, because Higgs bosons might not be seen in lower-energy experiments. The collider needed to have a high luminosity in order to ensure enough collisions were seen for conclusions to be drawn. Finally, advanced computing facilities were needed to process the vast amount of data (25 petabytes per year as of 2012) produced by the collisions.[95] For the announcement of 4 July 2012, a new collider known as the Large Hadron Collider was constructed at CERN with a planned eventual collision energy of 14 TeV – over seven times any previous collider – and over 300 trillion (3×10+14) LHC proton–proton collisions were analysed by the LHC Computing Grid, the world’s largest computing grid (as of 2012), comprising over 170 computing facilities in a worldwide network across 36 countries.[95][96][97]

Search before 4 July 2012[edit]

The first extensive search for the Higgs boson was conducted at the Large Electron–Positron Collider (LEP) at CERN in the 1990s. At the end of its service in 2000, LEP had found no conclusive evidence for the Higgs.[p]
This implied that if the Higgs boson were to exist it would have to be heavier than 114.4 GeV/c2.[98]

The search continued at Fermilab in the United States, where the Tevatron – the collider that discovered the top quark in 1995 – had been upgraded for this purpose. There was no guarantee that the Tevatron would be able to find the Higgs, but it was the only supercollider that was operational since the Large Hadron Collider (LHC) was still under construction and the planned Superconducting Super Collider had been cancelled in 1993 and never completed. The Tevatron was only able to exclude further ranges for the Higgs mass, and was shut down on 30 September 2011 because it no longer could keep up with the LHC. The final analysis of the data excluded the possibility of a Higgs boson with a mass between 147 GeV/c2 and 180 GeV/c2. In addition, there was a small (but not significant) excess of events possibly indicating a Higgs boson with a mass between 115 GeV/c2 and 140 GeV/c2.[99]

The Large Hadron Collider at CERN in Switzerland, was designed specifically to be able to either confirm or exclude the existence of the Higgs boson. Built in a 27 km tunnel under the ground near Geneva originally inhabited by LEP, it was designed to collide two beams of protons, initially at energies of 3.5 TeV per beam (7 TeV total), or almost 3.6 times that of the Tevatron, and upgradeable to 2 × 7 TeV (14 TeV total) in future. Theory suggested if the Higgs boson existed, collisions at these energy levels should be able to reveal it. As one of the most complicated scientific instruments ever built, its operational readiness was delayed for 14 months by a magnet quench event nine days after its inaugural tests, caused by a faulty electrical connection that damaged over 50 superconducting magnets and contaminated the vacuum system.[100][101][102]

Data collection at the LHC finally commenced in March 2010.[103] By December 2011 the two main particle detectors at the LHC, ATLAS and CMS, had narrowed down the mass range where the Higgs could exist to around 116–130 GeV/c2 (ATLAS) and 115–127 GeV/c2 (CMS).[104][105] There had also already been a number of promising event excesses that had «evaporated» and proven to be nothing but random fluctuations. However, from around May 2011,[106] both experiments had seen among their results, the slow emergence of a small yet consistent excess of gamma and 4-lepton decay signatures and several other particle decays, all hinting at a new particle at a mass around 125 GeV/c2.[106] By around November 2011, the anomalous data at 125 GeV/c2 was becoming «too large to ignore» (although still far from conclusive), and the team leaders at both ATLAS and CMS each privately suspected they might have found the Higgs.[106] On 28 November 2011, at an internal meeting of the two team leaders and the director general of CERN, the latest analyses were discussed outside their teams for the first time, suggesting both ATLAS and CMS might be converging on a possible shared result at 125 GeV/c2, and initial preparations commenced in case of a successful finding.[106] While this information was not known publicly at the time, the narrowing of the possible Higgs range to around 115–130 GeV/2 and the repeated observation of small but consistent event excesses across multiple channels at both ATLAS and CMS in the 124–126 GeV/c2 region (described as «tantalising hints» of around 2–3 sigma) were public knowledge with «a lot of interest».[107] It was therefore widely anticipated around the end of 2011, that the LHC would provide sufficient data to either exclude or confirm the finding of a Higgs boson by the end of 2012, when their 2012 collision data (with slightly higher 8 TeV collision energy) had been examined.[107][108]

Discovery of candidate boson at CERN[edit]

On 22 June 2012 CERN announced an upcoming seminar covering tentative findings for 2012,[112][113] and shortly afterwards (from around 1 July 2012 according to an analysis of the spreading rumour in social media[114]) rumours began to spread in the media that this would include a major announcement, but it was unclear whether this would be a stronger signal or a formal discovery.[115][116] Speculation escalated to a «fevered» pitch when reports emerged that Peter Higgs, who proposed the particle, was to be attending the seminar,[117][118] and that «five leading physicists» had been invited – generally believed to signify the five living 1964 authors – with Higgs, Englert, Guralnik, Hagen attending and Kibble confirming his invitation (Brout having died in 2011).[119]

On 4 July 2012 both of the CERN experiments announced they had independently made the same discovery:[120] CMS of a previously unknown boson with mass 125.3±0.6 GeV/c2[121][122] and ATLAS of a boson with mass 126.0±0.6 GeV/c2.[123][124] Using the combined analysis of two interaction types (known as ‘channels’), both experiments independently reached a local significance of 5 sigma – implying that the probability of getting at least as strong a result by chance alone is less than one in three million. When additional channels were taken into account, the CMS significance was reduced to 4.9 sigma.[122]

The two teams had been working ‘blinded’ from each other from around late 2011 or early 2012,[106] meaning they did not discuss their results with each other, providing additional certainty that any common finding was genuine validation of a particle.[95] This level of evidence, confirmed independently by two separate teams and experiments, meets the formal level of proof required to announce a confirmed discovery.

On 31 July 2012, the ATLAS collaboration presented additional data analysis on the «observation of a new particle», including data from a third channel, which improved the significance to 5.9 sigma (1 in 588 million chance of obtaining at least as strong evidence by random background effects alone) and mass 126.0 ± 0.4 (stat) ± 0.4 (sys) GeV/c2,[124] and CMS improved the significance to 5-sigma and mass 125.3 ± 0.4 (stat) ± 0.5 (sys) GeV/c2.[121]

The new particle tested as a possible Higgs boson[edit]

Following the 2012 discovery, it was still unconfirmed whether the 125 GeV/c2 particle was a Higgs boson. On one hand, observations remained consistent with the observed particle being the Standard Model Higgs boson, and the particle decayed into at least some of the predicted channels. Moreover, the production rates and branching ratios for the observed channels broadly matched the predictions by the Standard Model within the experimental uncertainties. However, the experimental uncertainties currently still left room for alternative explanations, meaning an announcement of the discovery of a Higgs boson would have been premature.[125] To allow more opportunity for data collection, the LHC’s proposed 2012 shutdown and 2013–14 upgrade were postponed by seven weeks into 2013.[126]

In November 2012, in a conference in Kyoto researchers said evidence gathered since July was falling into line with the basic Standard Model more than its alternatives, with a range of results for several interactions matching that theory’s predictions.[127] Physicist Matt Strassler highlighted «considerable» evidence that the new particle is not a pseudoscalar negative parity particle (consistent with this required finding for a Higgs boson), «evaporation» or lack of increased significance for previous hints of non-Standard Model findings, expected Standard Model interactions with W and Z bosons, absence of «significant new implications» for or against supersymmetry, and in general no significant deviations to date from the results expected of a Standard Model Higgs boson.[q] However some kinds of extensions to the Standard Model would also show very similar results;[129] so commentators noted that based on other particles that are still being understood long after their discovery, it may take years to be sure, and decades to fully understand the particle that has been found.[127][q]

These findings meant that as of January 2013, scientists were very sure they had found an unknown particle of mass ~125 GeV/c2, and had not been misled by experimental error or a chance result. They were also sure, from initial observations, that the new particle was some kind of boson. The behaviours and properties of the particle, so far as examined since July 2012, also seemed quite close to the behaviours expected of a Higgs boson. Even so, it could still have been a Higgs boson or some other unknown boson, since future tests could show behaviours that do not match a Higgs boson, so as of December 2012 CERN still only stated that the new particle was «consistent with» the Higgs boson,[27][29] and scientists did not yet positively say it was the Higgs boson.[130] Despite this, in late 2012, widespread media reports announced (incorrectly) that a Higgs boson had been confirmed during the year.[136]

In January 2013, CERN director-general Rolf-Dieter Heuer stated that based on data analysis to date, an answer could be possible ‘towards’ mid-2013,[137] and the deputy chair of physics at Brookhaven National Laboratory stated in February 2013 that a «definitive» answer might require «another few years» after the collider’s 2015 restart.[138] In early March 2013, CERN Research Director Sergio Bertolucci stated that confirming spin-0 was the major remaining requirement to determine whether the particle is at least some kind of Higgs boson.[139]

Confirmation of existence and current status[edit]

On 14 March 2013 CERN confirmed the following:

CMS and ATLAS have compared a number of options for the spin-parity of this particle, and these all prefer no spin and even parity [two fundamental criteria of a Higgs boson consistent with the Standard Model]. This, coupled with the measured interactions of the new particle with other particles, strongly indicates that it is a Higgs boson.[7]

This also makes the particle the first elementary scalar particle to be discovered in nature.[30]

The following are examples of tests used to confirm that the discovered particle is the Higgs boson:[q][13]

Requirement How tested / explanation Current status (As of July 2017)
Zero spin Examining decay patterns. Spin-1 had been ruled out at the time of initial discovery by the observed decay to two photons (γ γ), leaving spin-0 and spin-2 as remaining candidates. Spin-0 confirmed.[8][7][140][141] The spin-2 hypothesis is excluded with a confidence level exceeding 99.9%.[141]
Even (Positive) parity Studying the angles at which decay products fly apart. Negative parity was also disfavoured if spin-0 was confirmed.[142] Even parity tentatively confirmed.[7][140][141] The spin-0 negative parity hypothesis is excluded with a confidence level exceeding 99.9%.[140][8]
Decay channels (outcomes of particle decaying) are as predicted The Standard Model predicts the decay patterns of a 125 GeV/c2 Higgs boson. Are these all being seen, and at the right rates?

Particularly significant, we should observe decays into pairs of photons (γ γ), W and Z bosons (WW and ZZ), bottom quarks (bb), and tau leptons (τ τ), among the possible outcomes.

bb, γ γ, τ τ, WW and ZZ observed. All observed signal strengths are consistent with the Standard Model prediction.[143][32]
Couples to mass (i.e., strength of interaction with Standard Model particles proportional to their mass) Particle physicist Adam Falkowski states that the essential qualities of a Higgs boson are that it is a spin-0 (scalar) particle which also couples to mass (W and Z bosons); proving spin-0 alone is insufficient.[13] Couplings to mass strongly evidenced («At 95% confidence level cV is within 15% of the standard model value cV=1″).[13]
Higher energy results remain consistent After the LHC’s 2015 restart at the higher energy of 13 TeV, searches for multiple Higgs particles (as predicted in some theories) and tests targeting other versions of particle theory continued. These higher energy results must continue to give results consistent with Higgs theories. Analysis of collisions up to July 2017 do not show deviations from the Standard Model, with experimental precisions better than results at lower energies.[32]

Findings since 2013[edit]

In July 2017, CERN confirmed that all measurements still agree with the predictions of the Standard Model, and called the discovered particle simply «the Higgs boson».[32] As of 2019, the Large Hadron Collider has continued to produce findings that confirm the 2013 understanding of the Higgs field and particle.[146][147]

The LHC’s experimental work since restarting in 2015 has included probing the Higgs field and boson to a greater level of detail, and confirming whether less common predictions were correct. In particular, exploration since 2015 has provided strong evidence of the predicted direct decay into fermions such as pairs of bottom quarks (3.6 σ) – described as an «important milestone» in understanding its short lifetime and other rare decays – and also to confirm decay into pairs of tau leptons (5.9 σ). This was described by CERN as being «of paramount importance to establishing the coupling of the Higgs boson to leptons and represents an important step towards measuring its couplings to third generation fermions, the very heavy copies of the electrons and quarks, whose role in nature is a profound mystery».[32] Published results as of 19 March 2018 at 13 TeV for ATLAS and CMS had their measurements of the Higgs mass at 124.98±0.28 GeV/c2 and 125.26±0.21 GeV/c2 respectively.

In July 2018, the ATLAS and CMS experiments reported observing the Higgs boson decay into a pair of bottom quarks, which makes up approximately 60% of all of its decays.[148][149][150]

Theoretical issues[edit]

Theoretical need for the Higgs[edit]

«Symmetry breaking illustrated»: – At high energy levels (left) the ball settles in the centre, and the result is symmetrical. At lower energy levels (right), the overall «rules» remain symmetrical, but the «Mexican hat» potential comes into effect: «local» symmetry inevitably becomes broken since eventually the ball must at random roll one way or another.

Gauge invariance is an important property of modern particle theories such as the Standard Model, partly due to its success in other areas of fundamental physics such as electromagnetism and the strong interaction (quantum chromodynamics). However, before Sheldon Glashow extended the electroweak unification models in 1961, there were great difficulties in developing gauge theories for the weak nuclear force or a possible unified electroweak interaction. Fermions with a mass term would violate gauge symmetry and therefore cannot be gauge invariant. (This can be seen by examining the Dirac Lagrangian for a fermion in terms of left and right handed components; we find none of the spin-half particles could ever flip helicity as required for mass, so they must be massless.[r])
W and Z bosons are observed to have mass, but a boson mass term contains terms which clearly depend on the choice of gauge, and therefore these masses too cannot be gauge invariant. Therefore, it seems that none of the standard model fermions or bosons could «begin» with mass as an inbuilt property except by abandoning gauge invariance. If gauge invariance were to be retained, then these particles had to be acquiring their mass by some other mechanism or interaction.

Additionally, solutions based on spontaneous symmetry breaking appeared to fail, seemingly an inevitable result of Goldstone’s theorem. Because there is no potential energy cost to moving around the complex plane’s «circular valley» responsible for spontaneous symmetry breaking, the resulting quantum excitation is pure kinetic energy, and therefore a massless boson («Goldstone boson»), which in turn implies a new long range force. But no new long range forces or massless particles were detected either. So whatever was giving these particles their mass had to not «break» gauge invariance as the basis for other parts of the theories where it worked well, and had to not require or predict unexpected massless particles or long-range forces which did not actually seem to exist in nature.

A solution to all of these overlapping problems came from the discovery of a previously unnoticed borderline case hidden in the mathematics of Goldstone’s theorem,[m]
that under certain conditions it might theoretically be possible for a symmetry to be broken without disrupting gauge invariance and without any new massless particles or forces, and having «sensible» (renormalisable) results mathematically. This became known as the Higgs mechanism.

The Standard Model hypothesises a field which is responsible for this effect, called the Higgs field (symbol: phi ), which has the unusual property of a non-zero amplitude in its ground state; i.e., a non-zero vacuum expectation value. It can have this effect because of its unusual «Mexican hat» shaped potential whose lowest «point» is not at its «centre». In simple terms, unlike all other known fields, the Higgs field requires less energy to have a non-zero value than a zero value, so it ends up having a non-zero value everywhere. Below a certain extremely high energy level the existence of this non-zero vacuum expectation spontaneously breaks electroweak gauge symmetry which in turn gives rise to the Higgs mechanism and triggers the acquisition of mass by those particles interacting with the field. This effect occurs because scalar field components of the Higgs field are «absorbed» by the massive bosons as degrees of freedom, and couple to the fermions via Yukawa coupling, thereby producing the expected mass terms. When symmetry breaks under these conditions, the Goldstone bosons that arise interact with the Higgs field (and with other particles capable of interacting with the Higgs field) instead of becoming new massless particles. The intractable problems of both underlying theories «neutralise» each other, and the residual outcome is that elementary particles acquire a consistent mass based on how strongly they interact with the Higgs field. It is the simplest known process capable of giving mass to the gauge bosons while remaining compatible with gauge theories.[151] Its quantum would be a scalar boson, known as the Higgs boson.[152]

Simple explanation of the theory, from its origins in superconductivity[edit]

The proposed Higgs mechanism arose as a result of theories proposed to explain observations in superconductivity. A superconductor does not allow penetration by external magnetic fields (the Meissner effect). This strange observation implies that somehow, the electromagnetic field becomes short ranged during this phenomenon. Successful theories arose to explain this during the 1950s, first for fermions (Ginzburg–Landau theory, 1950), and then for bosons (BCS theory, 1957).

In these theories, superconductivity is interpreted as arising from a charged condensate field. Initially, the condensate value does not have any preferred direction, implying it is scalar, but its phase is capable of defining a gauge, in gauge based field theories. To do this, the field must be charged. A charged scalar field must also be complex (or described another way, it contains at least two components, and a symmetry capable of rotating each into the other(s)). In naïve gauge theory, a gauge transformation of a condensate usually rotates the phase. But in these circumstances, it instead fixes a preferred choice of phase. However it turns out that fixing the choice of gauge so that the condensate has the same phase everywhere, also causes the electromagnetic field to gain an extra term. This extra term causes the electromagnetic field to become short range.

Once attention was drawn to this theory within particle physics, the parallels were clear. A change of the usually long range electromagnetic field to become short ranged, within a gauge invariant theory, was exactly the needed effect sought for the weak force bosons (because a long range force has massless gauge bosons, and a short ranged force implies massive gauge bosons, suggesting that a result of this interaction is that the field’s gauge bosons acquired mass, or a similar and equivalent effect). The features of a field required to do this was also quite well defined – it would have to be a charged scalar field, with at least two components, and complex in order to support a symmetry able to rotate these into each other.[s]

Alternative models[edit]

The Minimal Standard Model as described above is the simplest known model for the Higgs mechanism with just one Higgs field. However, an extended Higgs sector with additional Higgs particle doublets or triplets is also possible, and many extensions of the Standard Model have this feature. The non-minimal Higgs sector favoured by theory are the two-Higgs-doublet models (2HDM), which predict the existence of a quintet of scalar particles: two CP-even neutral Higgs bosons h0 and H0, a CP-odd neutral Higgs boson A0, and two charged Higgs particles H±. Supersymmetry («SUSY») also predicts relations between the Higgs-boson masses and the masses of the gauge bosons, and could accommodate a 125 GeV/c2 neutral Higgs boson.

The key method to distinguish between these different models involves study of the particles’ interactions («coupling») and exact decay processes («branching ratios»), which can be measured and tested experimentally in particle collisions. In the Type-I 2HDM model one Higgs doublet couples to up and down quarks, while the second doublet does not couple to quarks. This model has two interesting limits, in which the lightest Higgs couples to just fermions («gauge-phobic») or just gauge bosons («fermiophobic»), but not both. In the Type-II 2HDM model, one Higgs doublet only couples to up-type quarks, the other only couples to down-type quarks.[153] The heavily researched Minimal Supersymmetric Standard Model (MSSM) includes a Type-II 2HDM Higgs sector, so it could be disproven by evidence of a Type-I 2HDM Higgs.[citation needed]

In other models the Higgs scalar is a composite particle. For example, in technicolour the role of the Higgs field is played by strongly bound pairs of fermions called techniquarks. Other models feature pairs of top quarks (see top quark condensate). In yet other models, there is no Higgs field at all and the electroweak symmetry is broken using extra dimensions.[154][155]

Further theoretical issues and hierarchy problem[edit]

A one-loop Feynman diagram of the first-order correction to the Higgs mass. In the Standard Model the effects of these corrections are potentially enormous, giving rise to the so-called hierarchy problem.

The Standard Model leaves the mass of the Higgs boson as a parameter to be measured, rather than a value to be calculated. This is seen as theoretically unsatisfactory, particularly as quantum corrections (related to interactions with virtual particles) should apparently cause the Higgs particle to have a mass immensely higher than that observed, but at the same time the Standard Model requires a mass of the order of 100 to 1000 GeV/c2 to ensure unitarity (in this case, to unitarise longitudinal vector boson scattering).[156] Reconciling these points appears to require explaining why there is an almost-perfect cancellation resulting in the visible mass of ~ 125 GeV/c2, and it is not clear how to do this. Because the weak force is about 1032 times stronger than gravity, and (linked to this) the Higgs boson’s mass is so much less than the Planck mass or the grand unification energy, it appears that either there is some underlying connection or reason for these observations which is unknown and not described by the Standard Model, or some unexplained and extremely precise fine-tuning of parameters – however at present neither of these explanations is proven. This is known as a hierarchy problem.[157] More broadly, the hierarchy problem amounts to the worry that a future theory of fundamental particles and interactions should not have excessive fine-tunings or unduly delicate cancellations, and should allow masses of particles such as the Higgs boson to be calculable. The problem is in some ways unique to spin-0 particles (such as the Higgs boson), which can give rise to issues related to quantum corrections that do not affect particles with spin.[156] A number of solutions have been proposed, including supersymmetry, conformal solutions and solutions via extra dimensions such as braneworld models.

There are also issues of quantum triviality, which suggests that it may not be possible to create a consistent quantum field theory involving elementary scalar particles.[158] However, if quantum triviality is avoided, triviality constraints may set bounds on the Higgs Boson mass.

Properties[edit]

Properties of the Higgs field[edit]

In the Standard Model, the Higgs field is a scalar tachyonic field – scalar meaning it does not transform under Lorentz transformations, and tachyonic meaning the field (but not the particle) has imaginary mass, and in certain configurations must undergo symmetry breaking. It consists of four components: Two neutral ones and two charged component fields. Both of the charged components and one of the neutral fields are Goldstone bosons, which act as the longitudinal third-polarisation components of the massive W+, W, and Z bosons. The quantum of the remaining neutral component corresponds to (and is theoretically realised as) the massive Higgs boson.[159] This component can interact with fermions via Yukawa coupling to give them mass as well.

Mathematically, the Higgs field has imaginary mass and is therefore a tachyonic field.[t] While tachyons (particles that move faster than light) are a purely hypothetical concept, fields with imaginary mass have come to play an important role in modern physics.[161][162] Under no circumstances do any excitations ever propagate faster than light in such theories – the presence or absence of a tachyonic mass has no effect whatsoever on the maximum velocity of signals (there is no violation of causality).[163] Instead of faster-than-light particles, the imaginary mass creates an instability: Any configuration in which one or more field excitations are tachyonic must spontaneously decay, and the resulting configuration contains no physical tachyons. This process is known as tachyon condensation, and is now believed to be the explanation for how the Higgs mechanism itself arises in nature, and therefore the reason behind electroweak symmetry breaking.

Although the notion of imaginary mass might seem troubling, it is only the field, and not the mass itself, that is quantised. Therefore, the field operators at spacelike separated points still commute (or anticommute), and information and particles still do not propagate faster than light.[164] Tachyon condensation drives a physical system that has reached a local limit – and might naively be expected to produce physical tachyons – to an alternate stable state where no physical tachyons exist. Once a tachyonic field such as the Higgs field reaches the minimum of the potential, its quanta are not tachyons any more but rather are ordinary particles such as the Higgs boson.[165]

Properties of the Higgs boson[edit]

This section needs to be updated. The reason given is: With the Higgs boson now empirically confirmed, the paragraphs on the mass should be rephrased to make it clear that they are about what could be predicted before that observation. Please help update this article to reflect recent events or newly available information. (July 2018)

Since the Higgs field is scalar, the Higgs boson has no spin. The Higgs boson is also its own antiparticle, is CP-even, and has zero electric and colour charge.[166]

The Standard Model does not predict the mass of the Higgs boson.[167] If that mass is between 115 and 180 GeV/c2 (consistent with empirical observations of 125 GeV/c2), then the Standard Model can be valid at energy scales all the way up to the Planck scale (1019 GeV/c2).[168] It should be the only particle in the Standard Model that remains massive even at high energies. Many theorists expect new physics beyond the Standard Model to emerge at the TeV-scale, based on unsatisfactory properties of the Standard Model.[169]
The highest possible mass scale allowed for the Higgs boson (or some other electroweak symmetry breaking mechanism) is 1.4 TeV; beyond this point, the Standard Model becomes inconsistent without such a mechanism, because unitarity is violated in certain scattering processes.[170]

It is also possible, although experimentally difficult, to estimate the mass of the Higgs boson indirectly: In the Standard Model, the Higgs boson has a number of indirect effects; most notably, Higgs loops result in tiny corrections to masses of the W and Z bosons. Precision measurements of electroweak parameters, such as the Fermi constant and masses of the W and Z bosons, can be used to calculate constraints on the mass of the Higgs. As of July 2011, the precision electroweak measurements tell us that the mass of the Higgs boson is likely to be less than about 161 GeV/c2 at 95% confidence level.[u] These indirect constraints rely on the assumption that the Standard Model is correct. It may still be possible to discover a Higgs boson above these masses, if it is accompanied by other particles beyond those accommodated by the Standard Model.[172]

The LHC cannot directly measure the Higgs boson’s lifetime, due to its extreme brevity. It is predicted as 1.56×10−22 s based on the predicted decay width of 4.07×10−3 GeV.[2] However it can be measured indirectly, based upon comparing masses measured from quantum phenomena occurring in the on shell production pathways and in the, much rarer, off shell production pathways, derived from Dalitz decay via a virtual photon (H→γ*γ→ℓℓγ). Using this technique, the lifetime of the Higgs boson was tentatively measured in 2021 as 1.2 — 4.6 x 10−22 s, at sigma 3.2 (1 in 1000) significance.[3][4]

Production[edit]

Feynman diagrams for Higgs production

Gluon fusion
Gluon fusion
Higgs Strahlung
Higgs Strahlung
Vector boson fusion
Vector boson fusion
Top fusion
Top fusion

If Higgs particle theories are valid, then a Higgs particle can be produced much like other particles that are studied, in a particle collider. This involves accelerating a large number of particles to extremely high energies and extremely close to the speed of light, then allowing them to smash together. Protons and lead ions (the bare nuclei of lead atoms) are used at the LHC. In the extreme energies of these collisions, the desired esoteric particles will occasionally be produced and this can be detected and studied; any absence or difference from theoretical expectations can also be used to improve the theory. The relevant particle theory (in this case the Standard Model) will determine the necessary kinds of collisions and detectors. The Standard Model predicts that Higgs bosons could be formed in a number of ways,[93][173][174] although the probability of producing a Higgs boson in any collision is always expected to be very small – for example, only one Higgs boson per 10 billion collisions in the Large Hadron Collider.[o] The most common expected processes for Higgs boson production are:

Gluon fusion
If the collided particles are hadrons such as the proton or antiproton – as is the case in the LHC and Tevatron – then it is most likely that two of the gluons binding the hadron together collide. The easiest way to produce a Higgs particle is if the two gluons combine to form a loop of virtual quarks. Since the coupling of particles to the Higgs boson is proportional to their mass, this process is more likely for heavy particles. In practice it is enough to consider the contributions of virtual top and bottom quarks (the heaviest quarks). This process is the dominant contribution at the LHC and Tevatron being about ten times more likely than any of the other processes.[93][173]
Higgs Strahlung
If an elementary fermion collides with an anti-fermion – e.g., a quark with an anti-quark or an electron with a positron – the two can merge to form a virtual W or Z boson which, if it carries sufficient energy, can then emit a Higgs boson. This process was the dominant production mode at the LEP, where an electron and a positron collided to form a virtual Z boson, and it was the second largest contribution for Higgs production at the Tevatron. At the LHC this process is only the third largest, because the LHC collides protons with protons, making a quark-antiquark collision less likely than at the Tevatron. Higgs Strahlung is also known as associated production.[93][173][174]
Weak boson fusion
Another possibility when two (anti-)fermions collide is that the two exchange a virtual W or Z boson, which emits a Higgs boson. The colliding fermions do not need to be the same type. So, for example, an up quark may exchange a Z boson with an anti-down quark. This process is the second most important for the production of Higgs particle at the LHC and LEP.[93][174]
Top fusion
The final process that is commonly considered is by far the least likely (by two orders of magnitude). This process involves two colliding gluons, which each decay into a heavy quark–antiquark pair. A quark and antiquark from each pair can then combine to form a Higgs particle.[93][173]

Decay[edit]

The Standard Model prediction for the decay width of the Higgs particle depends on the value of its mass.

Quantum mechanics predicts that if it is possible for a particle to decay into a set of lighter particles, then it will eventually do so.[175] This is also true for the Higgs boson. The likelihood with which this happens depends on a variety of factors including: the difference in mass, the strength of the interactions, etc. Most of these factors are fixed by the Standard Model, except for the mass of the Higgs boson itself. For a Higgs boson with a mass of 125 GeV/c2 the SM predicts a mean life time of about 1.6×10−22 s.[b]

The Standard Model prediction for the branching ratios of the different decay modes of the Higgs particle depends on the value of its mass.

Since it interacts with all the massive elementary particles of the SM, the Higgs boson has many different processes through which it can decay. Each of these possible processes has its own probability, expressed as the branching ratio; the fraction of the total number decays that follows that process. The SM predicts these branching ratios as a function of the Higgs mass (see plot).

Higgs boson decays into heavy vector boson pairs (a), fermion–antifermion pairs (b) and photon pairs or Zγ (c,d)[176]

One way that the Higgs can decay is by splitting into a fermion–antifermion pair. As general rule, the Higgs is more likely to decay into heavy fermions than light fermions, because the mass of a fermion is proportional to the strength of its interaction with the Higgs.[125] By this logic the most common decay should be into a top–antitop quark pair. However, such a decay would only be possible if the Higgs were heavier than ~346 GeV/c2, twice the mass of the top quark. For a Higgs mass of 125 GeV/c2 the SM predicts that the most common decay is into a bottom–antibottom quark pair, which happens 57.7% of the time.[2] The second most common fermion decay at that mass is a tau–antitau pair, which happens only about 6.3% of the time.[2]

Another possibility is for the Higgs to split into a pair of massive gauge bosons. The most likely possibility is for the Higgs to decay into a pair of W bosons (the light blue line in the plot), which happens about 21.5% of the time for a Higgs boson with a mass of 125 GeV/c2.[2] The W bosons can subsequently decay either into a quark and an antiquark or into a charged lepton and a neutrino. The decays of W bosons into quarks are difficult to distinguish from the background, and the decays into leptons cannot be fully reconstructed (because neutrinos are impossible to detect in particle collision experiments). A cleaner signal is given by decay into a pair of Z-bosons (which happens about 2.6% of the time for a Higgs with a mass of 125 GeV/c2),[2] if each of the bosons subsequently decays into a pair of easy-to-detect charged leptons (electrons or muons).

Decay into massless gauge bosons (i.e., gluons or photons) is also possible, but requires intermediate loop of virtual heavy quarks (top or bottom) or massive gauge bosons.[125] The most common such process is the decay into a pair of gluons through a loop of virtual heavy quarks. This process, which is the reverse of the gluon fusion process mentioned above, happens approximately 8.6% of the time for a Higgs boson with a mass of 125 GeV/c2.[2] Much rarer is the decay into a pair of photons mediated by a loop of W bosons or heavy quarks, which happens only twice for every thousand decays.[2] However, this process is very relevant for experimental searches for the Higgs boson, because the energy and momentum of the photons can be measured very precisely, giving an accurate reconstruction of the mass of the decaying particle.[125]

In 2021 the extremely rare Dalitz decay was tentatively observed, into two leptons (electrons or muons) and a photon (ℓℓγ), via virtual photon decay. This can happen in three ways; Higgs to virtual photon to ℓℓγ in which the virtual photon (γ*) has very small but nonzero mass, Higgs to Z boson to ℓℓγ, or Higgs to two leptons, one of which emits a final-state photon leading to ℓℓγ. ATLAS searched for evidence of the first of these (H→γ*γ→ℓℓγ) at low di-lepton mass (≤ 30 GeV/c2), where this process should dominate. The observation is at sigma 3.2 (1 in 1000) significance.[3][4] This decay path is important because it facilitates measuring the on- and off-shelf mass of the Higgs boson (allowing indirect measurement of decay time), and the decay into two charged particles allows exploration of charge conjugation and charge parity (CP) violation.[4]

Public discussion[edit]

Naming[edit]

Names used by physicists[edit]

The name most strongly associated with the particle and field is the Higgs boson[91]: 168  and Higgs field. For some time the particle was known by a combination of its PRL author names (including at times Anderson), for example the Brout–Englert–Higgs particle, the Anderson–Higgs particle, or the Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism,[v] and these are still used at times.[61][178] Fuelled in part by the issue of recognition and a potential shared Nobel Prize,[178][179]
the most appropriate name was still occasionally a topic of debate until 2013.[178]
Higgs himself prefers to call the particle either by an acronym of all those involved, or «the scalar boson», or «the so-called Higgs particle».[179]

A considerable amount has been written on how Higgs’ name came to be exclusively used. Two main explanations are offered. The first is that Higgs undertook a step which was either unique, clearer or more explicit in his paper in formally predicting and examining the particle. Of the PRL papers’ authors, only the paper by Higgs explicitly offered as a prediction that a massive particle would exist and calculated some of its properties;[180][91]: 167 
he was therefore «the first to postulate the existence of a massive particle» according to Nature.[178]
Physicist and author Frank Close and physicist-blogger Peter Woit both comment that the paper by GHK was also completed after Higgs and Brout–Englert were submitted to Physical Review Letters,[181][91]: 167 
and that Higgs alone had drawn attention to a predicted massive scalar boson, while all others had focused on the massive vector bosons.[181][91]: 154, 166, 175 
In this way, Higgs’ contribution also provided experimentalists with a crucial «concrete target» needed to test the theory.[182]

However, in Higgs’ view, Brout and Englert did not explicitly mention the boson since its existence is plainly obvious in their work,[66]: 6  while according to Guralnik the GHK paper was a complete analysis of the entire symmetry breaking mechanism whose mathematical rigour is absent from the other two papers, and a massive particle may exist in some solutions.[92]: 9  Higgs’ paper also provided an «especially sharp» statement of the challenge and its solution according to science historian David Kaiser.[179]

The alternative explanation is that the name was popularised in the 1970s due to its use as a convenient shorthand or because of a mistake in citing. Many accounts (including Higgs’ own[66]: 7 ) credit the «Higgs» name to physicist Benjamin Lee.[w]
Lee was a significant populariser of the theory in its early days, and habitually attached the name «Higgs» as a «convenient shorthand» for its components from 1972.[15][178][183][184][185]
and in at least one instance from as early as 1966.[186] Although Lee clarified in his footnotes that «‘Higgs’ is an abbreviation for Higgs, Kibble, Guralnik, Hagen, Brout, Englert»,[183]
his use of the term (and perhaps also Steven Weinberg’s mistaken cite of Higgs’ paper as the first in his seminal 1967 paper[91][187]
[186]) meant that by around 1975–1976 others had also begun to use the name ‘Higgs’ exclusively as a shorthand.[x]
In 2012, physicist Frank Wilczek, who was credited for naming the elementary particle, the axion (over an alternative proposal «Higglet», by Weinberg), endorsed the «Higgs boson» name, stating «History is complicated, and wherever you draw the line, there will be somebody just below it.»[179]

Nickname[edit]

The Higgs boson is often referred to as the «God particle» in popular media outside the scientific community.[188][189][190][191][192]
The nickname comes from the title of the 1993 book on the Higgs boson and particle physics, The God Particle: If the Universe Is the Answer, What Is the Question? by Physics Nobel Prize winner and Fermilab director Leon Lederman.[25]
Lederman wrote it in the context of failing US government support for the Superconducting Super Collider,[193] a partially constructed titanic[194][195]
competitor to the Large Hadron Collider with planned collision energies of 2 × 20 TeV that was championed by Lederman since its 1983 inception[193][y]
[196][197]
and shut down in 1993. The book sought in part to promote awareness of the significance and need for such a project in the face of its possible loss of funding.[198]
Lederman, a leading researcher in the field, writes that he wanted to title his book The Goddamn Particle: If the Universe is the Answer, What is the Question? Lederman’s editor decided that the title was too controversial and convinced him to change the title to The God Particle: If the Universe is the Answer, What is the Question?[199]

While media use of this term may have contributed to wider awareness and interest,[200]
many scientists feel the name is inappropriate[15][16][201]
since it is sensational hyperbole and misleads readers;[202]
the particle also has nothing to do with any God, leaves open numerous questions in fundamental physics, and does not explain the ultimate origin of the universe. Higgs, an atheist, was reported to be displeased and stated in a 2008 interview that he found it «embarrassing» because it was «the kind of misuse … which I think might offend some people».[202][203][204]
The nickname has been satirised in mainstream media as well.[205]
Science writer Ian Sample stated in his 2010 book on the search that the nickname is «universally hate[d]» by physicists and perhaps the «worst derided» in the history of physics, but that (according to Lederman) the publisher rejected all titles mentioning «Higgs» as unimaginative and too unknown.[206]

Lederman begins with a review of the long human search for knowledge, and explains that his tongue-in-cheek title draws an analogy between the impact of the Higgs field on the fundamental symmetries at the Big Bang, and the apparent chaos of structures, particles, forces and interactions that resulted and shaped our present universe, with the biblical story of Babel in which the primordial single language of early Genesis was fragmented into many disparate languages and cultures.[207]

Today … we have the standard model, which reduces all of reality to a dozen or so particles and four forces … It’s a hard-won simplicity […and…] remarkably accurate. But it is also incomplete and, in fact, internally inconsistent … This boson is so central to the state of physics today, so crucial to our final understanding of the structure of matter, yet so elusive, that I have given it a nickname: the God Particle. Why God Particle? Two reasons. One, the publisher wouldn’t let us call it the Goddamn Particle, though that might be a more appropriate title, given its villainous nature and the expense it is causing. And two, there is a connection, of sorts, to another book, a much older one …

— Lederman & Teresi[25]: 22 

Lederman asks whether the Higgs boson was added just to perplex and confound those seeking knowledge of the universe, and whether physicists will be confounded by it as recounted in that story, or ultimately surmount the challenge and understand «how beautiful is the universe [God has] made».[208]

Other proposals[edit]

A renaming competition by British newspaper The Guardian in 2009 resulted in their science correspondent choosing the name «the champagne bottle boson» as the best submission: «The bottom of a champagne bottle is in the shape of the Higgs potential and is often used as an illustration in physics lectures. So it’s not an embarrassingly grandiose name, it is memorable, and [it] has some physics connection too.»[209]
The name Higgson was suggested as well, in an opinion piece in the Institute of Physics’ online publication physicsworld.com.[210]

Educational explanations and analogies[edit]

Photograph of light passing through a dispersive prism: the rainbow effect arises because photons are not all affected to the same degree by the dispersive material of the prism.

There has been considerable public discussion of analogies and explanations for the Higgs particle and how the field creates mass,[211][212]
including coverage of explanatory attempts in their own right and a competition in 1993 for the best popular explanation by then-UK Minister for Science Sir William Waldegrave
[213]
and articles in newspapers worldwide.

An educational collaboration involving an LHC physicist and a High School Teachers at CERN educator suggests that dispersion of light – responsible for the rainbow and dispersive prism – is a useful analogy for the Higgs field’s symmetry breaking and mass-causing effect.[214]

Symmetry breaking
in optics
In a vacuum, light of all colours (or photons of all wavelengths) travels at the same velocity, a symmetrical situation. In some substances such as glass, water or air, this symmetry is broken (See: Photons in matter). The result is that light of different wavelengths have different velocities.
Symmetry breaking
in particle physics
In ‘naive’ gauge theories, gauge bosons and other fundamental particles are all massless – also a symmetrical situation. In the presence of the Higgs field this symmetry is broken. The result is that particles of different types will have different masses.

Matt Strassler uses electric fields as an analogy:[215]

Some particles interact with the Higgs field while others don’t. Those particles that feel the Higgs field act as if they have mass. Something similar happens in an electric field – charged objects are pulled around and neutral objects can sail through unaffected. So you can think of the Higgs search as an attempt to make waves in the Higgs field [create Higgs bosons] to prove it’s really there.

A similar explanation was offered by The Guardian:[216]

The Higgs boson is essentially a ripple in a field said to have emerged at the birth of the universe and to span the cosmos to this day … The particle is crucial however: It is the smoking gun, the evidence required to show the theory is right.

The Higgs field’s effect on particles was famously described by physicist David Miller as akin to a room full of political party workers spread evenly throughout a room: The crowd gravitates to and slows down famous people but does not slow down others.[z]
He also drew attention to well-known effects in solid state physics where an electron’s effective mass can be much greater than usual in the presence of a crystal lattice.[217]

Analogies based on drag effects, including analogies of «syrup» or «molasses» are also well known, but can be somewhat misleading since they may be understood (incorrectly) as saying that the Higgs field simply resists some particles’ motion but not others’ – a simple resistive effect could also conflict with Newton’s third law.[219]

Recognition and awards[edit]

There was considerable discussion prior to late 2013 of how to allocate the credit if the Higgs boson is proven, made more pointed as a Nobel prize had been expected, and the very wide basis of people entitled to consideration. These include a range of theoreticians who made the Higgs mechanism theory possible, the theoreticians of the 1964 PRL papers (including Higgs himself), the theoreticians who derived from these a working electroweak theory and the Standard Model itself, and also the experimentalists at CERN and other institutions who made possible the proof of the Higgs field and boson in reality. The Nobel prize has a limit of three persons to share an award, and some possible winners are already prize holders for other work, or are deceased (the prize is only awarded to persons in their lifetime). Existing prizes for works relating to the Higgs field, boson, or mechanism include:

  • Nobel Prize in Physics (1979) – Glashow, Salam, and Weinberg, for contributions to the theory of the unified weak and electromagnetic interaction between elementary particles[220]
  • Nobel Prize in Physics (1999) – ‘t Hooft and Veltman, for elucidating the quantum structure of electroweak interactions in physics[221]
  • J. J. Sakurai Prize for Theoretical Particle Physics (2010) – Hagen, Englert, Guralnik, Higgs, Brout, and Kibble, for elucidation of the properties of spontaneous symmetry breaking in four-dimensional relativistic gauge theory and of the mechanism for the consistent generation of vector boson masses[89] (for the 1964 papers described above)
  • Wolf Prize (2004) – Englert, Brout, and Higgs
  • Special Breakthrough Prize in Fundamental Physics (2013) – Fabiola Gianotti and Peter Jenni, spokespersons of the ATLAS Collaboration and Michel Della Negra, Tejinder Singh Virdee, Guido Tonelli, and Joseph Incandela spokespersons, past and present, of the CMS collaboration, «For [their] leadership role in the scientific endeavour that led to the discovery of the new Higgs-like particle by the ATLAS and CMS collaborations at CERN’s Large Hadron Collider».[222]
  • Nobel Prize in Physics (2013) – Peter Higgs and François Englert, for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN’s Large Hadron Collider[223]

Englert’s co-researcher Robert Brout had died in 2011 and the Nobel Prize is not ordinarily given posthumously.[224]

Additionally Physical Review Letters’ 50-year review (2008) recognised the 1964 PRL symmetry breaking papers and Weinberg’s 1967 paper A model of Leptons (the most cited paper in particle physics, as of 2012) «milestone Letters».[86]

Following reported observation of the Higgs-like particle in July 2012, several Indian media outlets reported on the supposed neglect of credit to Indian physicist Satyendra Nath Bose after whose work in the 1920s the class of particles «bosons» is named[225][226]
(although physicists have described Bose’s connection to the discovery as tenuous).[227]

Technical aspects and mathematical formulation[edit]

The potential for the Higgs field, plotted as function of phi ^{0} and phi ^{3}. It has a Mexican-hat or champagne-bottle profile at the ground.

In the Standard Model, the Higgs field is a four-component scalar field that forms a complex doublet of the weak isospin SU(2) symmetry:

{displaystyle phi ={frac {1}{sqrt {2}}}left({begin{array}{c}phi ^{1}+iphi ^{2}\phi ^{0}+iphi ^{3}end{array}}right) ,}

while the field has charge +1/2 under the weak hypercharge U(1) symmetry.[228]

Note: This article uses the scaling convention where the electric charge, Q, the weak isospin, T3, and the weak hypercharge, YW, are related by Q = T3 + YW. A different convention used in most other Wikipedia articles is Q = T3 + 1/2YW.[229][230][231]

The Higgs part of the Lagrangian is[228]

{displaystyle {mathcal {L}}_{text{H}}=left|left(partial _{mu }-igW_{mu ,a}{tfrac {1}{2}}sigma ^{a}-i{tfrac {1}{2}}g'B_{mu }right)phi right|^{2}+mu _{text{H}}^{2}phi ^{dagger }phi -lambda left(phi ^{dagger }phi right)^{2} ,}

where {displaystyle W_{mu ,a}} and B_{mu } are the gauge bosons of the SU(2) and U(1) symmetries, g and g' their respective coupling constants, sigma ^{a} are the Pauli matrices (a complete set generators of the SU(2) symmetry), and lambda >0 and {displaystyle mu _{text{H}}^{2}>0}, so that the ground state breaks the SU(2) symmetry (see figure).

The ground state of the Higgs field (the bottom of the potential) is degenerate with different ground states related to each other by a SU(2) gauge transformation. It is always possible to pick a gauge such that in the ground state {displaystyle phi ^{1}=phi ^{2}=phi ^{3}=0}. The expectation value of phi ^{0} in the ground state (the vacuum expectation value or VEV) is then {displaystyle leftlangle phi ^{0}rightrangle ={tfrac {1}{sqrt {2,}}}v}, where {displaystyle v={tfrac {1}{sqrt {lambda ,}}}left|mu _{text{H}}right|}. The measured value of this parameter is ~246 GeV/c2.[125] It has units of mass, and is the only free parameter of the Standard Model that is not a dimensionless number. Quadratic terms in W_{mu } and B_{mu } arise, which give masses to the W and Z bosons:[228]

{displaystyle {begin{aligned}m_{text{W}}&={tfrac {1}{2}}vleft|,g,right| ,\m_{text{Z}}&={tfrac {1}{2}}v{sqrt {g^{2}+{g'}^{2} }} ,end{aligned}}}

with their ratio determining the Weinberg angle, {textstyle cos theta _{text{W}}={frac {m_{text{W}}}{ m_{text{Z}} }}={frac {left|,g,right|}{ {sqrt {g^{2}+{g'}^{2} }} }}}, and leave a massless U(1) photon, gamma . The mass of the Higgs boson itself is given by

{displaystyle m_{text{H}}={sqrt {2mu _{text{H}}^{2} }}equiv {sqrt {2lambda v^{2} }}.}

The quarks and the leptons interact with the Higgs field through Yukawa interaction terms:

{displaystyle {begin{aligned}{mathcal {L}}_{text{Y}}=&-lambda _{u}^{i,j}{frac { phi ^{0}-iphi ^{3} }{sqrt {2 }}}{overline {u}}_{text{L}}^{i}u_{text{R}}^{j}+lambda _{u}^{i,j}{frac { phi ^{1}-iphi ^{2} }{sqrt {2 }}}{overline {d}}_{text{L}}^{i}u_{text{R}}^{j}\&-lambda _{d}^{i,j}{frac { phi ^{0}+iphi ^{3} }{sqrt {2 }}}{overline {d}}_{text{L}}^{i}d_{text{R}}^{j}-lambda _{d}^{i,j}{frac { phi ^{1}+iphi ^{2} }{sqrt {2 }}}{overline {u}}_{text{L}}^{i}d_{text{R}}^{j}\&-lambda _{e}^{i,j}{frac { phi ^{0}+iphi ^{3} }{sqrt {2 }}}{overline {e}}_{text{L}}^{i}e_{text{R}}^{j}-lambda _{e}^{i,j}{frac { phi ^{1}+iphi ^{2} }{sqrt {2 }}}{overline {nu }}_{text{L}}^{i}e_{text{R}}^{j}+{textrm {h.c.}} ,end{aligned}}}

where {displaystyle (d,u,e,nu )_{text{L,R}}^{i}} are left-handed and right-handed quarks and leptons of the ith generation, {displaystyle lambda _{text{u,d,e}}^{i,j}} are matrices of Yukawa couplings where h.c. denotes the hermitian conjugate of all the preceding terms. In the symmetry breaking ground state, only the terms containing phi ^{0} remain, giving rise to mass terms for the fermions. Rotating the quark and lepton fields to the basis where the matrices of Yukawa couplings are diagonal, one gets

{displaystyle {mathcal {L}}_{text{m}}=-m_{text{u}}^{i}{overline {u}}_{text{L}}^{i}u_{text{R}}^{i}-m_{text{d}}^{i}{overline {d}}_{text{L}}^{i}d_{text{R}}^{i}-m_{text{e}}^{i}{overline {e}}_{text{L}}^{i}e_{text{R}}^{i}+{textrm {h.c.}},}

where the masses of the fermions are {displaystyle m_{text{u,d,e}}^{i}={tfrac {1}{sqrt {2 }}}lambda _{text{u,d,e}}^{i}v}, and {displaystyle lambda _{text{u,d,e}}^{i}} denote the eigenvalues of the Yukawa matrices.[228]

See also[edit]

Standard Model
  • Higgs mechanism – Mechanism that explains the generation of mass for gauge bosons
  • History of quantum field theory
  • Introduction to quantum mechanics – Non-technical introduction to quantum physics
  • Noncommutative standard model
    and noncommutative geometry – Branch of mathematics
  • Mathematical formulation of the Standard Model – Mathematics of a particle physics model
    • Standard Model fields overview
    • mass terms and the Higgs mechanism
  • Quantum gauge theory – Physical theory with fields invariant under the action of local «gauge» Lie groups
  • W and Z bosons – Elementary particles; gauge bosons that mediate the weak interaction
Other
  • Bose–Einstein statistics – Description of the behavior of bosons
  • Composite Higgs models, a extension of the SM where the Higgs boson is made of smaller constituents
  • Dalitz plot – particle physics plot
  • Particle Fever, a 2013 American documentary film following various LHC experiments and concluding with the identification of the Higgs boson
  • Quantum triviality – Possible outcome of renormalization in physics
  • Scalar boson – Boson with spin equal to zero
  • Stueckelberg action – Special case of the abelian Higgs mechanism
  • Tachyonic field – Field with an imaginary mass
  • ZZ diboson

Explanatory notes[edit]

  1. ^
    Note that such events also occur due to other processes. Detection involves a statistically significant excess of such events at specific energies.
  2. ^ a b
    In the Standard Model, the total decay width of a Higgs boson with a mass of 125 GeV/c2 is predicted to be 4.07×10−3 GeV.[2] The mean lifetime is given by tau =hbar /Gamma .
  3. ^ In Higgs-based theories, the Higgs boson itself should be an exception, being massive even at high energies.
  4. ^
    In physics, it is possible for a law to hold true only if certain assumptions hold true, or when certain conditions are met. For example, Newton’s laws of motion only apply at speeds where relativistic effects are negligible; and laws related to conductivity, gases, and classical physics (as opposed to quantum mechanics) may apply only within certain ranges of size, temperature, pressure, or other conditions.
  5. ^ a b c
    The success of the Higgs-based electroweak theory and Standard Model is illustrated by their predictions of the mass of two particles later detected: the W boson (predicted mass: 80.390±0.018 GeV/c2, experimental measurement: 80.387±0.019 GeV/c2), and the Z boson (predicted mass: 91.1874±0.0021 GeV/c2, experimental measurement: 91.1876±0.0021 GeV/c2). Other accurate predictions included the weak neutral current, the gluon, and the top and charm quarks, all later proven to exist as the theory said.
  6. ^
    Electroweak symmetry is broken by the Higgs field in its lowest energy state, called its ground state. At high energy levels this does not happen, and the gauge bosons of the weak force would be expected to become massless above those energy levels.
  7. ^
    The range of a force is inversely proportional to the mass of the particles transmitting it.[22]

    In the Standard Model, forces are carried by virtual particles. The movement and interactions of these particles with each other are limited by the energy–time uncertainty principle. As a result, the more massive a single virtual particle is, the greater its energy, and therefore the shorter the distance it can travel. A particle’s mass therefore, determines the maximum distance at which it can interact with other particles and on any force it mediates. By the same token, the reverse is also true: Massless and near-massless particles can carry long distance forces.

    Since experiments have shown that the weak force acts over only a very short range, this implies that massive gauge bosons must exist, and indeed, their masses have since been confirmed by measurement.

    (See also: Compton wavelength and static forces and virtual-particle exchange)

  8. ^
    By the 1960s, many had already started to see gauge theories as failing to explain particle physics, because theorists had been unable to solve the mass problem or even explain how gauge theory could provide a solution. So the idea that the Standard Model – which relied on a Higgs field, not yet proved to exist – could be fundamentally incorrect, was not unreasonable.

    Against this, once the model was developed around 1972, no better theory existed, and its predictions and solutions were so accurate, that it became the preferred theory anyway. It then became crucial to science, to know whether it was correct.

  9. ^
    Discovery press conference, July 2012:

    ‘As a layman, I would say, I think we have it’, said Rolf-Dieter Heuer, director general of CERN at Wednesday’s seminar announcing the results of the search for the Higgs boson. But when pressed by journalists afterwards on what exactly ‘it’ was, things got more complicated.

    ‘We have discovered a boson; now we have to find out what boson it is’
    [Q]: ‘If we don’t know the new particle is a Higgs, what do we know about it?’
    [A]: We know it is some kind of boson, says Vivek Sharma of CMS […]
    [Q]: ‘are the CERN scientists just being too cautious? What would be enough evidence to call it a Higgs boson?’
    [A]: As there could be many different kinds of Higgs bosons, there’s no straight answer.[27]

    [emphasis in original]

  10. ^ For example: The Huffington Post / Reuters,[47] and others.[48]
  11. ^ The bubble’s effects would be expected to propagate across the universe at the speed of light from wherever it occurred. However space is vast – with even the nearest galaxy being over 2 million light years from us, and others being many billions of light years distant, so the effect of such an event would be unlikely to arise here for billions of years after first occurring.[53][54]
  12. ^ If the Standard Model is valid, then the particles and forces we observe in our universe exist as they do, because of underlying quantum fields. Quantum fields can have states of differing stability, including ‘stable’, ‘unstable’ and ‘metastable’ states (the latter remain stable unless sufficiently perturbed). If a more stable vacuum state were able to arise, then existing particles and forces would no longer arise as they presently do. Different particles or forces would arise from (and be shaped by) whatever new quantum states arose. The world we know depends upon these particles and forces, so if this happened, everything around us, from subatomic particles to galaxies, and all fundamental forces, would be reconstituted into new fundamental particles and forces and structures. The universe would potentially lose all of its present structures and become inhabited by new ones (depending upon the exact states involved) based upon the same quantum fields.
  13. ^ a b
    Goldstone’s theorem only applies to gauges having manifest Lorentz covariance, a condition that took time to become questioned. But the process of quantisation requires a gauge to be fixed and at this point it becomes possible to choose a gauge such as the ‘radiation’ gauge which is not invariant over time, so that these problems can be avoided. According to Bernstein (1974), p. 8:

    the «radiation gauge» condition ∇⋅A(x) = 0 is clearly not covariant, which means that if we wish to maintain transversality of the photon in all Lorentz frames, the photon field Aμ(x) cannot transform like a four-vector. This is no catastrophe, since the photon field is not an observable, and one can readily show that the S-matrix elements, which are observable have covariant structures. … in gauge theories one might arrange things so that one had a symmetry breakdown because of the noninvariance of the vacuum; but, because the Goldstone et al. proof breaks down, the zero mass Goldstone mesons need not appear. [emphasis in original]

    Bernstein (1974) contains an accessible and comprehensive background and review of this area, see external links.

  14. ^ A field with the «Mexican hat» potential {displaystyle V(phi )=mu ^{2}phi ^{2}+lambda phi ^{4}} and {displaystyle mu ^{2}<0} has a minimum not at zero but at some non-zero value {displaystyle phi _{0}~.} By expressing the action in terms of the field {tilde {phi }}=phi -phi _{0} (where phi _{0} is a constant independent of position), we find the Yukawa term has a component {displaystyle gphi _{0}{bar {psi }}psi ~.} Since both g and phi _{0} are constants, this looks exactly like the mass term for a fermion of mass gphi _{0}. The field {tilde {phi }} is then the Higgs field.
  15. ^ a b
    The example is based on the production rate at the LHC operating at 7 TeV. The total cross-section for producing a Higgs boson at the LHC is about 10 picobarn,[93] while the total cross-section for a proton–proton collision is 110 millibarn.[94]
  16. ^
    Just before LEP’s shut down, some events that hinted at a Higgs were observed, but it was not judged significant enough to extend its run and delay construction of the LHC.
  17. ^ a b c ATLAS and CMS only just co-discovered this particle in July… We will not know after today whether it is a Higgs at all, whether it is a Standard Model Higgs or not, or whether any particular speculative idea… is now excluded… Knowledge about nature does not come easy. We discovered the top quark in 1995, and we are still learning about its properties today… we will still be learning important things about the Higgs during the coming few decades. We’ve no choice but to be patient. — M. Strassler (2012)[128]
  18. ^
    In the Standard Model, the mass term arising from the Dirac Lagrangian for any fermion psi is -m{bar {psi }}psi . This is not invariant under the electroweak symmetry, as can be seen by writing psi in terms of left and right handed components:

    {displaystyle -m{bar {psi }}psi ,=,-mleft({bar {psi }}_{L}psi _{R}+{bar {psi }}_{R}psi _{L}right)}

    i.e., contributions from {bar {psi }}_{L}psi _{L} and {bar {psi }}_{R}psi _{R} terms do not appear. We see that the mass-generating interaction is achieved by constant flipping of particle chirality. Since the spin-half particles have no right/left helicity pair with the same SU(2) and SU(3) representation and the same weak hypercharge, then assuming these gauge charges are conserved in the vacuum, none of the spin-half particles could ever swap helicity. Therefore, in the absence of some other cause, all fermions must be massless.

  19. ^
    Goldstone’s theorem also plays a role in such theories. The connection is technically, when a condensate breaks a symmetry, then the state reached by acting with a symmetry generator on the condensate has the same energy as before. This means that some kinds of oscillation will not involve change of energy. Oscillations with unchanged energy imply that excitations (particles) associated with the oscillation are massless. Therefore the outcome is that new massless particles should exist, known as Goldstone bosons. Because zero mass gauge bosons always mediate long range interactions, a new long range force should exist as well.
  20. ^
    People initially thought of tachyons as particles travelling faster than the speed of light … But we now know that a tachyon indicates an instability in a theory that contains it. Regrettably for science fiction fans, tachyons are not real physical particles that appear in nature.[160]
  21. ^ This upper limit would increase to 185 GeV/c2 if the lower bound of 114.4 GeV/c2 from the LEP-2 direct search is allowed for.[171]
  22. ^
    Other names have included:

    • The «Anderson–Higgs» mechanism,[177]
    • «Higgs–Kibble» mechanism (by Abdus Salam)[91] and
    • «A-B-E-G-H-H-K-‘tH» mechanism [for Anderson, Brout, Englert, Guralnik, Hagen, Higgs, Kibble and ‘t Hooft] (by Peter Higgs).[91]

  23. ^
    Benjamin W. Lee also uses the Korean language name Lee Whi-soh.
  24. ^
    Examples of early papers using the term «Higgs boson» include

    • Ellis, Gaillard, & Nanopoulos (1976) «A phenomenological profile of the Higgs boson».
    • Bjorken (1977) «Weak interaction theory and neutral currents».
    • Wienberg (received, 1975) «Mass of the Higgs boson».

  25. ^
    Global financial partnerships could be the only way to salvage such a project. Some feel that Congress delivered a fatal blow.

    ‘We have to keep the momentum and optimism and start thinking about international collaboration,’ said Leon M. Lederman, the Nobel Prize-winning physicist who was the architect of the super collider plan.[193]

  26. ^ In Miller’s analogy, the Higgs field is compared to political party workers spread evenly throughout a room. There will be some people (in Miller’s example an anonymous person) who pass through the crowd with ease, paralleling the interaction between the field and particles that do not interact with it, such as massless photons. There will be other people (in Miller’s example the British prime minister) who would find their progress being continually slowed by the swarm of admirers crowding around, paralleling the interaction for particles that do interact with the field and by doing so, acquire a finite mass.[217][218]

References[edit]

  1. ^ R.L. Workman; et al. (Particle Data Group) (2022). «Gauge and Higgs Bosons» (PDF). Progress of Theoretical and Experimental Physics: 8. Retrieved 6 July 2022.
  2. ^ a b c d e f g h
    Dittmaier; Mariotti; Passarino; Tanaka; Alekhin; Alwall; Bagnaschi; Banfi; et al. (LHC Higgs Cross Section Working Group) (2012). Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (Report). CERN Report 2 (Tables A.1–A.20). Vol. 1201. p. 3084. arXiv:1201.3084. Bibcode:2012arXiv1201.3084L. doi:10.5170/CERN-2012-002. S2CID 119287417.
  3. ^ a b c «Life of the Higgs boson» (Press release). CMS Collaboration. Archived from the original on 2 December 2021. Retrieved 21 January 2021.
  4. ^ a b c d e «ATLAS finds evidence of a rare Higgs boson decay» (Press release). CERN. 8 February 2021. Archived from the original on 19 January 2022. Retrieved 21 January 2022.
  5. ^ ATLAS collaboration (2018). «Observation of H→bb decays and VH production with the ATLAS detector». Physics Letters B. 786: 59–86. arXiv:1808.08238. doi:10.1016/j.physletb.2018.09.013. S2CID 53658301.{{cite journal}}: CS1 maint: uses authors parameter (link)
  6. ^ CMS collaboration (2018). «Observation of Higgs boson decay to bottom quarks». Physical Review Letters. 121 (12): 121801. arXiv:1808.08242. Bibcode:2018PhRvL.121l1801S. doi:10.1103/PhysRevLett.121.121801. PMID 30296133. S2CID 118901756.{{cite journal}}: CS1 maint: uses authors parameter (link)
  7. ^ a b c d e f g O’Luanaigh, C. (14 March 2013). «New results indicate that new particle is a Higgs boson» (Press release). CERN. Archived from the original on 20 October 2015. Retrieved 9 October 2013.
  8. ^ a b c d e CMS Collaboration (2017). «Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state». Physics Letters B. 775 (2017): 1–24. arXiv:1707.00541. Bibcode:2017PhLB..775….1S. doi:10.1016/j.physletb.2017.10.021. S2CID 3221363.{{cite journal}}: CS1 maint: uses authors parameter (link)
  9. ^ Goulette, Marc (15 August 2012). «What should we know about the Higgs particle?» (blog). Atlas Experiment / CERN. Archived from the original on 13 January 2022. Retrieved 21 January 2022.
  10. ^ «Getting to know the Higgs particle: New discoveries!» (Press release). Institute of Physics. Archived from the original on 13 January 2022. Retrieved 21 January 2022.
  11. ^ a b c
    Onyisi, P. (23 October 2012). «Higgs boson FAQ». University of Texas ATLAS group. Archived from the original on 12 October 2013. Retrieved 8 January 2013.
  12. ^ a b c d
    Strassler, M. (12 October 2012). «The Higgs FAQ 2.0». ProfMattStrassler.com. Archived from the original on 12 October 2013. Retrieved 8 January 2013. [Q] Why do particle physicists care so much about the Higgs particle?
    [A] Well, actually, they don’t. What they really care about is the Higgs field, because it is so important. [emphasis in original]
  13. ^ a b c d e Adam Falkowski (writing as ‘Jester’) (27 February 2013). «When shall we call it Higgs?». Résonaances particle physics blog. Archived from the original on 29 June 2017. Retrieved 7 March 2013.
  14. ^ Lederman, L.M. (1993). The God Particle. Bantam Doubleday Dell. ISBN 0-385-31211-3.
  15. ^ a b c
    Sample, Ian (29 May 2009). «Anything but the God particle». The Guardian. Archived from the original on 25 July 2018. Retrieved 24 June 2009.
  16. ^ a b
    Evans, R. (14 December 2011). «The Higgs boson: Why scientists hate that you call it the ‘God particle’«. National Post. Archived from the original on 23 February 2015. Retrieved 3 November 2013.
  17. ^ Griffiths 2008, pp. 49–52
  18. ^ Tipler & Llewellyn 2003, pp. 603–604
  19. ^ From P.W. Anderson (1972) «More is different», Science.
  20. ^ Griffiths 2008, pp. 372–373
  21. ^ a b c Woit, Peter (13 November 2010). «The Anderson–Higgs Mechanism». Dr. Peter Woit (Senior Lecturer in Mathematics Columbia University and Ph.D. particle physics). Archived from the original on 23 November 2012. Retrieved 12 November 2012.
  22. ^ Shu, F. H. (1982). The Physical Universe: An introduction to astronomy. University Science Books. pp. 107–108. ISBN 978-0-935702-05-7. Archived from the original on 29 June 2016. Retrieved 27 June 2015.
  23. ^ a b José Luis Lucio; Arnulfo Zepeda (1987). Proceedings of the II Mexican School of Particles and Fields, Cuernavaca-Morelos, 1986. World Scientific. p. 29. ISBN 978-9971504342. Archived from the original on 25 January 2022. Retrieved 5 September 2020.
  24. ^ a b Gunion; Dawson; Kane; Haber (1990). The Higgs Hunter’s Guide (1st ed.). p. 11. ISBN 978-0-2015-0935-9. Archived from the original on 25 January 2022. Retrieved 5 September 2020. Cited by Peter Higgs in his talk «My Life as a Boson», 2001, ref#25.
  25. ^ a b c
    Lederman, Leon M.; Teresi, Dick (1993). The God Particle: If the universe is the answer, what is the question. Houghton Mifflin Company. ISBN 9780395558492.
  26. ^
    Strassler, M. (8 October 2011). «The known particles – if the Higgs field were zero». ProfMattStrassler.com. Archived from the original on 17 March 2021. Retrieved 13 November 2012. The Higgs field: So important it merited an entire experimental facility, the Large Hadron Collider, dedicated to understanding it.
  27. ^ a b c d
    Biever, C. (6 July 2012). «It’s a boson! But we need to know if it’s the Higgs». New Scientist. Retrieved 9 January 2013.
  28. ^
    Siegfried, T. (20 July 2012). «Higgs hysteria». Science News. Archived from the original on 31 October 2012. Retrieved 9 December 2012. In terms usually reserved for athletic achievements, news reports described the finding as a monumental milestone in the history of science.
  29. ^ a b c
    Del Rosso, A. (19 November 2012). «Higgs: The beginning of the exploration» (Press release). CERN. Archived from the original on 19 April 2019. Retrieved 9 January 2013. Even in the most specialized circles, the new particle discovered in July is not yet being called the «Higgs boson». Physicists still hesitate to call it that before they have determined that its properties fit with those the Higgs theory predicts the Higgs boson has.
  30. ^ a b
    Naik, G. (14 March 2013). «New data boosts case for Higgs boson find». The Wall Street Journal. Archived from the original on 4 January 2018. Retrieved 15 March 2013. ‘We’ve never seen an elementary particle with spin zero,’ said Tony Weidberg, a particle physicist at the University of Oxford who is also involved in the CERN experiments.
  31. ^
    Heilprin, J. (14 March 2013). «Higgs boson discovery confirmed after physicists review Large Hadron Collider data at CERN». The Huffington Post. Archived from the original on 17 March 2013. Retrieved 14 March 2013.
  32. ^ a b c d e «LHC experiments delve deeper into precision». Media and Press relations (Press release). CERN. 11 July 2017. Archived from the original on 22 November 2018. Retrieved 23 July 2017.
  33. ^ «CMS precisely measures the mass of the Higgs boson». CMS Collaboration/CERN. Archived from the original on 23 December 2021. Retrieved 21 January 2022.
  34. ^ D’Onofrio, Michela; Rummukainen, Kari (15 January 2016). «Standard model cross-over on the lattice». Physical Review D. 93 (2): 025003. arXiv:1508.07161. Bibcode:2016PhRvD..93b5003D. doi:10.1103/PhysRevD.93.025003. S2CID 119261776.
  35. ^ Demystifying the Higgs Boson with Leonard Susskind Archived 1 April 2019 at the Wayback Machine, Leonard Susskind presents an explanation of what the Higgs mechanism is, and what it means to «give mass to particles.» He also explains what’s at stake for the future of physics and cosmology. 30 July 2012.
  36. ^ D’Onofrio, Michela; Rummukainen, Kari (2016). «Standard model cross-over on the lattice». Phys. Rev. D93 (2): 025003. arXiv:1508.07161. Bibcode:2016PhRvD..93b5003D. doi:10.1103/PhysRevD.93.025003. S2CID 119261776.
  37. ^ Rao, Achintya (2 July 2012). «Why would I care about the Higgs boson?». CMS Public Website. CERN. Archived from the original on 9 July 2012. Retrieved 18 July 2012.
  38. ^ Jammer, Max (2000). Concepts of Mass in Contemporary Physics and Philosophy. Princeton, NJ: Princeton University Press. pp. 162–163. ISBN 9780691010175., who provides many references in support of this statement.
  39. ^ Dvorsky, George (2013). «Is there a link between the Higgs boson and dark energy?». io9. Archived from the original on 1 March 2018. Retrieved 1 March 2018.
  40. ^ «What Universe Is This, Anyway?». NPR.org. 2014. Archived from the original on 1 March 2018. Retrieved 1 March 2018.
  41. ^ a b c d Alekhin, S.; Djouadi, A.; Moch, S. (13 August 2012). «The top quark and Higgs boson masses and the stability of the electroweak vacuum». Physics Letters B. 716 (1): 214–219. arXiv:1207.0980. Bibcode:2012PhLB..716..214A. doi:10.1016/j.physletb.2012.08.024. S2CID 28216028.
  42. ^ Turner, M.S.; Wilczek, F. (1982). «Is our vacuum metastable?». Nature. 298 (5875): 633–634. Bibcode:1982Natur.298..633T. doi:10.1038/298633a0. S2CID 4274444.
  43. ^ Coleman, S.; de Luccia, F. (1980). «Gravitational effects on and of vacuum decay». Physical Review. D21 (12): 3305–3315. Bibcode:1980PhRvD..21.3305C. doi:10.1103/PhysRevD.21.3305. OSTI 1445512. S2CID 1340683.
  44. ^ Stone, M. (1976). «Lifetime and decay of excited vacuum states». Phys. Rev. D. 14 (12): 3568–3573. Bibcode:1976PhRvD..14.3568S. doi:10.1103/PhysRevD.14.3568.
  45. ^ Frampton, P.H. (1976). «Vacuum Instability and Higgs Scalar Mass». Physical Review Letters. 37 (21): 1378–1380. Bibcode:1976PhRvL..37.1378F. doi:10.1103/PhysRevLett.37.1378.
  46. ^ Frampton, P.H. (1977). «Consequences of Vacuum Instability in Quantum Field Theory». Phys. Rev. D. 15 (10): 2922–2928. Bibcode:1977PhRvD..15.2922F. doi:10.1103/PhysRevD.15.2922.
  47. ^ Klotz, Irene (18 February 2013). Adams, David; Eastham, Todd (eds.). «Universe has finite lifespan, Higgs boson calculations suggest». Huffington Post. Reuters. Archived from the original on 20 February 2013. Retrieved 21 February 2013. Earth will likely be long gone before any Higgs boson particles set off an apocalyptic assault on the universe
  48. ^ Hoffman, Mark (19 February 2013). «Higgs boson will destroy the universe, eventually». Science World Report. Archived from the original on 11 June 2019. Retrieved 21 February 2013.
  49. ^ Ellis, J.; Espinosa, J.R.; Giudice, G.F.; Hoecker, A.; Riotto, A. (2009). «The Probable Fate of the Standard Model». Physics Letters B. 679 (4): 369–375. arXiv:0906.0954. Bibcode:2009PhLB..679..369E. doi:10.1016/j.physletb.2009.07.054. S2CID 17422678.
  50. ^ Masina, Isabella (12 February 2013). «Higgs boson and top quark masses as tests of electroweak vacuum stability». Phys. Rev. D. 87 (5): 53001. arXiv:1209.0393. Bibcode:2013PhRvD..87e3001M. doi:10.1103/PhysRevD.87.053001. S2CID 118451972.
  51. ^ Buttazzo, Dario; Degrassi, Giuseppe; Giardino, Pier Paolo; Giudice, Gian F.; Sala, Filippo; Salvio, Alberto; Strumia, Alessandro (2013). «Investigating the near-criticality of the Higgs boson». JHEP. 2013 (12): 089. arXiv:1307.3536. Bibcode:2013JHEP…12..089B. doi:10.1007/JHEP12(2013)089. S2CID 54021743. Archived from the original on 28 August 2014. Retrieved 25 June 2014.
  52. ^ Salvio, Alberto (9 April 2015). «A simple, motivated completion of the Standard Model below the Planck scale: Axions and right-handed neutrinos». Physics Letters B. 743: 428–434. arXiv:1501.03781. Bibcode:2015PhLB..743..428S. doi:10.1016/j.physletb.2015.03.015. S2CID 119279576.
  53. ^ a b c Boyle, Alan (19 February 2013). «Will our universe end in a ‘big slurp’? Higgs-like particle suggests it might». NBC News’ Cosmic blog. Archived from the original on 21 February 2013. Retrieved 21 February 2013. [T]he bad news is that its mass suggests the universe will end in a fast-spreading bubble of doom. The good news? It’ll probably be tens of billions of years. The article quotes Fermilab’s Joseph Lykken: «[T]he parameters for our universe, including the Higgs [and top quark’s masses] suggest that we’re just at the edge of stability, in a «metastable» state. Physicists have been contemplating such a possibility for more than 30 years. Back in 1982, physicists Michael Turner and Frank Wilczek wrote in Nature that «without warning, a bubble of true vacuum could nucleate somewhere in the universe and move outwards …»
  54. ^ Peralta, Eyder (19 February 2013). «If Higgs boson calculations are right, a catastrophic ‘bubble’ could end universe». The Two-Way. NPR News. Archived from the original on 21 February 2013. Retrieved 21 February 2013. Article cites Fermilab’s Joseph Lykken: «The bubble forms through an unlikely quantum fluctuation, at a random time and place,» Lykken tells us. «So in principle it could happen tomorrow, but then most likely in a very distant galaxy, so we are still safe for billions of years before it gets to us.»
  55. ^ Bezrukov, F.; Shaposhnikov, M. (24 January 2008). «The Standard Model Higgs boson as the inflaton». Physics Letters B. 659 (3): 703–706. arXiv:0710.3755. Bibcode:2008PhLB..659..703B. doi:10.1016/j.physletb.2007.11.072. S2CID 14818281.
  56. ^ Salvio, Alberto (9 August 2013). «Higgs Inflation at NNLO after the Boson Discovery». Physics Letters B. 727 (1–3): 234–239. arXiv:1308.2244. Bibcode:2013PhLB..727..234S. doi:10.1016/j.physletb.2013.10.042. S2CID 56544999. Archived from the original on 26 January 2016. Retrieved 25 June 2014.
  57. ^ Cole, K.C. (14 December 2000). «One Thing Is Perfectly Clear: Nothingness Is Perfect». Los Angeles Times. Archived from the original on 25 January 2022. Retrieved 17 January 2013. [T]he Higgs’ influence (or the influence of something like it) could reach much further. For example, something like the Higgs—if not exactly the Higgs itself—may be behind many other unexplained «broken symmetries» in the universe as well … In fact, something very much like the Higgs may have been behind the collapse of the symmetry that led to the Big Bang, which created the universe. When the forces first began to separate from their primordial sameness—taking on the distinct characters they have today—they released energy in the same way as water releases energy when it turns to ice. Except in this case, the freezing packed enough energy to blow up the universe. … However it happened, the moral is clear: Only when the perfection shatters can everything else be born.
  58. ^ Sean Carroll (2012). The Particle at the End of the Universe: How the Hunt for the Higgs Boson Leads Us to the Edge of a New World. Penguin Group US. ISBN 978-1-101-60970-5.
  59. ^ Goldstone, J.; Salam, Abdus; Weinberg, Steven (1962). «Broken Symmetries». Physical Review. 127 (3): 965–970. Bibcode:1962PhRv..127..965G. doi:10.1103/PhysRev.127.965.
  60. ^ a b c Guralnik, G. S. (2011). «The Beginnings of Spontaneous Symmetry Breaking in Particle Physics». arXiv:1110.2253 [physics.hist-ph].
  61. ^ a b c d e Kibble, T.W.B. (2009). «Englert–Brout–Higgs–Guralnik–Hagen–Kibble Mechanism». Scholarpedia. 4 (1): 6441. Bibcode:2009SchpJ…4.6441K. doi:10.4249/scholarpedia.6441.
  62. ^ a b Kibble, T.W.B. (2009). «History of Englert–Brout–Higgs–Guralnik–Hagen–Kibble Mechanism (history)». Scholarpedia. 4 (1): 8741. Bibcode:2009SchpJ…4.8741K. doi:10.4249/scholarpedia.8741.
  63. ^ «The Nobel Prize in Physics 2008». Nobelprize.org. Archived from the original on 13 January 2009.
  64. ^ Ruegg, Henri; Ruiz-Altaba, Martí (2004). «The Stueckelberg Field». International Journal of Modern Physics A. 19 (20): 3265–3347. arXiv:hep-th/0304245. Bibcode:2004IJMPA..19.3265R. doi:10.1142/S0217751X04019755. S2CID 7017354.
  65. ^ List of Anderson 1958–1959 papers referencing ‘symmetry’, at APS Journals[dead link]
  66. ^ a b c Higgs, Peter (24 November 2010). «My Life as a Boson» (PDF). London: Kings College. pp. 4–5. Archived from the original (PDF) on 4 November 2013. Retrieved 17 January 2013. – Talk given by Peter Higgs at Kings College, London, expanding on a paper originally presented in 2001. The original 2001 paper may be found in: Higgs, Peter (25 May 2001). «My Life as a Boson: The Story of ‘The Higgs’«. In Michael J. Duff & James T. Liu (eds.). 2001 A Spacetime Odyssey: Proceedings of the Inaugural Conference of the Michigan Center for Theoretical Physics. Ann Arbor, Michigan: World Scientific. pp. 86–88. ISBN 978-9-8123-8231-3. Archived from the original on 25 January 2022. Retrieved 17 January 2013.
  67. ^ Anderson, P. (1963). «Plasmons, gauge invariance and mass». Physical Review. 130 (1): 439–442. Bibcode:1963PhRv..130..439A. doi:10.1103/PhysRev.130.439.
  68. ^ Klein, A.; Lee, B. (1964). «Does Spontaneous Breakdown of Symmetry Imply Zero-Mass Particles?». Physical Review Letters. 12 (10): 266–268. Bibcode:1964PhRvL..12..266K. doi:10.1103/PhysRevLett.12.266.
  69. ^ Englert, François; Brout, Robert (1964). «Broken Symmetry and the Mass of Gauge Vector Mesons». Physical Review Letters. 13 (9): 321–323. Bibcode:1964PhRvL..13..321E. doi:10.1103/PhysRevLett.13.321.
  70. ^ a b c Higgs, Peter (1964). «Broken Symmetries and the Masses of Gauge Bosons». Physical Review Letters. 13 (16): 508–509. Bibcode:1964PhRvL..13..508H. doi:10.1103/PhysRevLett.13.508.
  71. ^ a b c Guralnik, Gerald; Hagen, C. R.; Kibble, T. W. B. (1964). «Global Conservation Laws and Massless Particles». Physical Review Letters. 13 (20): 585–587. Bibcode:1964PhRvL..13..585G. doi:10.1103/PhysRevLett.13.585.
  72. ^ Higgs, Peter (1964). «Broken symmetries, massless particles, and gauge fields». Physics Letters. 12 (2): 132–133. Bibcode:1964PhL….12..132H. doi:10.1016/0031-9163(64)91136-9.
  73. ^ Higgs, Peter (24 November 2010). My Life as a Boson (PDF) (Report). Talk given by Peter Higgs at Kings College, London, 24 November 2010. Kings College, London. Archived from the original (PDF) on 4 November 2013. Retrieved 17 January 2013. Gilbert … wrote a response to [Klein and Lee’s paper] saying ‘No, you cannot do that in a relativistic theory. You cannot have a preferred unit time-like vector like that.’ This is where I came in, because the next month was when I responded to Gilbert’s paper by saying ‘Yes, you can have such a thing’ but only in a gauge theory with a gauge field coupled to the current.
  74. ^ Guralnik, G.S. (2011). «Gauge invariance and the Goldstone theorem – 1965 Feldafing talk». Modern Physics Letters A. 26 (19): 1381–1392. arXiv:1107.4592. Bibcode:2011MPLA…26.1381G. doi:10.1142/S0217732311036188. S2CID 118500709.
  75. ^ Higgs, Peter (1966). «Spontaneous symmetry breakdown without massless bosons». Physical Review. 145 (4): 1156–1163. Bibcode:1966PhRv..145.1156H. doi:10.1103/PhysRev.145.1156.
  76. ^ Kibble, Tom (1967). «Symmetry Breaking in Non-Abelian Gauge Theories». Physical Review. 155 (5): 1554–1561. Bibcode:1967PhRv..155.1554K. doi:10.1103/PhysRev.155.1554.
  77. ^ Guralnik, G.S.; Hagen, C.R.; Kibble, T.W.B. (1967). «Broken symmetries and the Goldstone theorem» (PDF). Advances in Physics. 2: 567. Archived from the original (PDF) on 24 September 2015. Retrieved 16 September 2014.
  78. ^ a b
    «Letters from the Past – A PRL Retrospective». Physical Review Letters. 12 February 2014. Archived from the original on 10 January 2010. Retrieved 7 May 2008.
  79. ^
    Weinberg, S. (1967). «A model of leptons». Physical Review Letters. 19 (21): 1264–1266. Bibcode:1967PhRvL..19.1264W. doi:10.1103/PhysRevLett.19.1264.
  80. ^
    Salam, A. (1968). Svartholm, N. (ed.). Elementary Particle Physics: Relativistic Groups and Analyticity. Eighth Nobel Symposium. Stockholm, SV: Almquvist and Wiksell. p. 367.
  81. ^
    Glashow, S.L. (1961). «Partial-symmetries of weak interactions». Nuclear Physics. 22 (4): 579–588. Bibcode:1961NucPh..22..579G. doi:10.1016/0029-5582(61)90469-2.
  82. ^ a b c
    Ellis, John; Gaillard, Mary K.; Nanopoulos, Dimitri V. (2012). «A historical profile of the Higgs boson». arXiv:1201.6045 [hep-ph].
  83. ^ Martin Veltman (8 December 1999). «From Weak Interactions to Gravitation» (PDF). The Nobel Prize. p. 391. Archived from the original (PDF) on 25 July 2018. Retrieved 9 October 2013.
  84. ^ a b c d e f Politzer, David (8 December 2004). «The Dilemma of Attribution». The Nobel Prize. Archived from the original on 21 March 2013. Retrieved 22 January 2013. Sidney Coleman published in Science magazine in 1979 a citation search he did documenting that essentially no one paid any attention to Weinberg’s Nobel Prize winning paper until the work of ‘t Hooft (as explicated by Ben Lee). In 1971 interest in Weinberg’s paper exploded. I had a parallel personal experience: I took a one-year course on weak interactions from Shelly Glashow in 1970, and he never even mentioned the Weinberg–Salam model or his own contributions.
  85. ^ Coleman, Sidney (14 December 1979). «The 1979 Nobel Prize in Physics». Science. 206 (4424): 1290–1292. Bibcode:1979Sci…206.1290C. doi:10.1126/science.206.4424.1290. PMID 17799637.
  86. ^ a b [1]Archived 10 January 2010 at archive.today Letters from the Past – A PRL Retrospective (50 year celebration, 2008)
  87. ^ Bernstein 1974, p. 9
  88. ^ Bernstein 1974, pp. 9, 36 (footnote), 43–44, 47
  89. ^ a b American Physical Society – «J. J. Sakurai Prize for Theoretical Particle Physics». Archived from the original on 12 February 2010. Retrieved 2 October 2009.
  90. ^ Merali, Zeeya (4 August 2010). «Physicists get political over Higgs». Nature. doi:10.1038/news.2010.390. Archived from the original on 25 January 2022. Retrieved 28 December 2011.
  91. ^ a b c d e f g h i Close, Frank (2011). The Infinity Puzzle: Quantum Field Theory and the Hunt for an Orderly Universe. Oxford: Oxford University Press. ISBN 978-0-19-959350-7.
  92. ^ a b G.S. Guralnik (2009). «The History of the Guralnik, Hagen and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles». International Journal of Modern Physics A. 24 (14): 2601–2627. arXiv:0907.3466. Bibcode:2009IJMPA..24.2601G. doi:10.1142/S0217751X09045431. S2CID 16298371.
  93. ^ a b c d e f Baglio, Julien; Djouadi, Abdelhak (2011). «Higgs production at the lHC». Journal of High Energy Physics. 1103 (3): 055. arXiv:1012.0530. Bibcode:2011JHEP…03..055B. doi:10.1007/JHEP03(2011)055. S2CID 119295294.
  94. ^
    «Collisions». LHC machine outreach. CERN. Archived from the original on 26 March 2020. Retrieved 26 July 2012.
  95. ^ a b c «Hunt for Higgs boson hits key decision point». NBC News. 6 December 2012. Archived from the original on 18 May 2020. Retrieved 19 January 2013.
  96. ^ «Welcome to the Worldwide LHC Computing Grid». WLCG – Worldwide LHC Computing Grid. CERN. Archived from the original on 25 July 2018. Retrieved 14 November 2012. [A] global collaboration of more than 170 computing centres in 36 countries … to store, distribute and analyse the ~25 Petabytes (25 million Gigabytes) of data annually generated by the Large Hadron Collider
  97. ^ «The Worldwide LHC Computing Grid». The Worldwide LHC Computing Grid. CERN. November 2017. Archived from the original on 7 November 2017. Retrieved 5 November 2017. It now links thousands of computers and storage systems in over 170 centres across 41 countries. … The WLCG is the world’s largest computing grid
  98. ^ Yao, W.-M.; et al. (2006). «Review of Particle Physics» (PDF). Journal of Physics G. 33 (1): 1–1232. arXiv:astro-ph/0601168. Bibcode:2006JPhG…33….1Y. doi:10.1088/0954-3899/33/1/001. Archived (PDF) from the original on 27 January 2017. Retrieved 25 October 2006.
  99. ^ The CDF Collaboration; The D0 Collaboration; The Tevatron New Physics, Higgs Working Group (2012). «Updated combination of CDF and D0 searches for Standard Model Higgs boson production with up to 10.0 fb−1 of data». arXiv:1207.0449 [hep-ex].
  100. ^ «Interim Summary Report on the Analysis of the 19 September 2008 Incident at the LHC» (PDF). CERN. 15 October 2008. EDMS 973073. Archived (PDF) from the original on 20 August 2013. Retrieved 28 September 2009.
  101. ^ «CERN releases analysis of LHC incident». Media and Press relations (Press release). CERN. 16 October 2008. Archived from the original on 12 November 2016. Retrieved 12 November 2016.
  102. ^ «LHC to restart in 2009». Media and Press relations (Press release). CERN. 5 December 2008. Archived from the original on 12 November 2016. Retrieved 12 November 2016.
  103. ^ «LHC progress report». CERN Bulletin (18). 3 May 2010. Archived from the original on 26 May 2018. Retrieved 7 December 2011.
  104. ^ «ATLAS experiment presents latest Higgs search status». ATLAS homepage. CERN. 13 December 2011. Archived from the original on 23 November 2016. Retrieved 13 December 2011.
  105. ^ Taylor, Lucas (13 December 2011). «CMS search for the Standard Model Higgs Boson in LHC data from 2010 and 2011». CMS public website. CERN. Archived from the original on 7 January 2012. Retrieved 13 December 2011.
  106. ^ a b c d e Overbye, D. (5 March 2013). «Chasing The Higgs Boson». The New York Times. Archived from the original on 5 March 2013. Retrieved 5 March 2013.
  107. ^ a b «ATLAS and CMS experiments present Higgs search status» (Press release). CERN Press Office. 13 December 2011. Archived from the original on 13 December 2012. Retrieved 14 September 2012. the statistical significance is not large enough to say anything conclusive. As of today what we see is consistent either with a background fluctuation or with the presence of the boson. Refined analyses and additional data delivered in 2012 by this magnificent machine will definitely give an answer
  108. ^ «Welcome». WLCG – Worldwide LHC Computing Grid. CERN. Archived from the original on 10 November 2012. Retrieved 29 October 2012.
  109. ^ CMS collaboration (2015). «Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV». The European Physical Journal C. 75 (5): 212. arXiv:1412.8662. Bibcode:2015EPJC…75..212K. doi:10.1140/epjc/s10052-015-3351-7. PMC 4433454. PMID 25999783.
  110. ^ ATLAS collaboration (2015). «Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector». Physical Review D. 91 (1): 012006. arXiv:1408.5191. Bibcode:2015PhRvD..91a2006A. doi:10.1103/PhysRevD.91.012006. S2CID 8672143.
  111. ^ ATLAS collaboration (2014). «Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector». Physical Review D. 90 (11): 112015. arXiv:1408.7084. Bibcode:2014PhRvD..90k2015A. doi:10.1103/PhysRevD.90.112015. S2CID 8202688.
  112. ^ «Press Conference: Update on the search for the Higgs boson at CERN on 4 July 2012». Indico.cern.ch. 22 June 2012. Archived from the original on 21 July 2012. Retrieved 4 July 2012.
  113. ^ «CERN to give update on Higgs search as curtain raiser to ICHEP conference». Media and Press relations (Press release). CERN. 22 June 2012. Archived from the original on 12 November 2016. Retrieved 12 November 2016.
  114. ^ «Scientists analyse global Twitter gossip around Higgs boson discovery». Phys.org. 23 January 2013. Archived from the original on 29 October 2013. Retrieved 6 February 2013. For the first time scientists have been able to analyse the dynamics of social media on a global scale before, during and after the announcement of a major scientific discovery.
    De Domenico, M.; Lima, A.; Mougel, P.; Musolesi, M. (2013). «The Anatomy of a Scientific Gossip». Scientific Reports. 3 (2013): 2980. arXiv:1301.2952. Bibcode:2013NatSR…3E2980D. doi:10.1038/srep02980. PMC 3798885. PMID 24135961.
  115. ^ «Higgs boson particle results could be a quantum leap». Times LIVE. 28 June 2012. Archived from the original on 4 July 2012. Retrieved 4 July 2012.
  116. ^ CERN prepares to deliver Higgs particle findings Archived 17 March 2021 at the Wayback Machine, Australian Broadcasting Corporation. Retrieved 4 July 2012.
  117. ^ «God Particle Finally Discovered? Higgs Boson News At Cern Will Even Feature Scientist It’s Named After». Huffingtonpost.co.uk. 3 July 2012. Archived from the original on 11 March 2013. Retrieved 19 January 2013.
  118. ^ Our Bureau (4 July 2012). «Higgs on way, theories thicken – Wait for news on God particle». The Telegraph – India. Archived from the original on 7 July 2012. Retrieved 19 January 2013.
  119. ^ Thornhill, Ted (3 July 2013). «God Particle Finally Discovered? Higgs Boson News At Cern Will Even Feature Scientist It’s Named After». Huffington Post. Archived from the original on 11 September 2013. Retrieved 23 July 2013.
  120. ^ Adrian Cho (13 July 2012). «Higgs Boson Makes Its Debut After Decades-Long Search». Science. 337 (6091): 141–143. Bibcode:2012Sci…337..141C. doi:10.1126/science.337.6091.141. PMID 22798574.
  121. ^ a b CMS collaboration (2012). «Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC». Physics Letters B. 716 (1): 30–61. arXiv:1207.7235. Bibcode:2012PhLB..716…30C. doi:10.1016/j.physletb.2012.08.021.
  122. ^ a b Taylor, Lucas (4 July 2012). «Observation of a New Particle with a Mass of 125 GeV». CMS Public Website. CERN. Archived from the original on 5 July 2012. Retrieved 4 July 2012.
  123. ^ «Latest Results from ATLAS Higgs Search». ATLAS News. CERN. 4 July 2012. Archived from the original on 23 November 2016. Retrieved 4 July 2012.
  124. ^ a b ATLAS collaboration (2012). «Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC». Physics Letters B. 716 (1): 1–29. arXiv:1207.7214. Bibcode:2012PhLB..716….1A. doi:10.1016/j.physletb.2012.08.020. S2CID 119169617.
  125. ^ a b c d e «Higgs bosons: theory and searches» (PDF). PDGLive. Particle Data Group. 12 July 2012. Archived (PDF) from the original on 8 March 2021. Retrieved 15 August 2012.
  126. ^ Gillies, James (23 July 2012). «LHC 2012 proton run extended by seven weeks». CERN Bulletin (30). Archived from the original on 26 May 2018. Retrieved 29 August 2012.
  127. ^ a b «Higgs boson behaving as expected». 3 News NZ. 15 November 2012. Archived from the original on 1 May 2014. Retrieved 15 November 2012.
  128. ^ Strassler, Matt (14 November 2012). «Higgs Results at Kyoto». Of Particular Significance: Conversations about science with theoretical physicist Matt Strassler (personal website). Archived from the original on 8 March 2021. Retrieved 10 January 2013.
  129. ^ Sample, Ian (14 November 2012). «Higgs particle looks like a bog Standard Model boson, say scientists». The Guardian. London, UK. Archived from the original on 26 January 2016. Retrieved 15 November 2012.
  130. ^ «CERN experiments observe particle consistent with long-sought Higgs boson». Media and Press relations (Press release). CERN. 4 July 2012. Archived from the original on 21 November 2017. Retrieved 12 November 2016.
  131. ^ «Person of the year 2012». Time. 19 December 2012. Archived from the original on 12 February 2013. Retrieved 13 February 2013.
  132. ^ «Higgs boson discovery has been confirmed». Forbes. Archived from the original on 25 October 2013. Retrieved 9 October 2013.
  133. ^ «Higgs boson confirmed; CERN discovery passes test». Slate.com. 11 September 2012. Archived from the original on 9 July 2013. Retrieved 9 October 2013.
  134. ^ «The year of the Higgs, and other tiny advances in science». NPR.org. National Public Radio. 1 January 2013. Archived from the original on 5 March 2014. Retrieved 9 October 2013.
  135. ^ «Confirmed: The Higgs boson does exist». The Sydney Morning Herald. 4 July 2012. Archived from the original on 25 January 2022. Retrieved 21 February 2020.
  136. ^ The discovery of the Higgs boson was announced in articles in Time,[131] Forbes,[132] Slate,[133] NPR,[134] and others.[135]
  137. ^ John Heilprin (27 January 2013). «CERN chief: Higgs boson quest could wrap up by midyear». NBCNews.com. AP. Archived from the original on 21 February 2013. Retrieved 20 February 2013. Rolf Heuer, director of [CERN], said he is confident that «towards the middle of the year, we will be there.» – Interview by AP, at the World Economic Forum, 26 January 2013.
  138. ^ Boyle, Alan (16 February 2013). «Will our universe end in a ‘big slurp’? Higgs-like particle suggests it might». NBCNews.com. Archived from the original on 21 February 2013. Retrieved 20 February 2013. ‘It’s going to take another few years’ after the collider is restarted to confirm definitively that the newfound particle is the Higgs boson.
  139. ^ Gillies, James (6 March 2013). «A question of spin for the new boson». CERN. Archived from the original on 8 March 2013. Retrieved 7 March 2013.
  140. ^ a b c
    Chatrchyan, S.; et al. (CMS Collaboration) (February 2013). «Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs». Physical Review Letters. 110 (8): 081803. arXiv:1212.6639. Bibcode:2013PhRvL.110h1803C. doi:10.1103/PhysRevLett.110.081803. PMID 23473131. S2CID 2621524.
  141. ^ a b c
    Aad, G.; et al. (ATLAS Collaboration) (7 October 2013). «Evidence for the spin-0 nature of the Higgs boson using ATLAS data». Phys. Lett. B. 726 (1–3): 120–144. arXiv:1307.1432. Bibcode:2013PhLB..726..120A. doi:10.1016/j.physletb.2013.08.026. S2CID 11562016.
  142. ^ Chatrchyan, S.; et al. (CMS collaboration) (2013). «Higgs-like Particle in a Mirror». Physical Review Letters. 110 (8): 081803. arXiv:1212.6639. Bibcode:2013PhRvL.110h1803C. doi:10.1103/PhysRevLett.110.081803. PMID 23473131. S2CID 2621524.
  143. ^ ATLAS; CMS Collaborations (2016). «Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s = 7 and 8 TeV». Journal of High Energy Physics. 2016 (8): 45. arXiv:1606.02266. Bibcode:2016JHEP…08..045A. doi:10.1007/JHEP08(2016)045. S2CID 118523967.
  144. ^ Heinemeyer, S.; Mariotti, C.; Passarino, G.; Tanaka, R.; Andersen, J. R.; Artoisenet, P.; Bagnaschi, E. A.; Banfi, A.; Becher, T. (2013). Handbook of LHC Higgs Cross Sections: 3. Higgs Properties: Report of the LHC Higgs Cross Section Working Group. CERN Yellow Reports: Monographs. doi:10.5170/cern-2013-004. ISBN 978-92-9083-389-5.
  145. ^ The ATLAS Collaboration (4 July 2022). «A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery». Nature. 607 (7917): 52–59. arXiv:2207.00092. Bibcode:2022Natur.607…52A. doi:10.1038/s41586-022-04893-w. ISSN 1476-4687. PMC 9259483. PMID 35788192.
  146. ^ «Highlights from the 2019 Moriond conference (electroweak physics)». 29 March 2019. Archived from the original on 21 April 2019. Retrieved 24 April 2019.
  147. ^ «All together now: adding more pieces to the Higgs boson puzzle». ATLAS collaboration. 18 March 2019. Archived from the original on 16 April 2019. Retrieved 24 April 2019.
  148. ^ «Long-sought decay of Higgs boson observed». Media and Press relations (Press release). CERN. 28 August 2018. Archived from the original on 22 November 2018. Retrieved 30 August 2018.
  149. ^ Atlas Collaboration (28 August 2018). «ATLAS observes elusive Higgs boson decay to a pair of bottom quarks». Atlas (Press release). CERN. Archived from the original on 28 August 2018. Retrieved 28 August 2018.
  150. ^ CMS Collaboration (August 2018). «Observation of Higgs boson decay to bottom quarks». CMS. Archived from the original on 30 August 2018. Retrieved 30 August 2018.
    CMS Collaboration (24 August 2018). «Observation of Higgs boson decay to bottom quarks». CERN Document Server. CERN. Archived from the original on 25 January 2022. Retrieved 30 August 2018.
    CMS Collaboration (24 August 2018). «Observation of Higgs boson decay to bottom quarks». Physical Review Letters. 121 (12): 121801. arXiv:1808.08242. Bibcode:2018PhRvL.121l1801S. doi:10.1103/PhysRevLett.121.121801. PMID 30296133. S2CID 118901756.
  151. ^ Peskin & Schroeder 1995, pp. 717–719, 787–791
  152. ^ Peskin & Schroeder 1995, pp. 715–716
  153. ^ Branco, G. C.; Ferreira, P.M.; Lavoura, L.; Rebelo, M.N.; Sher, Marc; Silva, João P. (July 2012). «Theory and phenomenology of two-Higgs-doublet models». Physics Reports. 516 (1): 1–102. arXiv:1106.0034. Bibcode:2012PhR…516….1B. doi:10.1016/j.physrep.2012.02.002. S2CID 119214990.
  154. ^ Csaki, C.; Grojean, C.; Pilo, L.; Terning, J. (2004). «Towards a realistic model of Higgsless electroweak symmetry breaking». Physical Review Letters. 92 (10): 101802. arXiv:hep-ph/0308038. Bibcode:2004PhRvL..92j1802C. doi:10.1103/PhysRevLett.92.101802. PMID 15089195. S2CID 6521798.
  155. ^ Csaki, C.; Grojean, C.; Pilo, L.; Terning, J.; Terning, John (2004). «Gauge theories on an interval: Unitarity without a Higgs». Physical Review D. 69 (5): 055006. arXiv:hep-ph/0305237. Bibcode:2004PhRvD..69e5006C. doi:10.1103/PhysRevD.69.055006. S2CID 119094852.
  156. ^ a b «The Hierarchy Problem: why the Higgs has a snowball’s chance in hell». Quantum Diaries. 1 July 2012. Archived from the original on 29 March 2013. Retrieved 19 March 2013.
  157. ^ «The Hierarchy Problem | Of Particular Significance». Profmattstrassler.com. 16 August 2011. Archived from the original on 7 March 2013. Retrieved 9 October 2013.
  158. ^
    D. J. E. Callaway (1988). «Triviality Pursuit: Can Elementary Scalar Particles Exist?». Physics Reports. 167 (5): 241–320. Bibcode:1988PhR…167..241C. doi:10.1016/0370-1573(88)90008-7.
  159. ^ Gunion, John (2000). The Higgs Hunter’s Guide (illustrated, reprint ed.). Westview Press. pp. 1–3. ISBN 978-0-7382-0305-8.
  160. ^ Randall, Lisa (19 September 2006). Warped Passages: Unraveling the mysteries of the universe’s hidden dimensions. Ecco. p. 286. ISBN 978-006053109-6.
  161. ^ Sen, Ashoke (May 2002). «Rolling tachyon». J. High Energy Phys. 2002 (204): 48. arXiv:hep-th/0203211. Bibcode:2002JHEP…04..048S. doi:10.1088/1126-6708/2002/04/048. S2CID 12023565.
  162. ^ Kutasov, David; Marino, Marcos & Moore, Gregory W. (2000). «Some exact results on tachyon condensation in string field theory». JHEP. 2000 (10): 045. arXiv:hep-th/0009148. Bibcode:2000JHEP…10..045K. doi:10.1088/1126-6708/2000/10/045. S2CID 15664546.
  163. ^ Aharonov, Y.; Komar, A.; Susskind, L. (1969). «Superluminal Behavior, Causality, and Instability». Phys. Rev. 182 (5): 1400–1403. Bibcode:1969PhRv..182.1400A. doi:10.1103/PhysRev.182.1400.
  164. ^ Feinberg, Gerald (1967). «Possibility of faster-than-light particles». Physical Review. 159 (5): 1089–1105. Bibcode:1967PhRv..159.1089F. doi:10.1103/PhysRev.159.1089.
  165. ^ Peskin & Schroeder 1995
  166. ^ Flatow, Ira (6 July 2012). «At long last, the Higgs particle … maybe». NPR. Archived from the original on 10 July 2012. Retrieved 10 July 2012.
  167. ^ «Explanatory figures for the Higgs boson exclusion plots». ATLAS News (Press release). CERN. 2011. Archived from the original on 16 September 2017. Retrieved 6 July 2012.
  168. ^
    Carena, M.; Grojean, C.; Kado, M.; Sharma, V. (2013). Status of Higgs boson physics (PDF). Lawrence Berkeley Laboratory (Report). Berkeley, CA: University of California. p. 192. Archived (PDF) from the original on 10 December 2017. Retrieved 5 November 2017.
  169. ^
    Lykken, Joseph D. (27 June 2009). «Beyond the Standard Model». Proceedings of the 2009 European School of High-Energy Physics. Bautzen, Germany. arXiv:1005.1676. Bibcode:2010arXiv1005.1676L.
  170. ^
    Plehn, Tilman (2012). Lectures on LHC Physics. Lecture Notes in Physics. Vol. 844. Springer. §1.2.2. arXiv:0910.4182. Bibcode:2012LNP…844…..P. doi:10.1007/978-3-642-24040-9. ISBN 978-3-642-24039-3. S2CID 118019449.
  171. ^
    «LEP Electroweak Working Group». CERN. Archived from the original on 3 April 2008. Retrieved 4 April 2006.
  172. ^
    Peskin, Michael E.; Wells, James D. (2001). «How can a heavy Higgs boson be consistent with the precision electroweak measurements?». Physical Review D. 64 (9): 093003. arXiv:hep-ph/0101342. Bibcode:2001PhRvD..64i3003P. doi:10.1103/PhysRevD.64.093003. S2CID 5932066.
  173. ^ a b c d Baglio, Julien; Djouadi, Abdelhak (2010). «Predictions for Higgs production at the Tevatron and the associated uncertainties». Journal of High Energy Physics. 1010 (10): 063. arXiv:1003.4266. Bibcode:2010JHEP…10..064B. doi:10.1007/JHEP10(2010)064. S2CID 119199894.
  174. ^ a b c Teixeira-Dias (LEP Higgs working group), P. (2008). «Higgs boson searches at LEP». Journal of Physics: Conference Series. 110 (4): 042030. arXiv:0804.4146. Bibcode:2008JPhCS.110d2030T. doi:10.1088/1742-6596/110/4/042030. S2CID 16443715.
  175. ^ Asquith, Lily (22 June 2012). «Why does the Higgs decay?». Life and Physics. London: The Guardian. Archived from the original on 1 November 2013. Retrieved 14 August 2012.
  176. ^ The CMS Collaboration (4 July 2022). «A portrait of the Higgs boson by the CMS experiment ten years after the discovery». Nature. 607 (7917): 60–68. arXiv:2207.00043. Bibcode:2022Natur.607…60C. doi:10.1038/s41586-022-04892-x. ISSN 1476-4687. PMC 9259501. PMID 35788190.
  177. ^
    Liu, G.Z.; Cheng, G. (2002). «Extension of the Anderson-Higgs mechanism». Physical Review B. 65 (13): 132513. arXiv:cond-mat/0106070. Bibcode:2002PhRvB..65m2513L. CiteSeerX 10.1.1.242.3601. doi:10.1103/PhysRevB.65.132513. S2CID 118551025.
  178. ^ a b c d e
    «Mass appeal: As physicists close in on the Higgs boson, they should resist calls to change its name». Nature (editorial). 483, 374 (7390): 374. 21 March 2012. Bibcode:2012Natur.483..374.. doi:10.1038/483374a. PMID 22437571.
  179. ^ a b c d
    Becker, Kate (29 March 2012). «A Higgs by any other name». Physics (blog). NOVA. PBS. Archived from the original on 17 December 2012. Retrieved 21 January 2013.
  180. ^
    «Frequently asked questions: The Higgs!». CERN Bulletin. No. 28. 2012. Archived from the original on 5 July 2012. Retrieved 18 July 2012.
  181. ^ a b
    Woit, Peter (13 April 2013). ««Not even wrong»: Anderson on Anderson-Higgs». Mathematics. Woit’s physics blog (blog). New York, NY: Columbia University. Archived from the original on 19 October 2013. Retrieved 6 August 2013.
  182. ^
    Sample, Ian (4 July 2012). «Higgs boson’s many great minds cause a Nobel prize headache». The Guardian. London, UK. Archived from the original on 17 October 2013. Retrieved 23 July 2013.
  183. ^ a b
    Peskin, M. (July 2012). «40 years of the Higgs boson» (PDF). 2012 SLAC Summer Institute Conferences. Presentation at SSI 2012. Stanford University. pp. 3–5. Archived (PDF) from the original on 1 May 2014. Retrieved 21 January 2013. quoting Lee’s ICHEP 1972 presentation at Fermilab: «… which is known as the Higgs mechanism …» and «Lee’s locution» – his footnoted explanation of this shorthand.
  184. ^
    U.R. Phys. & Astro. press office (8 October 2007). «Nobelist Steven Weinberg praises professor Carl Hagen and collaborators for Higgs Boson theory». Department of Physics and Astronomy (Press release). Rochester, NY: University of Rochester. Archived from the original on 16 April 2008. — Rochester’s Hagen Sakurai Prize announcement
  185. ^
    Hagen, C.R. (2010). Sakurai Prize talk (video) – via YouTube.
  186. ^ a b
    Cho, A. (14 September 2012). «Why the ‘Higgs’?» (PDF). Particle physics. Science. 337 (6100): 1287. doi:10.1126/science.337.6100.1287. PMID 22984044. Archived from the original (PDF) on 4 July 2013. Retrieved 12 February 2013. Lee … apparently used the term ‘Higgs boson’ as early as 1966 … but what may have made the term stick is a seminal paper Steven Weinberg … published in 1967 … Weinberg acknowledged the mix-up in an essay in the New York Review of Books in May 2012.
    (See also original article in

    • New York Review of Books (2012)[187]
    • Close, Frank (2011). «[see book extract]». The Infinity Puzzle. Oxford University Press. p. 372 – via Google Books.)[91]

    which identified the error).

  187. ^ a b
    Weinberg, Steven (10 May 2012). «The crisis of big science». The New York Review of Books. footnote 1. Archived from the original on 21 January 2013. Retrieved 12 February 2013.
  188. ^
    Lederman, Leon; Teresi, Dick (2006). The God Particle: If the universe is the answer, what is the question?. Houghton Mifflin Harcourt. ISBN 978-0-547-52462-7. Archived from the original on 13 May 2016. Retrieved 27 June 2015.
  189. ^
    Dickerson, Kelly (8 September 2014). «Stephen Hawking says ‘god particle’ could wipe out the universe». livescience.com. Archived from the original on 28 January 2015. Retrieved 23 February 2015.
  190. ^
    Baggott, Jim (2012). Higgs: The invention and discovery of the ‘God particle’. Oxford University Press. ISBN 978-0-19-165003-1. Archived from the original on 20 May 2016. Retrieved 27 June 2015.
  191. ^
    The Higgs Boson: Searching for the God Particle. Scientific American / Macmillan. 2012. ISBN 978-1-4668-2413-3. Archived from the original on 9 June 2016. Retrieved 27 June 2015.
  192. ^
    Jaeckel, Ted (2007). The God Particle: The discovery and modeling of the ultimate prime particle. Universal-Publishers. ISBN 978-1-58112-959-5. Archived from the original on 29 April 2016. Retrieved 27 June 2015.
  193. ^ a b c Aschenbach, Joy (5 December 1993). «No resurrection in sight for moribund super collider». Science. Los Angeles Times. Archived from the original on 6 November 2013. Retrieved 16 January 2013.
  194. ^
    «A supercompetition for Illinois». Chicago Tribune. 31 October 1986. Archived from the original on 15 May 2013. Retrieved 16 January 2013. The SSC, proposed by the U.S. Department of Energy in 1983, is a mind-bending project … this gigantic laboratory … this titanic project
  195. ^
    Diaz, Jesus (15 December 2012). «This is [the] world’s largest super collider that never was». Gizmodo. Archived from the original on 18 January 2013. Retrieved 16 January 2013. … this titanic complex …
  196. ^
    Abbott, Charles (June 1987). «[no title cited]«. Illinois Issues Journal. p. 18. Archived from the original on 1 November 2013. Retrieved 16 January 2013. Lederman, who considers himself an unofficial propagandist for the super collider, said the SSC could reverse the physics brain drain in which bright young physicists have left America to work in Europe and elsewhere.
  197. ^ Kevles, Dan (Winter 1995). «Good-bye to the SSC: On the life and death of the superconducting super collider» (PDF). Engineering & Science. California Institute of Technology. 58 (2): 16–25. Archived (PDF) from the original on 11 May 2013. Retrieved 16 January 2013. Lederman, one of the principal spokesmen for the SSC, was an accomplished high-energy experimentalist who had made Nobel Prize-winning contributions to the development of the Standard Model during the 1960s (although the prize itself did not come until 1988). He was a fixture at congressional hearings on the collider, an unbridled advocate of its merits.
  198. ^
    Calder, Nigel (2005). Magic Universe: A grand tour of modern science. pp. 369–370. ISBN 978-0-19-162235-9. Archived from the original on 25 January 2022. Retrieved 5 September 2020. The possibility that the next big machine would create the Higgs became a carrot to dangle in front of funding agencies and politicians. A prominent American physicist, Leon lederman [sic], advertised the Higgs as The God Particle in the title of a book published in 1993 … Lederman was involved in a campaign to persuade the US government to continue funding the Superconducting Super Collider … the ink was not dry on Lederman’s book before the US Congress decided to write off the billions of dollars already spent
  199. ^
    Lederman, Leon (1993). The God Particle: If the universe is the answer, what is the question?. Dell Publishing. chapter 2, p. 2. ISBN 978-0-385-31211-0. Retrieved 30 July 2015.
  200. ^
    Alister McGrath (15 December 2011). «[The] Higgs boson: The particle of faith». The Daily Telegraph. Archived from the original on 15 December 2011. Retrieved 15 December 2011.
  201. ^
    Sample, Ian (3 March 2009). «Father of the god particle: Portrait of Peter Higgs unveiled». The Guardian. London, UK. Archived from the original on 12 September 2014. Retrieved 24 June 2009.
  202. ^ a b
    Chivers, Tom (13 December 2011). «How the ‘God particle’ got its name». The Telegraph. London, UK. Archived from the original on 9 January 2012. Retrieved 3 December 2012.
  203. ^
    «Key scientist sure «God particle» will be found soon». Reuters News Service. 7 April 2008. Archived from the original on 23 February 2021. Retrieved 2 July 2017.
  204. ^
    «The man behind the ‘God particle’«. New Scientist (interview). 13 September 2008. pp. 44–45. Archived from the original on 13 September 2008. Retrieved 29 August 2017.

    ORIGINAL INTERVIEW

    «Father of the ‘God particle’«. The Guardian. 30 June 2008. Archived from the original on 1 December 2016. Retrieved 14 December 2016.
  205. ^
    Borowitz, Andy (13 July 2012). «5 questions for the Higgs boson». The New Yorker. Archived from the original on 12 November 2020. Retrieved 12 December 2019.
  206. ^
    Sample, Ian (2010). Massive: The hunt for the God particle. pp. 148–149, & 278–279. ISBN 978-1-905264-95-7. Archived from the original on 25 January 2022. Retrieved 5 September 2020.
  207. ^
    Cole, K. (14 December 2000). «One thing is perfectly clear: Nothingness is perfect». Science File. Los Angeles Times. Archived from the original on 5 October 2015. Retrieved 17 January 2013. Consider the early universe–a state of pure, perfect nothingness; a formless fog of undifferentiated stuff … ‘perfect symmetry’ … What shattered this primordial perfection? One likely culprit is the so-called Higgs field … Physicist Leon Lederman compares the way the Higgs operates to the biblical story of Babel [whose citizens] all spoke the same language … Like God, says Lederman, the Higgs differentiated the perfect sameness, confusing everyone (physicists included) … [Nobel Prizewinner Richard] Feynman wondered why the universe we live in was so obviously askew … Perhaps, he speculated, total perfection would have been unacceptable to God. And so, just as God shattered the perfection of Babel, ‘God made the laws only nearly symmetrical’
  208. ^ Lederman, p. 22 et seq.:
    Something we cannot yet detect and which, one might say, has been put there to test and confuse us … The issue is whether physicists will be confounded by this puzzle or whether, in contrast to the unhappy Babylonians, we will continue to build the tower and, as Einstein put it, «know the mind of God».
    And the Lord said, Behold the people are un-confounding my confounding. And the Lord sighed and said, Go to, let us go down, and there give them the God Particle so that they may see how beautiful is the universe I have made.

  209. ^
    Sample, Ian (12 June 2009). «Higgs competition: Crack open the bubbly, the God particle is dead». The Guardian. London, UK. Archived from the original on 12 January 2015. Retrieved 4 May 2010.
  210. ^
    Gordon, Fraser (5 July 2012). «Introducing the higgson». physicsworld.com. Archived from the original on 8 July 2012. Retrieved 25 August 2012.
  211. ^
    Wolchover, Natalie (3 July 2012). «Higgs boson explained: How the ‘God particle’ gives things mass». Huffington Post. Archived from the original on 20 April 2013. Retrieved 21 January 2013.
  212. ^
    Oliver, Laura (4 July 2012). «Higgs boson: How would you explain it to a seven-year-old?». The Guardian. London, UK. Archived from the original on 22 October 2014. Retrieved 21 January 2013.
  213. ^
    Zimmer, Ben (15 July 2012). «Higgs boson metaphors as clear as molasses». The Boston Globe. Archived from the original on 4 February 2013. Retrieved 21 January 2013.
  214. ^ «The Higgs particle: an analogy for Physics classroom (section)». www.lhc-closer.es (a collaboration website of LHCb physicist Xabier Vidal and High School Teachers and CERN educator Ramon Manzano). Archived from the original on 5 July 2012. Retrieved 9 January 2013.
  215. ^ Flam, Faye (12 July 2012). «Finally – a Higgs boson story anyone can understand». The Philadelphia Inquirer (philly.com). Archived from the original on 23 March 2013. Retrieved 21 January 2013.
  216. ^
    Sample, Ian (28 April 2011). «How will we know when the Higgs particle has been detected?». The Guardian. London, UK. Archived from the original on 26 January 2016. Retrieved 21 January 2013.
  217. ^ a b
    Miller, David (1993). «A quasi-political explanation of the Higgs boson; for Mr. Waldegrave, UK Science Minister». Archived from the original on 15 March 2010. Retrieved 10 July 2012.
  218. ^
    Jepsen, Kathryn (1 March 2012). «Ten things you may not know about the Higgs boson». Symmetry Magazine. Archived from the original on 14 August 2012. Retrieved 10 July 2012.
  219. ^
    Goldberg, David (17 November 2010). «What’s the matter with the Higgs boson?». io9.com. Archived from the original on 21 January 2013. Retrieved 21 January 2013.{{cite web}}: CS1 maint: unfit URL (link)
  220. ^
    «The Nobel Prize in Physics 1979». official Nobel Prize website (Press release). Archived from the original on 17 June 2017. Retrieved 13 June 2017.
  221. ^
    «The Nobel Prize in Physics 1999». official Nobel Prize website (Press release). Archived from the original on 16 June 2017. Retrieved 13 June 2017.
  222. ^
    «Special Breakthrough Prize Laureates». breakthroughprize.org. 2013. Archived from the original on 15 January 2017.
  223. ^
    «2013 Nobel Prize in Physics». official Nobel Prize website (Press release). Archived from the original on 11 June 2017. Retrieved 13 June 2017.
  224. ^
    Overbye, D. (8 October 2013). «For Nobel, they can thank the ‘god particle’«. The New York Times. Archived from the original on 30 June 2017. Retrieved 3 November 2013.
  225. ^
    Daigle, Katy (10 July 2012). «India: Enough about Higgs, let’s discuss the boson». AP News. Archived from the original on 23 September 2012. Retrieved 10 July 2012.
  226. ^
    Bal, Hartosh Singh (19 September 2012). «The Bose in the Boson». The New York Times. Archived from the original on 29 December 2019. Retrieved 21 September 2012.
  227. ^
    Alikhan, Anvar (16 July 2012). «The spark in a crowded field». Outlook India. Archived from the original on 9 July 2012. Retrieved 10 July 2012.
  228. ^ a b c d Peskin & Schroeder 1995, Chapter 20
  229. ^
    Nakano, T.; Nishijima, N. (1953). «Charge independence for V-particles». Progress of Theoretical Physics. 10 (5): 581. Bibcode:1953PThPh..10..581N. doi:10.1143/PTP.10.581.
  230. ^
    Nishijima, K. (1955). «Charge independence theory of V-particles». Progress of Theoretical Physics. 13 (3): 285–304. Bibcode:1955PThPh..13..285N. doi:10.1143/PTP.13.285.
  231. ^
    Gell-Mann, M. (1956). «The interpretation of the new particles as displaced charged multiplets». Il Nuovo Cimento. 4 (S2): 848–866. Bibcode:1956NCim….4S.848G. doi:10.1007/BF02748000. S2CID 121017243.

Sources[edit]

  • Bernstein, Jeremy (January 1974). «Spontaneous symmetry breaking, gauge theories, the Higgs mechanism and all that» (PDF). Reviews of Modern Physics. 46 (1): 7–48. Bibcode:1974RvMP…46….7B. doi:10.1103/RevModPhys.46.7. Archived from the original (PDF) on 21 January 2013. Retrieved 10 December 2012.
  • Peskin, Michael E.; Schroeder, Daniel V. (1995). An Introduction to Quantum Field Theory. Reading, MA: Addison-Wesley Publishing Company. ISBN 978-0-201-50397-5.
  • Tipler, Paul; Llewellyn, Ralph (2003). Modern Physics. W. H. Freeman. ISBN 978-0-7167-4345-3.
  • Griffiths, David (2008). Introduction to Elementary Particles (2nd revised ed.). WILEY-VCH. ISBN 978-3-527-40601-2.

Further reading[edit]

  • Nambu, Yoichiro; Jona-Lasinio, Giovanni (1961). «Dynamical model of elementary particles based on an analogy with superconductivity». Physical Review. 122 (1): 345–358. Bibcode:1961PhRv..122..345N. doi:10.1103/PhysRev.122.345.
  • Anderson, Philip W. (1963). «Plasmons, gauge invariance, and mass». Physical Review. 130 (1): 439–442. Bibcode:1963PhRv..130..439A. doi:10.1103/PhysRev.130.439.
  • Klein, Abraham; Lee, Benjamin W. (1964). «Does spontaneous breakdown of symmetry imply zero-mass particles?». Physical Review Letters. 12 (10): 266–268. Bibcode:1964PhRvL..12..266K. doi:10.1103/PhysRevLett.12.266.
  • Gilbert, Walter (1964). «Broken symmetries and massless particles». Physical Review Letters. 12 (25): 713–714. Bibcode:1964PhRvL..12..713G. doi:10.1103/PhysRevLett.12.713.
  • Higgs, Peter (1964). «Broken symmetries, massless particles and gauge fields». Physics Letters. 12 (2): 132–133. Bibcode:1964PhL….12..132H. doi:10.1016/0031-9163(64)91136-9.
  • Guralnik, Gerald S.; Hagen, C.R.; Kibble, Tom W.B. (1968). «Broken symmetries and the Goldstone theorem». In Cool, R.L.; Marshak, R.E. (eds.). Advances in Physics. Vol. 2. Interscience Publishers. pp. 567–708. ISBN 978-0-470-17057-1. Archived from the original on 23 April 2012. Retrieved 18 June 2011.
  • Carroll, Sean (2013). The Particle at the End of the Universe: How the hunt for the Higgs boson leads us to the edge of a new world. Dutton. ISBN 978-0-14-218030-3.
  • Jakobs, Karl; Seez, Chris (2015). «The Higgs boson discovery». Scholarpedia. 10 (9): 32413. doi:10.4249/scholarpedia.32413.

External links[edit]

Look up higgs boson in Wiktionary, the free dictionary.

Popular science, mass media, and general coverage[edit]

  • Higgs Boson observation at CERN
  • Hunting the Higgs Boson at C.M.S. Experiment, at CERN
  • The Higgs Boson by the CERN exploratorium.
  • Particle Fever, documentary film about the search for the Higgs Boson.
  • The Atom Smashers, documentary film about the search for the Higgs Boson at Fermilab.
  • Collected Articles at the Guardian
  • Video (04:38) – CERN Announcement on 4 July 2012, of the discovery of a particle which is suspected will be a Higgs Boson.
  • Video1 (07:44) + Video2 (07:44) – Higgs Boson Explained by CERN Physicist, Dr. Daniel Whiteson (16 June 2011).
  • HowStuffWorks: What exactly is the Higgs Boson?
  • Carroll, Sean. «Higgs Boson with Sean Carroll». Sixty Symbols. University of Nottingham.
  • Overbye, Dennis (5 March 2013). «Chasing the Higgs Boson: How 2 teams of rivals at CERN searched for physics’ most elusive particle». New York Times Science pages. Retrieved 22 July 2013. – New York Times «behind the scenes» style article on the Higgs’ search at ATLAS and CMS
  • The story of the Higgs theory by the authors of the PRL papers and others closely associated:
    • Higgs, Peter (2010). «My Life as a Boson» (PDF). Talk given at Kings College, London, 24 November 2010. Archived from the original (PDF) on 4 November 2013. Retrieved 17 January 2013. (also: Higgs, Peter (24 November 2010). «My Life As a Boson: The Story of «the Higgs»«. International Journal of Modern Physics A. 17: 86–88. Bibcode:2002IJMPA..17S..86H. doi:10.1142/S0217751X02013046.)
    • Kibble, Tom (2009). «Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism (history)». Scholarpedia. Retrieved 17 January 2013. (also: Kibble, Tom (2009). «Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism (history)». Scholarpedia. 4 (1): 8741. Bibcode:2009SchpJ…4.8741K. doi:10.4249/scholarpedia.8741.)
    • Guralnik, Gerald (2009). «The History of the Guralnik, Hagen and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles». International Journal of Modern Physics A. 24 (14): 2601–2627. arXiv:0907.3466. Bibcode:2009IJMPA..24.2601G. doi:10.1142/S0217751X09045431. S2CID 16298371., Guralnik, Gerald (2011). «The Beginnings of Spontaneous Symmetry Breaking in Particle Physics. Proceedings of the DPF-2011 Conference, Providence, RI, 8–13 August 2011». arXiv:1110.2253v1 [physics.hist-ph]., and Guralnik, Gerald (2013). «Heretical Ideas that Provided the Cornerstone for the Standard Model of Particle Physics». Archived 15 October 2013 at the Wayback Machine SPG Mitteilungen March 2013, No. 39, (p. 14), and Talk at Brown University about the 1964 PRL papers
    • Philip Anderson (not one of the PRL authors) on symmetry breaking in superconductivity and its migration into particle physics and the PRL papers
  • Cartoon about the search
  • Cham, Jorge (19 February 2014). «True Tales from the Road: The Higgs Boson Re-Explained». Piled Higher and Deeper. Retrieved 25 February 2014.
  • Higgs Boson, BBC Radio 4 discussion with Jim Al-Khalili, David Wark & Roger Cashmore (In Our Time, 18 November 2004)

Significant papers and other[edit]

  • «Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC». Physics Letters B. 716 (2012): 1–29. 2012. arXiv:1207.7214. Bibcode:2012PhLB..716….1A. doi:10.1016/j.physletb.2012.08.020. S2CID 119169617.
  • «Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC». Physics Letters B. 716 (2012): 30–61. 2012. arXiv:1207.7235. Bibcode:2012PhLB..716…30C. doi:10.1016/j.physletb.2012.08.021.
  • Particle Data Group: Review of searches for Higgs Bosons.
  • 2001, a spacetime odyssey: proceedings of the Inaugural Conference of the Michigan Center for Theoretical Physics : Michigan, 21–25 May 2001, (pp. 86–88), ed. Michael J. Duff, James T. Liu, ISBN 978-981-238-231-3, containing Higgs’ story of the Higgs Boson.
  • Migdal, A. A.; Polyakov, A. M. (1966). «Spontaneous Breakdown of Strong Interaction Symmetry and the Absence of Massless Particles» (PDF). Soviet Physics JETP. 24 (1): 91. Bibcode:1967JETP…24…91M. S2CID 34510322. Archived from the original (PDF) on 21 September 2018. – example of a 1966 Russian paper on the subject.
  • The Department of Energy Explains … the Higgs Boson

Introductions to the field[edit]

  • Electroweak Symmetry Breaking – A pedagogic introduction to electroweak symmetry breaking with step by step derivations of many key relations, by Robert D. Klauber, 15 January 2018 (archived at Wayback Machine)
  • Spontaneous symmetry breaking, gauge theories, the Higgs mechanism and all that (Bernstein, Reviews of Modern Physics Jan 1974) – an introduction of 47 pages covering the development, history and mathematics of Higgs theories from around 1950 to 1974.

Хиггсовский бозон

Хиггсовский бозон

Бозон Хиггса, или Хиггсовский бозон (иногда говорят просто хиггс) — элементарная частица, квант поля Хиггса, с необходимостью возникающая в Стандартной Модели вследствие хиггсовского механизма спонтанного нарушения электрослабой симметрии. По построению, хиггсовский бозон является скалярной частицей, то есть обладает нулевым спином. Постулирован Питером Хиггсом в 1960 году (по другим данным, в 1964 году), в рамках Стандартной Модели отвечает за массу элементарных частиц.

При минимальной реализации хиггсовского механизма должен возникать один нейтральный хиггсовский бозон; в расширенных моделях спонтанного нарушения симметрии может возникнуть несколько хиггсовских бозонов различной массы, в том числе и заряженные.

Содержание

  • 1 Эксперименты по поиску и оценке массы хиггсовского бозона
  • 2 Бозон Хиггса в массовом сознании
  • 3 Примечания
  • 4 Ссылки
  • 5 Литература

Эксперименты по поиску и оценке массы хиггсовского бозона

Поиски хиггсовского бозона в на Большом электрон-позитронном коллайдере (LEP) (эксперимент завершён в 2001 году, энергия 104 ГэВ на каждый пучок, то есть суммарная энергия пучков в системе центра масс 208 ГэВ) не увенчались успехом: были зафиксированы три события-кандидата на детекторе ALEPH при массе 114 ГэВ, два — на DELPHI и одно — на L3. Такое количество событий приблизительно соответствовало ожидавшемуся уровню фона. Предполагается, что вопрос о существовании бозона Хиггса прояснится окончательно после вступления в строй Большого адронного коллайдера (LHC).

В 2001 году была проведена повторная обработка данных эксперимента D0 по определению массы t-кварка, проводившегося на синхротроне Тэватрон в Национальной ускорительной лаборатории им. Энрико Ферми, в ходе этой обработки была получена уточнённая оценка массы, что привело к переоценке верхней границы массы бозона Хиггса до 251 ГэВ.[1]

Бозон Хиггса в массовом сознании

В СМИ бозон Хиггса охарактеризовали как «частицу бога».[2] Предположения, что эта частица создаёт всю массу Вселенной,[3] вызвали страхи, что искусственное её получение может вызвать цепную реакцию непроизвольного роста массы с появлением чёрной дыры. С другой стороны, невозможность открыть этот бозон может скомпрометировать всю стандартную физику элементарных частиц.[4]

Примечания

  1. «Частица бога» не откроет тайну американцам
  2. В поисках бозона Хиггса
  3. В физике элементарных частиц грядёт смена теорий

Ссылки

  • Поиск хиггсовского бозона на LHC
  • Gordon Fraser, Season of Higgs and melodrama, CERN Courier Vol.41, N2, pp.24-26 (March 2001), перевод Н. Никитина
  • Higgs physics at the LHC
  • Phys. Lett., 12 (1964) p 132; Phys. Rev. Lett. 13 (1964) p 508 — оригинальные статьи П.Хиггса (необходима авторизация)
  • Европейские ядерщики ищут бозон Хиггса

Литература

  • Богуш А. А. Введение в калибровочную полевую теорию электрослабых взаимодействий. — 2-e изд.. — УРСС, 2003. — ISBN 5-354-00436-5
  • А. И. Вайнштейн, В. И. Захаров, М. А. Шифман. Хиггсовские частицы // УФН. — 1980. — Т. 131. — № 8.

Элементарные частицы (список)

Фермионы

Кварки: Верхний • Нижний • Странный • Очарованный • Прелестный • Истинный

Лептоны: Электрон • Позитрон • Мюон • Тау-лептон • Нейтрино

Калибровочные бозоны Фотоны • W- и Z-бозоны • Глюоны
До сих пор не обнаружены Бозон Хиггса • Гравитон • Другие гипотетические частицы

Wikimedia Foundation.
2010.

Полезное

Смотреть что такое «Хиггсовский бозон» в других словарях:

  • Бозон Хиггса — Моделирование, показывающее появление бозона Хиггса Бозон Хиггса, Хиггсовский бозон, хиггсон[1]  теоретически предсказанная …   Википедия

  • Хиггсовский механизм — или механизм Хиггса (точнее, механизм Андерсона Хиггса), предложенный английским физиком Питером Хиггсом в 1964 г. и основанный на предположении Филиппа Андерсона, теория, которая описывает, как приобретают массы все элементарные частицы.… …   Википедия

  • Хиггсовское поле — Поле Хиггса или хиггсовское поле, названное в честь английского физика Питера Хиггса,  предполагаемое поле, обеспечивающее спонтанное нарушение симметрии электрослабых взаимодействий благодаря нарушению симметрии вакуума. Квант этого поля … …   Википедия

  • Поле Хиггса — или хиггсовское поле  гипотетическое поле, названное в честь английского физика Питера Хиггса, обеспечивающее спонтанное нарушение симметрии электрослабых взаимодействий благодаря нарушению симметрии вакуума. Квант этого поля … …   Википедия

  • Элементарная частица — Запрос «Элементарные частицы» перенаправляется сюда; см. также другие значения. Элементарная частица  собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части. Следует иметь в… …   Википедия

  • Большой Адронный Коллайдер — Координаты: 46°14′00″ с. ш. 6°03′00″ в. д. /  …   Википедия

  • Список частиц — Это список частиц в физике элементарных частиц, включающий не только открытые, но и гипотетические элементарные частицы, а также составные частицы, состоящие из элементарных частиц. Содержание 1 Элементарные частицы 1.1 Стандартная модель …   Википедия

  • Классификация элементарных частиц — Это список частиц в физике элементарных частиц, включающий не только открытые, но и гипотетические элементарные частицы, а также составные частицы, состоящие из элементарных частиц. См. также «Хронология открытий элементарных частиц» … …   Википедия

  • Античастицы — Античастица частица двойник некоторой другой элементарной частицы, обладающая той же массой и тем же спином, но отличающаяся от неё знаками некоторых характеристик взаимодействия (зарядов, таких как электрический и цветовой заряды, барионное и… …   Википедия

  • Электрослабое взаимодействие — В физике элементарных частиц электрослабое взаимодействие является общим описанием двух из четырёх фундаментальных взаимодействий: слабого взаимодействия и электромагнитного взаимодействия. Хотя эти два взаимодействия очень различаются на обычных …   Википедия

Бозон Хиггса (перевод)

Время на прочтение
10 мин

Количество просмотров 27K

Мы, коллектив Quantuz, (пытаемся вступить в сообщество GT) предлагаем наш перевод раздела сайта particleadventure.org, посвященного бозону Хиггса. В данном тексте мы исключили неинформативные картинки (полный вариант см. в оригинале). Материал будет интересен всем интересующимся последними достижениями прикладной физики.

Роль бозона Хиггса

Бозон Хиггса был последней частицей открытой в Стандартной Модели. Это критический компонент теории. Его открытие помогло подтвердить механизм того, как фундаментальные частицы приобретают массу. Эти фундаментальные частицы в Стандартной Модели являются кварками, лептонами и частицами-переносчиками силы.

Теория 1964-го года

В 1964 году шестеро физиков-теоретиков выдвинули гипотезу существования нового поля (подобно электромагнитному), которым заполнено все пространство и решает критическую проблему в нашем понимании вселенной.

Независимо от этого другие физики построили теорию фундаментальных частиц, названную в итоге «Стандартной Моделью», которая обеспечивала феноменальную точность (экспериментальная точность некоторых частей Стандартной Модели достигает 1 к 10 миллиардам. Это равнозначно предсказанию расстояния между Нью-Йорком и Сан-Франциско с точностью около 0.4 мм). Эти усилия оказались тесно взаимосвязаны. Стандартная Модель нуждалась в механизме приобретения частицами массы. Полевую теорию разработали Питер Хиггс, Роберт Браут, Франсуа Энглер, Джералд Гуралник, Карл Хаген и Томас Киббл.

Бозон

Питер Хиггс понял, что по аналогии с другими квантовыми полями должна существовать частица, связанная с этим новым полем. Она должна иметь спин равным нулю и, таким образом, являться бозоном – частицей с целым спином (в отличие от фермионов, у которых спин полуцелый: 1/2, 3/2 и т.д.). И действительно он вскоре стал известен как Бозон Хиггса. Единственным его недостатком было то, что его никто не видел.

Какова масса бозона?

К несчастью, теория, предсказывающая бозон, не уточняла его массу. Прошли годы, пока не стало ясно, что бозон Хиггса должен быть экстремально тяжелым и, скорее всего, за пределами досягаемости для установок, построенных до Большого Адронного Коллайдера (БАК).

Помните, что согласно E=mc2, чем больше масса частицы, тем больше энергии надо для ее создания.

В то время, когда БАК начал сбор данных в 2010, эксперименты на других ускорителях показали, что масса бозона Хиггса должна быть больше, чем 115 ГэВ/с2. В ходе опытов на БАК планировалось искать доказательства бозона в интервале масс 115-600 ГэВ/с2 или даже выше, чем 1000 ГэВ/с2.

Каждый год экспериментально удавалось исключать бозоны с бОльшими массами. В 1990 было известно, что искомая масса должна быть больше 25 ГэВ/с2, а в 2003 выяснилось, что больше 115 ГэВ/с2

Столкновения на Большом Адронном Коллайдере могут порождать много чего интересного

Дэннис Оувербай в «Нью-Йорк Таймс» рассказывает про воссоздание условий триллионной доли секунды после Большого Взрыва и говорит:

«…останки [взрыва] в этой части космоса не видны с тех пор, как Вселенная охладилась 14 миллиардов лет назад – весна жизни мимолетна, снова и снова во всех ее возможных вариантах, как если бы Вселенная участвовала в собственной версии фильма «день Сурка»

Одним из таких «останков» может быть бозон Хиггса. Его масса должна быть очень велика, и он должен распадаться менее чем за наносекунду.

Анонс

После половины столетия ожиданий драма стала напряженной. Физики спали у входа в аудиторию, чтобы занять места на семинаре в лаборатории ЦЕРН в Женеве.

За десять тысяч миль отсюда, на другом краю планеты, на престижной международной конференции по физике частиц в Мельбурне сотни ученых со всех уголков земного шара собрались, чтобы услышать вещание семинара из Женевы.

Но сперва давайте взглянем на предпосылки.

Фейерверк 4 июля

4-го июля 2012 руководители экспериментов ATLAS и CMS на Большом адронном коллайдере представили их последние результаты поиска бозона Хиггса. Ходили слухи, что они собираются сообщить больше, чем просто отчет о результатах, но что?

Конечно же, когда результаты были представлены, обе коллаборации, проводившие эксперименты, отчитались о том, что они нашли доказательство существования частицы «похожей на бозон Хиггса» с массой около 125 ГэВ. Это определенно была частица, и если она не бозон Хиггса, то очень качественная его имитация.

Доказательство не было сомнительным, ученые располагали результатами в пять сигма, означающих, что существует менее одной вероятности на миллион, что данные являются просто статистической ошибкой.

Бозон Хиггса распадается на другие частицы

Бозон Хиггса распадается на другие частицы почти сразу же после того, как будет произведен, так что мы можем наблюдать только продукты его распада. Наиболее распространенные распады (среди тех, которые мы можем увидеть) показаны на рисунке:

Каждый вариант распада бозона Хиггса известен как «канал распада» или «режим распада». Хотя bb-режим является распространенным, многие другие процессы производят подобные частицы, так что если вы наблюдаете bb-распад, очень трудно сказать, появились ли частицы в связи с бозоном Хиггса или как-то еще. Мы говорим, что режим bb-распада имеет «широкий фон».

Лучшими каналами распада для поиска бозона Хиггса являются каналы двух фотонов и двух Z-бозонов.*

*(Технически для 125 ГэВ массы бозона Хиггса распад на два Z-бозона не возможен, так как Z-бозон имеет массу 91 ГэВ, вследствие чего пара имеет массу 182 ГэВ, большую чем 125 ГэВ. Однако то, что мы наблюдаем, является распадом на Z-бозон и виртуальный Z-бозон (Z*), масса которого много меньше.)

Распад бозона Хиггса на Z + Z

Z-бозоны также имеют несколько режимов распада, включая Z → e+ + e- и Z → µ+ + µ-.

Режим распада Z + Z был довольно прост для экспериментов ATLAS и CMS, когда оба Z-бозона распадались в одном из двух режимов (Z → e+ e- или Z → µ+ µ- ). На рисунке четыре наблюдаемых режима распада бозона Хиггса:

Конечный результат состоит в том, что иногда наблюдатель увидит (в дополнение к некоторым несвязанным частицам) четыре мюона, или четыре электрона, или два мюона и два электрона.

Как бозон Хиггса выглядел бы в детекторе ATLAS

В этом событии «джет» (струя) возникла идущей вниз, а бозон Хиггса – вверх, но он почти мгновенно распался. Каждая картинка столкновения называется «событием».

Пример события с возможным распадом бозона Хиггса в виде красивой анимации столкновения двух протонов в Большом адронном коллайдере можно посмотреть на сайте-источнике по этой ссылке.

В этом событии бозон Хиггса может быть произведен, а затем немедленно распадается на два Z-бозона, которые в свою очередь немедленно распадутся (оставив два мюона и два электрона).

Механизм, дающий массу частицам

Открытие бозона Хиггса является невероятным ключом к разгадке механизма того, как фундаментальные частицы приобретают массу, что и утверждали Хиггс, Браут, Энглер, Джералд, Карл и Киббл. Что это за механизм? Это очень сложная математическая теория, но ее главная идея может быть понятна в виде простой аналогии.

Представьте себе пространство, заполненное полем Хиггса, как вечеринку спокойно общающихся между собой физиков с коктейлями …
В какой-то момент входит Питер Хиггс, который создает волнение, двигаясь через комнату и притягивая группу поклонников с каждым шагом…

До того как войти в комнату профессор Хиггс мог двигаться свободно. Но после захода в комнату полную физиков его скорость уменьшилась. Группа поклонников замедлила его движение по комнате; другими словами, он приобрел массу. Это аналогично безмассовой частице, приобретающей массу при взаимодействии с полем Хиггса.

А ведь все что он хотел – это добраться до бара!

(Идея аналогии принадлежит проф. Дэвиду Дж. Миллеру из Университетского колледжа Лондона, который выиграл приз за доступное объяснение бозона Хиггса — © ЦЕРН)

Как бозон Хиггса получает собственную массу?

С другой стороны, в то время новости распространяются по комнате, они также формируют группы людей, но на этот раз исключительно из физиков. Такая группа может медленно перемещаться по комнате. Подобно другим частицам бозон Хиггса приобретает массу просто взаимодействуя с полем Хиггса.

Поиск массы бозоны Хиггса

Как вы найдете массу бозона Хиггса, если он распадается на другие частицы до того, как мы его обнаружим?

Если вы решили собрать велосипед и захотели знать его массу, вам следует складывать массы частей велосипеда: двух колес, рамы, руля, седла и т.д.

Но если вы хотите вычислить массу бозона Хиггса из частиц, на которые он распался, просто складывать массы не получится. Почему же нет?

Сложение масс частиц распада бозона Хиггса не работает, так как эти частицы имеют огромную кинетическую энергию по сравнению с энергией покоя (помним, что для покоящейся частицы E = mc2). Это происходит вследствие того, что масса бозона Хиггса много больше, чем массы конечных продуктов его распада, поэтому оставшаяся энергия куда-то уходит, а именно — в кинетическую энергию возникших после распада частиц. Теория относительности говорит нам использовать равенство ниже для подсчета «инвариантной массы» набора частиц после распада, которая и даст нам массу «родителя», бозона Хиггса:

E2=p2c2+m2c4

Поиск массы бозона Хиггса из продуктов его распада

Примечание Quantuz: тут мы немного не уверены в переводе, так как идут специальные термины. Предлагаем сравнить перевод с источником на всякий случай.

Когда мы говорим о распаде типа H → Z + Z* → e+ + e- + µ+ + µ-, то четыре возможные комбинации, показанные выше, могут возникнуть как от распада бозона Хиггса, так и от фоновых процессов, так что нам нужно взглянуть на гистограмму суммарной массы четырех частиц в указанных комбинациях.

Гистограмма масс подразумевает, что мы наблюдаем за огромным количеством событий и отмечаем количество тех событий, когда получается итоговая инвариантная масса. Она выглядит как гистограмма, потому что значения инвариантной массы разделены на столбцы. Высота каждого столбца показывает число событий, в которых инвариантная масса оказывается в соответствующем диапазоне.

Мы можем вообразить, что это результаты распада бозона Хиггса, но это не так.

Данные о бозоне Хиггса из фона

Красные и фиолетовые области гистограммы показывают «фон», в котором число четырехлептонных событий предположительно произойдут без участия бозона Хиггса.

Синяя область (см. анимацию) представляет «сигнальный» прогноз, в котором число четырехлептонных событий предполагают результат распада бозона Хиггса. Сигнал расположен на вершине фона, так как для того, чтобы получить общее прогнозируемое количество событий, вы просто складываете все возможные исходы событий, которые могут произойти.

Черные точки показывают число наблюдаемых событий, в то время как черные линии, проходящие через точки, представляют статистическую неопределенность в этих числах. Рост данных (см. следующий слайд) на уровне 125 ГэВ является признаком новой 125 ГэВ-частицы (бозон Хиггса).

Анимация эволюции данных для бозона Хиггса по мере накопления находится на оригинальном сайте.

Сигнал бозона Хиггса медленно растет над фоном.

Данные бозона Хиггса, распавшегося на два фотона

Распад на два фотона (H → γ+γ) имеет еще более широкий фон, но тем не менее сигнал четко выделяется.

Это гистограмма инвариантной массы для распада бозона Хиггса на два фотона. Как вы можете видеть, фон очень широкий по сравнению с предыдущим графиком. Так происходит потому, что существует гораздо больше процессов производящих два фотона, чем процессов с четырьмя лептонами.

Пунктирная красная линия показывает фон, а жирная красная линия показывает сумму фона и сигнала. Мы видим, что данные хорошо согласуются с новой частицей в районе 125 ГэВ.

Недостатки первых данных

Данные были убедительны, но не совершенны, и имели значительные недостатки. К 4-му июля 2012 не имелось достаточной статистики для определения темпа, с которым частица (бозон Хиггса) распадается на различные наборы менее массивных частиц (т.н. «ветвящиеся пропорции» ), предсказываемые Стандартной Моделью.

«Ветвящаяся пропорция» это просто вероятность того, что частица распадется через данный канал распада. Эти пропорции предсказываются Стандартной Моделью и измерены с помощью многократного наблюдения распадов одних и тех же частиц.

Следующий график показывает лучшие измерения ветвящихся пропорций, которые мы можем сделать по состоянию на 2013 год. Так как это пропорции, предсказанные Стандартной Моделью, ожидание равно 1.0. Точки являются текущими измерениями. Очевидно, что отрезки ошибок (красные линии) в большинстве все еще слишком велики, чтобы делать серьезные выводы. Эти отрезки сокращаются по мере получения новых данных и точки возможно могут перемещаться.

Как же узнать, что человек наблюдает событие–кандидат на бозон Хиггса? Существуют уникальные параметры, которые выделяют такие события.

Является ли частица бозоном Хиггса?

В то время как был обнаружен распад новой частицы, темп, с которым это происходит, к 4 июля все еще был не ясен. Даже было не известно, имеет ли открытая частица правильные квантовые числа – то есть имеет ли она спин и четность, требуемые для бозона Хиггса.

Другими словами, 4 июля частица выглядела как утка, но нам требовалось убедиться, что она плавает как утка и крякает как утка.

Все результаты экспериментов ATLAS и CMS Большого адронного коллайдера (а также коллайдера Тэватрон из Лаборатории Ферми) после 4 июля 2012 показали замечательную согласованность с ожидаемыми ветвящимися пропорциями для пяти режимов распада, обсуждаемых выше, и согласованность с ожидаемым спином (равным нулю) и четностью (равной +1), которые являются основными квантовыми числами.

Эти параметры имеют важное значение для определения того, действительно ли новая частица это бозон Хиггса или какая-то другая неожиданная частица. Так что все имеющиеся доказательства указывают на бозон Хиггса из Стандартной Модели.

Некоторые физики посчитали это разочарованием! Если новая частица это бозон Хиггса из Стандартной Модели, то, значит, Стандартная Модель по сути полностью завершена. Все, что теперь можно делать, так это проводить измерения с возрастающей точностью того, что уже открыто.

Но если новая частица окажется чем-то, непредсказанным Стандартной Моделью, то это откроет дверь множеству новых теорий и идей для проверки. Неожиданные результаты всегда требуют новых объяснений и помогают толкать теоретическую физику вперед.

Откуда во Вселенной появилась масса?

В обычной материи основная часть массы содержится в атомах, а, если быть точным, заключена в ядре, состоящим из протонов и нейтронов.

Протоны и нейтроны сделаны из трех кварков, которые приобретают свою массу, взаимодействуя с полем Хиггса.

НО… массы кварков вносят вклад в размере около 10 МэВ, это примерно 1% от массы протона и нейтрона. Так откуда же берется оставшаяся масса?

Оказывается, масса протона возникает за счет кинетической энергии составляющих его кварков. Как вы, конечно же, знаете, масса и энергия связаны равенством E=mc2.

Так что лишь малая часть массы обычной материи во Вселенной принадлежит механизму Хиггса. Однако, как мы увидим в следующем разделе, Вселенная была бы полностью необитаема без хиггсовской массы, и некому было бы открыть хиггсовский механизм!

Если бы не было поля Хиггса?

Если бы не было поля Хиггса, на что была бы похожа Вселенная?

Это не так очевидно.

Определенно, ничего бы не связывало электроны в атомах. Они бы разлетались со скоростью света.

Но кварки связаны сильным взаимодействием и не могут существовать в свободном виде. Некоторые связанные состояния кварков, возможно, сохранились бы, но насчет протонов и нейтронов не ясно.

Вероятно, все это представляло бы собой ядерно-подобную материю. И может быть все это сколлапсировало в результате гравитации.

Факт, в котором мы точно уверены: Вселенная была бы холодной, тёмной и безжизненной.
Так что бозон Хиггса спасает нас от холодной, тёмной, безжизненной Вселенной, где нет людей, чтобы открыть бозон Хиггса.

Является ли бозон Хиггса бозоном из Стандартной Модели?

Мы точно знаем, что частица, которую мы открыли это бозон Хиггса. Нам также известно, что он очень похож на бозон Хиггса из Стандартной Модели. Но существует два момента, которые все еще не доказаны:

1. Несмотря на то, что бозон Хиггса из Стандартной Модели, имеются небольшие расхождения, свидетельствующие о существовании новой физики (неизвестной ныне).
2. Существуют больше чем один бозоны Хиггса, с другими массами. Это также говорит о том, что появятся новые теории для исследования.

Только время и новые данные помогут выявить либо чистоту Стандартной Модели и ее бозона либо новые волнующие физические теории.

Бозон Хиггса

Все помнят шумиху вокруг открытия бозона Хиггса, произошедшего в 2012 году. Все помнят, но многие так до сих пор в полной мере и не понимают, что это был за праздник? Мы решили разобраться, просветиться, и заодно рассказать о том, что такое бозон Хиггса простыми словами!

Стандартная модель и бозон Хиггса

Начнем с самого начала. Частицы делятся на бозоны и фермионы. Бозоны – это частицы с целым спином. Фермионы — с полуцелым.

Бозон Хиггса – это такая элементарная частица, которая была предсказана теоретически еще в 1964 году. Элементарный бозон, возникающий вследствие механизма спонтанного нарушения электрослабой симметрии.

Понятно? Не очень. Чтобы стало понятнее, нужно рассказать про Стандартную модель.

Питер Хиггс, предсказавший существование бозона Хиггса.

Питер Хиггс, предсказавший существование бозона Хиггса.

Стандартная модель – одна из основных современных моделей описания мира. Она описывает взаимодействие элементарных частиц. Как мы знаем, в мире есть 4 фундаментальных взаимодействия: гравитационное, сильное, слабое и электромагнитное. Гравитационное мы сразу не рассматриваем, т.к. оно имеет иную природу и не входит в модель. А вот сильное, слабое и электромагнитное взаимодействия описываются в рамках стандартной модели. Причем, согласно этой теории вещество состоит из 12 фундаментальных элементарных частиц-фермионов. Бозоны же являются переносчиками взаимодействий. Оформить дипломную работу на заказ вы можете прямо у нас на сайте.

Стандартная модель. Частицы.

Стандартная модель. Частицы.

Так вот, из всех частиц, предсказанных в рамках стандартной модели, не обнаруженным экспериментально оставался бозон Хиггса. Согласно Стандартной модели этот бозон, являясь квантом поля Хиггса, отвечает за то, что у элементарных частиц есть масса. Представим, что частицы – это бильярдные шары, помещенные на сукно стола. В данном случае сукно – это и есть поле Хиггса, обеспечивающее массу частиц.

Как искали бозон Хиггса?

На вопрос, когда открыли бозон Хиггса, нельзя ответить точно. Ведь теоретически его предсказали в 1964 году, а подтвердили существование экспериментально только в 2012. И все это время неуловимый бозон искали! Искали долго и упорно. До БАК в ЦЕРНе работал другой ускоритель, электрон-позитронный коллайдер. Также был Теватрон в Иллинойсе, но и его мощностей не хватило для выполнения задачи, хотя эксперименты, конечно же, дали определенные результаты.

Дело в том, что бозон Хиггса – частица тяжелая, и обнаружить его очень непросто. Суть эксперимента проста, сложна реализация и интерпретация результатов. Берутся два протона на околосветовой скорости и сталкиваются лоб в лоб. Протоны, состоящие из кварков и антикварков, от такого мощного столкновения разваливаются и появляется множество вторичных частиц. Именно среди них и искали бозон Хиггса.

Поиски бозона Хиггса

Поиски бозона Хиггса

Проблема еще и в том, что подтвердить существование этого бозона можно лишь косвенно. Период, в который существует бозон Хиггса, крайне мал, как и расстояние между точками исчезновения и возникновения. Измерить такие время и расстояние напрямую невозможно. Зато Хиггс не исчезает бесследно, и его можно вычислить по «продуктам распада».

Хотя такой поиск очень похож на поиск иголки в стоге сена. И даже не в одном, а в целом поле стогов. Дело в том, что бозон Хиггса распадается с разной вероятностью на разные «наборы» частиц. Это может быть пара кварк-антикварк, W-бозоны или самые массивные лептоны, тау-частицы. В одних случаях эти распады крайне трудно отличить от распадов других частиц, а не именно Хиггса. В других – невозможно достоверно зафиксировать детекторами. Несмотря на то что детекторы БАК – самые точные и мощные измерительные приборы, созданные людьми, они могут измерить не все.  Лучше всего фиксируется детекторами превращение Хиггса в четыре лептона. Однако вероятность этого события очень мала — всего 0,013%.

Детектор ATLAS

Детектор ATLAS

Тем не менее, за полгода экспериментов, когда за одну секунду в коллайдере происходят сотни миллионов столкновений протонов, было выявлено целых 5 таких  четырехлептонных случаев. Причем зафиксированы они были на двух разных детекторах-гигантах: ATLAS и CMS. Согласно независимому расчету с данными одного и другого детектора, масса частицы составляла примерно 125ГэВ, что соответствует теоретическому предсказанию для бозона Хиггса.

Для полного и точного подтверждения того, что обнаруженная частица была именно именно бозоном Хиггса, пришлось провести еще очень много опытов. И несмотря на то, что сейчас бозон Хиггса обнаружен, эксперименты в ряде случаев расходятся с теорией, так что Стандартная модель, как считают многие ученые, скорее всего является частью более совершенной теории, которую еще предстоит открыть.

Детекторы БАК

Детекторы БАК

Открытие бозона Хиггса, определенно, одно из главных открытий 21 века. Его открытие — огромный шаг в понимании устройства мира. Если бы не он,  все частицы были  бы безмассовыми, как фотоны, не существовало бы ничего, из чего состоит наша материальная Вселенная. Бозон Хиггса — шаг к пониманию того, как устроена вселенная. Бозон Хиггса даже назвали частицей бога или проклятой частицей. Впрочем, сами ученые предпочитают называть его бозоном бутылки шампанского. Ведь такое событие, как открытие бозона Хиггса, можно отмечать годами.

Друзья, сегодня мы взрывали мозг бозоном Хиггса. А если Вы уже устали взрывать свой мозг бесконечными рутинными или непосильными заданиями по учебе, обратитесь за помощью к авторам нашей компании. Как всегда мы поможем Вам быстро и качественно решить любой вопрос.

Элементарная часть, связанная с Хиггсом поле, задающее количество частиц

бозон Хиггса

Candidate Higgs Events in ATLAS and CMS.pngКандидат в событиях бозона Хиггса от столкновений между протонами в LHC. Верхнее событие в эксперименте CMS показывает распад на два фотона (желтые пунктирные линии и зеленые башни). Нижнее событие в эксперименте ATLAS показывает распад на четыре мюона (красные дорожки).
Состав Элементарная частица
Статистика Бозонный
Статус В 2012 году была открыта новая часть с массой 125 ГэВ, которая позже была подтверждена более точными измерениями как бозон Хиггса.. (См.: Текущий статус)
Символ . H.
Теоретически Р. Браут, Ф. Энглерт, П. Хиггс, Г.С. Гуральник, С.Р. Хаген, и TWB Kibble (1964)
Обнаружен Большой адронный коллайдер ( 2011–2013)
Масса 125,18 ± 0,16 ГэВ / c
Среднее время жизни 1,56 × 10 с (прогнозируемое)
Распадается на
  • нижнюю -антидонную. пару (наблюдается)
  • Два W-бозона (наблюдается)
  • Два глюона (предсказано)
  • Пара тау -антитау (наблюдается)
  • Два Z-бозона (наблюдается)
  • Два фотона (наблюдаемые)
  • Мюон -антимюонная пара (предсказано)
  • Различные другие распады (предсказанные)
Электрический заряд 0 e
Цветной заряд 0
Спин 0
Слабый изоспин −1/2
Слабый гиперзаряд +1
Четность +1

бозон Хиггса элементарная частица в Стандартной модели из физики элементарных частей иц, созданная квантовым возбуждением поля Хиггса, одного из области в теории элементарных частиц. Он назван в честь физика Питера Хиггса, который в 1964 году вместе с пятью другими учеными вместе с механизмом Хиггса, чтобы объяснить , почему частицы имеют массу. Этот механизм подразумевает существование бозона Хиггса. Бозон Хиггса был использован как новая часть в 2012 году коллаборациями ATLAS и CMS на основе столкновений в LHC в CERN, и других было подтверждено, что новая часть соответствует ожидаемым свойствам Хиггса в последующие годы.

10 декабря 2013 года два физика, Питер Хиггс и Франсуа Энглер, были удостоены Нобелевской премии по физике за свои теоретические предсказания. Хотя имя Хиггса стало ассоциироваться с этой теорией (механизм Хиггса), несколько исследователей в период с 1960 по 1972 год независимо друг от друга разработали различные ее части.

В основных СМИ бозон Хиггса часто называют «частицей Бога » из книги 1993 года по теме, хотя это прозвище очень не нравится многим физики, включая самого Хиггса, которые это сенсационностью.

Содержание

  • 1 Введение
    • 1.1 Стандартная модель
    • 1.2 Проблема массы калибровочного бозона
    • 1.3 Нарушение симметрии
    • 1.4 Механизм Хиггса
    • 1.5 Поле Хиггса
    • 1.6 «Центральная проблема»
    • 1.7 Поиск и открытие
    • 1.8 Интерпретация
    • 1.9 Обзор свойств
  • 2 Значение
    • 2.1 Физика элементарных частиц
      • 2.1.1 Валидация Стандартной модели
      • 2.1.2 Нарушение симметрии электрослабого взаимодействия
      • 2.1.3 Получение массы частиц
      • 2.1.4 Скалярные поля и расширение Стандартной модели
    • 2.2 Космология
      • 2.2.1 Инфлатон
      • 2.2.2 Природа Вселенной и ее возможных судьбы
      • 2.2.3 Энергия вакуума и космологическая постоянная
    • 2.3 Практическое и технологическое влияние
  • 3 История
    • 3.1 Теоретическое об основание
      • 3.1.1 Резюме и влияние статей PRL
    • 3.2 Экспериментальный поиск
      • 3.2.1 Поиск до 4 июля 2012 г.
      • 3.2.2 Обнаружение кандидата в бозон в ЦЕРН
      • 3.2.3 новая часть протестирована как возможный бозон Хиггса
      • 3.2.4 Подтверждение существования и текущего статуса
      • 3.2.5 Результаты, полученные с 2013 года
  • 4 Теоретические вопросы
    • 4.1 Теоретическая потребность в бозоне Хиггса
    • 4.2 Альтернативные модели
    • 4.3 Дальнейшие теоретические и проблемы иерархии
  • 5 Свойства
    • 5.1 Свойства поля Хиггса
    • 5.2 Свойства бозона Хиггса
    • 5.3 Производство
    • 5.4 Распад
  • 6 Общественное обсуждение
    • 6.1 Именование
      • 6.1.1 Имена, используемые физиками
      • 6.1.2 Псевдоним
      • 6.1.3 Другие предложения
    • 6.2 Образовательные объяснения и аналогии
    • 6.3 Признание и награды
  • 7 Технические аспекты и математическая формулировка
  • 8 См. также
  • 9 Примечания
  • 10 Ссылки
  • 11 Дополнительная литература
  • 12 Ссылки
    • 12.1 Популярная наука, средства массовой информации и общий охват
    • 12.2 Si важные статьи и другие
    • 12.3 Введение в поле

Введение

Стандартная модель

Физики объясняют свойства между элементарными частями с точки зрения Стандартная модель — широко распространенная структура для понимания почти всего в физике известной вселенной, кроме гравитации. (Для использования отдельной теории, общая теория относительности.) В этой модели фундаментальные силы в природе из свойств нашей Вселенной, называемых калибровочной инвариантностью и симметрии. Силы передаются частицами, известными как калибровочные бозоны.

Проблема массы калибровочного бозона

Теории поля с большим успехом использовались для понимания электромагнитного поля и сильная сила, но примерно к 1960 году все попытки создать калибровочно-инвариантную теорию для слабой силы (и ее комбинации с фундаментальной силой электромагнетизм, электрослабое взаимодействие ) постоянно терпели неудачу, что привело к тому, что калибровочные теории начали терять репутацию в результате. Проблема заключалась в том, что теория калибровочных инвариантов содержит требования симметрии, они неверно предсказывали, что калибровочные бозоны слабой силы (W и Z ) должны иметь нулевую массу. Из экспериментов известно, что они имеют ненулевую массу. Это означало, что либо калибровочная инвариантность была неправильным подходом, либо что-то еще — неизвестное — давало этим частицам их массы. К концу 1950-х годов физики не решили эти проблемы и все еще не смогли создать исчерпывающую теорию физики элементарных частиц, потому что все проблемы решить эту проблему только создавали новые теоретические проблемы.

Нарушение симметрии

В конце 1950-х годов Йоитиро Намбу осознал, что спонтанное нарушение симметрии, процесс, при котором симметричная система заканчивается асимметричной состоянием, может при определенных условиях. В 1962 году физик Филип Андерсон, работающий в области физики конденсированного состояния, заметил, что нарушение симметрии играет роль в сверхпроводимости и может иметь отношение к проблеме. калибровочной инвариантности в физике элементарных частиц. В 1963 году это было показано теоретически возможным, по крайней мере, для некоторых ограниченных (нерелятивистских ) случаев.

Механизм Хиггса

После статей 1962 и 1963 независимо опубликованных годов статьи о нарушении симметрии ПРЛ 1964 года с аналогичными выводами и для всех случаев, а не только для некоторые. ограниченные случаи. Они показали, что условия электрослабой симметрии были «нарушены», если бы необычный тип поля существовал во всей Вселенной, и действительно, некоторые фундаментальные частицы приобрели бы массу. Поле необходимое для этого (которое в то время было чисто гипотетическим), стало известно как поле Хиггса (после Питера Хиггса, одного из исследователей), механизм, благодаря которому это произошло к нарушению симметрии, известен как механизм Хиггса. Ключевой особенностью необходимого поля является то, что для того, чтобы поле имело ненулевое значение, потребовалось бы меньше энергии, чем нулевое значение, в отличие от всех других известных полей, поэтому поле Хиггса имеет ненулевое (или вакуумное ожидание) везде. Это ненулевое значение теоретически может нарушить электрослабую симметрию. Это было предложение, способное показать, как слабые калибровочные бозоны силы имеют массу, несмотря на их основную симметрию, в рамках калибровочной инвариантной теории.

Хотя эти идеи не получили большой хорошей поддержки или внимания, к 1972 году они были развиты в комплексную теорию и оказались способными дать «разумные», которые точно описывали частицы, известные в то время времени, и который с максимальной точностью предсказал несколько других частиц, обнаруженных в последующие годы. В течение 1970-х годов эти теории быстро стали Стандартной моделью физики элементарных частиц.

Поле Хиггса

Стандартная модель включает в себя поле , необходимое для «нарушения» электрослабой симметрии и придания частицам их правильной массы. Это поле, называемое «полем Хиггса», существует во всем симметрии и нарушает некоторые законы взаимодействия электрослабого взаимодействия, запуская механизм Хиггса. Следовательно, это приводит к тому, что калибровочные бозоны W и Z слабого поведения становятся массивными при всех температурах ниже очень высокого значения. Когда слабые силовые бозоны приобретают массу, это влияет на расстояние, которое становится очень маленьким, что также соответствует экспериментальным данным. Более того, позже было осознано, что это же поле по другому объясняет, почему другие фундаментальные составляющие материи (включая электронов и кварки ) имеют массу.

В отличие от всех других известных полей, таких как электромагнитное поле, поле Хиггса является скалярным полем и имеет ненулевое постоянное значение в вакууме..

«Центральная проблема»

Пока даже без доказательства этой точности его предсказаний заставила ученых поверить в то, что теория быть верной. К 1980-м годам вопрос о том, существует ли поле Хиггса и, следовательно, правильно ли вся Стандартная модель в целом, стал рассматриваться как один из самых важных вопросов физики элементарных частиц, на которые нет ответа..

Для многих десятилетий у ученых не было возможности определить. Если бы это поле Хиггса действительно существовало, то оно было бы непохоже на любое известное фундаментальное поле, но также было это ключевые идеи или даже вся стандартная модель каким-то образом неверно.

Гипотетический механизм Хиггса сделал несколько точных прогнозов. Одним из важнейших предсказаний было то, что должна существовать частица, называемая «бозоном Хиггса», должнаовать. Доказательство существования бозона Хиггса может доказать, существует ли поле Хиггса, и, следовательно, окончательно доказать правильность объяснения Стандартной модели. Поэтому был проведен обширный поиск бозона Хиггса как способ доказать существование самого поля Хиггса.

Существование поля Хиггса последней непроверенной части Стандартной модели физика элементарных частиц, и в течение нескольких десятилетий считалась «центральной проблемой физики элементарных частиц».

Поиск и открытие

Хотя Хиггса существует повсюду, доказать его существование было далеко не просто. В принципе, его существование можно доказать, обнаружив его возбуждения, которые являются как частицы Хиггса (бозон Хиггса), но их очень трудно произвести и из-за энергии, необходимой для их образования и их очень редкое производство, даже если энергии достаточно. Таким образом, прошло несколько десятилетий, чем было найдено первое свидетельство существования бозона Хиггса. На устройстве коллайдеров частиц, детекторов и компьютеров, способных искать бозоны Хиггса, потребовалось более 30 лет (ок. 1980–2010).

Важность этого фундаментального привела к 40-летнему поиску и строитель одного из самых дорогих и сложных экспериментальных объектов в до настоящего времени Большой адронный коллайдер ЦЕРН в попытке создать бозоны Хиггса и другие частицы для наблюдения и изучения. 4 июля 2012 г. было объявлено об открытии новой частицы с массой от 125 до 127 ГэВ / c ; физики подозревали, что это был бозон Хиггса. С тех пор было показано, что частица ведут себя, взаимодействует и распадается на предсказанных частицах Хиггса Стандартной моделью, а также имеет четкость и нулевой спин, два фундаментальных атрибута бозона Хиггса. Это также означает, что это первая элементарная скалярная частица, обнаруженная в природе.

К марту 2013 года существования бозона Хиггса было подтверждено, и, следовательно, некоторого типа поля Хиггса во всем космосе прочно поддерживается.

Наличие, подтвержденное экспериментальными исследованиями, объясняет , почему некоторые элементарные частицы имеют массу, несмотря на симметрии, управляющие их взаимодействиями подразумевая, что они должны быть безмассовыми. Он также решает несколько других давних загадок, как причина слабого расстояния, пройденного бозонами ого поведения, и, следовательно, малого расстояния слабого взаимодействия.

По состоянию на 2018 год углубленные исследования показывают, что продолжает вести себя в соответствии с предсказаниями для бозона Хиггса Стандартной модели. Необходимы дополнительные исследования, способные ли обнаруженные частица всеми предсказанными свойствами или существуют, как описанные в некоторых теориях, множественные бозоны Хиггса.

Природа и свойства этого поля сейчас терняются. были проведены дальнейшие исследования с использованием большего количества данных, собранных на LHC.

Интерпретация

Для описания поля Хиггса и бозона использовались различные аналогии, включая аналогии с хорошо известными эффектами нарушения симметрии, такими как радуга и призма, электрические поля и рябь на поверхности воды.

Другие аналогии, основанные на сопротивленииобъектам, движущимся через среду (например, люди, движущиеся сквозь толпу, или некоторые объекты, движущиеся через сироп или патока ), обычно Используется, но вводит в заблуждение, поскольку поле Хиггса на самом деле не действует эффект частицам, и масса не вызывает сопротивлением.

Обзор свойств

В Стандартной модели части Хиггса представляет собой массивный скалярный бозон с нулевым спином, без электрический заряд, и нет цветной зарядки. Он также очень нестабилен, почти мгновенно распадается на другие частицы. Поле Хиггса — это скалярное поле с двумя двумяэлектрическими заряженными компонентами, образующими сложный дублет слабого изоспина SU ( 2) симметрия. Поле Хиггса — это скалярное поле с потенциалом «мексиканской шляпы ». В основном состоянии это приводит к тому, что поле имеет ненулевое значение везде (включая пустое пространство), и в результате высокой энергии нарушается симметрия слабого изоспина электрослабого взаимодействия . (Технически ненулевое математическое ожидание преобразует члены связи Юкавы лагранжиана в массовые члены.) Это происходит, три компонента поля Хиггса «поглощаются» SU (2) и U (1) калибровочные бозоны («механизм Хиггса »), чтобы стать продольными компонентами сейчас- массивных W- и Z-бозонов слабая сила. Оставшийся электрически нейтральный компонент либо проявляется как частица Хиггса, либо может отдельно соединяться с другими частями, известными как фермионы (через связи Юкавы ), заставляя их приобретать массу.

Значимость

Свидетельства о поле Хиггса и его свойства были важны по многим причинам. Важность бозона Хиггса в степени заключается в том, что его можно исследовать с использованием знаний и экспериментальных технологий, чтобы подтвердить и изучить всю теорию поля Хиггса. И наоборот, доказательство того, что поле Хиггса и бозон не существует, также имело бы значение.

Физика элементарных частиц

Проверка Стандартной модели

Бозон Хиггса подтверждает правильность Стандартной модели через механизм генерации массы. По мере проведения более точных измерений его качества предложены или исключены более сложные расширения. По мере развития экспериментальных средств измерения и поведения полей, это фундаментальное поле может быть лучше понято. Если бы поле Хиггса не было обнаружено, стандартную модель пришлось бы изменить или заменить.

В связи с этим физиков обычно существует вера в то, что, вероятно, будет «новая» физика помимо Стандартной модели, и что Стандартная модель в какой-то момент будет расширена или заменена. Открытие Хиггса, а также множество измеренных столкновений, происходящих на LHC, предоставляют физикам чувствительный инструмент для поиска в их данных любых доказательств того, что Стандартная модель, похоже, не работает, и могут предоставить значительные доказательства, направляющие исследователей к будущим теоретическим разработкам.

Нарушение симметрии электрослабого взаимодействия

Ниже чрезвычайно высокой температуры нарушение электрослабой симметрии приводит к тому, что электрослабое взаимодействие частично проявляется в виде короткого -диапазон слабая сила, которую переносят массивные бозоны калибровки. В истории Вселенной считается, что нарушение электрослабой симметрии произошло вскоре после горячего Большого взрыва, когда Вселенная имела температуру 159,5 ± 1,5 ГэВ. Это нарушение симметрии необходимо для образования атомов и других структур, а также для ядерных реакций в звездах, таких как наше Солнце. За это нарушение симметрии отвечает поле Хиггса.

Получение массы частицы

Поле Хиггса играет ключевую роль в генерировании масс кварков и заряженных лептонов (через Юкаву связи) и калибровочных бозонов W и Z (через механизм Хиггса).

Стоит отметить, что поле Хиггса не «создает» массу из ничего (что нарушило бы закон сохранения энергии ), а также Поле Хиггса, отвечающее за массу всех частиц. Например, приблизительно 99% массы барионов (составных частиц, таких как протон и нейтрон ) вместо этого связано с квантовая хромодинамическая энергия связи, которая представляет собой сумму кинетических энергий кварков и энергий безмассовых глюонов, опосредующих сильное взаимодействие внутри барионов. В теориях, основанных на Хиггсе, свойство «массы» — это проявление потенциальной энергии, передаваемой элементарным частицам, когда они взаимодействуют («соединяются») с полем Хиггса, которое содержало эту массу в форма энергии.

Скалярные поля и расширение Стандартной модели

Поле Хиггса — единственное скалярное (спин 0) поле, которое можно обнаружить; все остальные поля в Стандартной модели — это спиновые ½ фермионы или бозоны со спином 1. Согласно Рольфу-Дитеру Хойеру, генеральному директору ЦЕРНа, когда был открыт бозон Хиггса, это доказательство существования скалярного поля почти так же важно, как роль Хиггса в определении массы других частиц. Это предполагает, что другие гипотетические скалярные поля, предложенные другими теориями, от инфлатона до квинтэссенции, возможно, также могут существовать.

Космология

Инфлатон

Были проведены значительныенаучные исследования связей между полем Хиггса и инфлатоном — гипотетическим полем, предложенным в объяснения расширения пространства течение в первая доля секунды из вселенной (известная как «инфляционная эпоха »). Некоторые теории предполагают, что фундаментальное скалярное поле может быть ответственным за это явление; Поле Хиггса является таким полем, и существует его существование к появлению статей, которое анализируется, может ли быть инфлатоном, ответственным за это экспоненциальное расширение пространства во время Большого взрыва. Такие теории носят сравнительный характер и сталкиваются со значительными проблемами, связанными с унитарностью, но могут быть жизнеспособными в дополнительных функциях, такими как большая неминимальная связь, скаляр Бранса — Дикке или «Новая» физика, и они получили лечение, предполагающее, что модели инфляции Хиггса все еще представляют теоретический интерес.

Природа и ее возможные судьбыДиаграмма, показывающая масса Вселенной бозона Хиггса и топ-кварка, которая может указать, является ли наша Вселенная стабильной или длинной- жилой «пузырь ». По состоянию на 2012 год эллипс 2 σ, основанный на данных Tevatron и LHC, по-прежнему допускает обе возможности.

В Стандартной модели вероятность того, что основное состояние нашей Вселенной, известное как «вакуум» — долговечен, но не полностью устойчивый. Если массы бозона Хиггса и топ-кварка известны более точно, быть эффективно разрушена путем коллапса в более стабильное состояние в вакууме, что бозон Хиггса «положил конец» вселенной. Хиггса 125–127 Масса Хиггса 125–127 ГэВ кажется, что близкой к границе стабильности, но окончательный ответ можно вычислить, используя стабильный вакуум или просто долгоживущим, физики частиц вплоть до экстремальных энергий планковского масштаба. требует более точных измерений полюсной массы верхний кварка. Новая физика может изменить эту картину.

Если измерения бозона Хиггса предполагают, что наша Вселенная находится внутри ложног о возможностях вакуума такого типа, то это будет означать — более чем вероятно во многих миллиардах лет — что силы, частицы и структуры Вселенной перестать существовать в том виде, в каком мы их знаем (и быть заменены другими), если случится зародиться в настоящем вакууме. Это также предполагает, что самосвязывание Хиггса λ и его функция β λ могут быть очень близки к нулю в масштабе Планка, с «интригующими» выводами, включая теории гравитации и Хиггса. инфляция на основе. Электронно-позитронный коллайдер сможет обеспечить точные измерения топ-кварка, необходимые для таких вычислений.

Энергия вакуума и косм постоянная

Более теоретически поле Хиггса также было предложено как энергия вакуума, которая при экстремальных энергиях первых моментов Большого взрыва привела к тому, что Вселенная стала своего рода безликой симметрией недифференцированной высокой энергии. В виде такого рассуждения единое объединенное поле Великой Объединенной Теории идентифицируется (или моделируется) как поле Хиггса, и это происходит через последовательные нарушения симметрии поля Хиггса или другого подобного поля, при фазовых переходах известных известных в настоящее время силы и поля Вселенной.

Связь (если есть) между полем Хиггса и наблюдаемого в настоящее время плотностью энергии вакуума Вселенная также подверглась научным исследованиям. Как видно, нынешняя плотность энергии вакуума близка к нулю, но плотность энергии, ожидаемая от поля Хиггса, суперсимметрии и других текущих теорий, обычно на много порядков больше. Непонятно, как их согласовывать. Эта проблема космологической постоянной остается главной безответной проблемой в физике.

Практическое и технологическое влияние

На данный момент нет известных непосредственных технологических преимуществ обнаружения частиц Хиггса. Тем не менее, общий шаблон для фундаментальных открытий — это последующие практические применения, и как только открытие будет изучено дальше, оно, возможно, станет для новых технологий, важных для общества.

Проблемы в физике элементарных частиц усугубились. крупный технический прогресс повсеместного значения. Например, World Wide Web начинался как проект по улучшению системы связи CERN. Требование ЦЕРН обрабатывать огромные объемы данных, производимых Большим адронным коллайдером, также привело к внесению вклада в области распределенных и облачных вычислений.

История

лауреат Нобелевской премии Питер Хиггс в Стокгольме, декабрь 2013 г.

Теоретические основы

Физики элементарных частиц изучают материю, сделанную из элементарные частицы, взаимодействие которых опосредуются обменными частицами — калибровочными бозонами — действующими как носители силы. В начале 1960-х годов был открыт или предложен ряд этих частиц, наряду с теориями, предполагающими, как они соотносятся друг с другом, некоторые из которых уже были переформулированы как теории поля, в которых объекты исследования не частицы и силы, а квантовые поля и их симметрии. Однако попытки создать модели квантового поля для двух известных фундаментальных сил — электромагнитной силы и слабой ядерной силы — а унифицировать эти взаимодействия, по-прежнему не увенчались успехом.

Одна известная проблема заключалась в том, что калибровочно-инвариантные подходы, включая неабелевы модели, такие как теория Янга — Миллса (1954), в которой большие перспективы для объединенных теорий, также кажутся предсказуемые известные массивные частицы как без. Теорема Голдстоуна, относящаяся к непрерывным симметриям в некоторых теориях, также исключающие очевидные решения, поскольку она кажется, чтобы показать, что частицы нулевой массы также должны существовать, которые просто «не видны» ». Согласно Гуральнику, физики «не понимали», как можно решить эти проблемы.

Физик элементарных частиц и математик Питер Войт резюмировал состояние исследований в то время:

Янг и Миллс Работа над неабелевой калибровочной теорией имела одну огромную проблему: в теории возмущений у нее есть безмассовые частицы, которые не соответствуют всему, что мы видим. Один из способов избавиться от этой проблемы теперь достаточно хорошо изучен, это явление конфайнмента, реализованное в КХД, где сильные взаимодействия избавляют от безмассовых «глюонных» состояний на больших расстояниях.. К началу шестидесятых годов люди начали понимать другой источник безмассовых частиц: спонтанное нарушение симметрии непрерывной симметрии. Филип Андерсон понял и разработал летом 1962 года, что при наличии калибровочной симметрии, так и спонтанного нарушения симметрии безмассовая мода Намбу — Голдстоуна может сочетаться с безмассовыми модами калибровочного поля для использования массивное векторное поле. Это то, что происходит в сверхпроводимости, предмете, по которому Андерсон был (и остается) одним из ведущих экспертов. [сокращенный текст]

Механизм Хиггса — это процесс, с помощью которого используются бозоны могут приобретать масса покоя без явного нарушения калибровочной инвариантности, как побочный продукт спонтанного нарушения симметрии. Первоначально математическая теория, лежащая в основе спонтанного нарушения симметрии, была задумана и опубликована в рамках физики элементарных частиц Ёитиро Намбу в 1960 году, и идея о том, что такой механизм может предложить возможное решение «проблемы массы». используем предложена в 1962 г. — Филип Андерсон (ранее писавший о нарушенной симметрии и ее результаты в сверхпроводимости. Андерсон в своей статье 1963 г. по теории Янга-Миллса пришел к выводу, что «с учетом сверхпроводящего аналога… [т] эти два типа бозонов кажутся способные» нейтрализовать друг друга… оставляя бозоны конечной массы «), и в марте 1964 года Авраам Кляйн и Бенджамин Ли показали, что теоремы Голдстоуна можно избежать таким способом по крайней мере некоторые нерелятивистские случаи

Эти подходы были быстро развиты в полную релятивистскую модель, независимо и почти одновременно независимо групп физиков: Франсуа Энглер, и предполагали, что это возможно в истинно релятивистских случаях. и Роберт Браут в августе 1964 года; автор Питер Хиггс в Октябрь 1964 г.; и от Джеральда Гуральника, Карла Хагена и Тома Киббла (GHK) в ноябре 1964 года. Хиггс также написал короткий, но важный ответ, опубликованный в сен тябре 1964 года. на возражение Гилберта, которое показало, что при вычислении в пределах радиационного датчика теорема Голдстоуна и возражение Гилберта становятся неприменимыми. Позже Хиггс описал возражение Гилберта как основание для собственной статьи. Свойства модели были подробно рассмотрены Гуральником в 1965 г., Хиггсом в 1966 г., Кибблом в 1967 г. и далее GHK в 1967 г. Первые три статьи 1964 г. Используется, что когда калибровочная теория сочетается с дополнительным полем, спонтанно нарушающим симметрию, калибровочные бозоны последовательно приобретать конечную массу. В 1967 году Стивен Вайнберг и Абдус Салам независимо друг от друга, как можно использовать механизм Хиггса для нарушения симметрии унифицированные модели Шелдона Глэшоу . для слабых иэлектромагнитных взаимодействий (само по себе продолжение работы Швингера ), формируя то, что стало Стандартной моделью физики элементарных частиц. Вайнберг был первым, кто заметил, что это также даст массовые члены для фермионов.

Сначала эти основополагающие статьи о спонтанном нарушении калибровки симметрии в степени игнорировались, потому что широко распространено мнение, что (неабелева калибровочные) рассматриваемые теории были тупиковыми, и, в частности, они не могли быть перенормированы. В 1971–72 гг. Мартинус Велтман и Герард ‘т Хоофт доказали, что перенормировка Янга — Миллса возможна в двух статьях, посвященных безмассовым, а затем и массивным полям. Их вклад и работы других по ренормализационной группе, включая «существенные» теоретические работы российских физиков Людвига Фаддеева, Андрея Славнова, Ефим Фрадкин и Игорь Тютин — были в конечном итоге «чрезвычайно глубокими и влиятельными», но даже после опубликования всех ключевых элементов возможной теории широкого интереса все еще почти не было. Например, Коулман обнаружил в исследовании, что «практически никто не обращал никакого внимания» на статью Вайнберга до 1971 года и обсуждался Дэвидом Политцером в его Нобелевской речи 2004 года. — сейчас наиболее цитируемые в физике элементарных частиц — и даже в 1970 году, согласно Политцеру, в учении Глэшоу о слабом взаимодействии не было упоминания о работе Вайнберга, Салама или Глэшоу. На практике, утверждает Политцер, почти каждый узнал о теории благодаря физику Бенджамину Ли, который объединил работы Велтмана и ‘т Хоофта с выводами других и популяризировал завершенную теорию. Таким образом, с 1971 года интерес и признание «взорвались», и идеи были быстро поглощены мейнстримом.

Получившаяся теория электрослабого взаимодействия и Стандартная модель точно предсказали (среди прочего) слабые нейтральные токи, три бозона, top и очаровательные кварки, а также с большой точностью масса и другие свойства некоторых из эти. Многие из участников в конечном итоге получили Нобелевские премии или другие известные награды. В статье 1974 г. и всестороннем обзоре в Reviews of Modern Physics отмечалось, что «хотя никто не сомневался в [математической] правильности этих аргументов, никто не верил, что природа дьявольски умен, чтобы воспользоваться ими», добавив, что теория до сих пор дала точные ответы, согласующиеся с экспериментом, но неизвестно, верна ли теория в основном. К 1986 году и снова в 1990-х стало возможным написать, что понимание и доказательство сектора Хиггса Стандартной модели было «центральной проблемой сегодня в физике элементарных частиц».

Резюме и влияние статей PRL

Три статьи, написанные в 1964 г., были признаны знаковыми на Physical Празднование 50-летия Review Letters. Шесть их авторов также были награждены премией 2010 J. Премия Дж. Сакураи в области теоретической физики элементарных частиц за эту работу. (Споры возникли в том же году, потому что в случае получения Нобелевской премии только до трех ученых могли быть признаны, причем шесть были приписаны к статьям.) Две из трех статей PRL (Хиггса) и GHK) содержал уравнения для гипотетического поля, которое в конечном итоге станет известно как поле Хиггса, и его гипотетический квант, бозон Хиггса. Последующая статья Хиггса 1966 года показала механизм распада бозона; только массивный бозон может распадаться, и распады могут подтвердить механизм.

В статье Хиггса бозон массивен, и в заключительном предложении Хиггс пишет эту «существенную особенность» теории »- это предсказание неполных мультиплетов скалярных и векторных бозонов ». (Фрэнк Клоуз комментирует, что теоретики калибровки 1960-х годов были сосредоточены на проблеме безмассовых векторных бозонов, предполагаемое существование массивного скалярного бозона не считалось важным; только Хиггс прямо обратился к этому.) не связан с массивными состояниями. В обзоре от 2009 и 2011 гг. Гуральник утверждает, что в модели GHK бозон безмассовый только в приближении низшего порядка, но он не подчиняется никаким ограничениям и приобретает массу более высоких порядков, и выше статья GHK была единственной, чтобы показать, что в модели нет безмассовых голдстоуновских бозонов, и дать полный анализ общего механизма Хиггса. Все трое пришли к схожим выводам, несмотря на очень разные подходы: в статье Хиггса использовались по существу классические методы, Энглерта и Браута занимались вычислением поляризации вакуума в теории возмущений вокруг предполагаемого состояния вакуума, нарушающего симметрию, а GHK использовал операторный формализм и законы сохранения для исследования подробно рассказать о том, как можно обойти теорему Голдстоуна. Некоторые версии теории предсказывали более одного вида полей и бозонов Хиггса, и альтернативные модели «без Хиггса» считались до открытия бозона Хиггса.

Экспериментальный поиск

произвести бозоны Хиггса, два пучка частиц ускоряются до очень высоких энергий и сталкиваются внутри детектора частицы. Иногда, хотя и редко, бозон Хиггса будет мгновенно образовываться как часть побочных столкновений. Времена бозон Хиггса распадается очень быстро, детекторы частицы не могут его нанести напрямую. Вместо этого детекторы регистрируют все продукты распада (сигнатуру распада), и по данным восстанавливается процесс распада. Если наблюдаемые продукты распада соответствуют возможному процессу распада (известному как канал распада) бозона Хиггса, это указывает на то, что бозон Хиггса мог быть создан. На практике многие процессы используются аналогичные сигнатуры распада. К счастью, Стандартная модель точно предсказывает вероятность возникновения каждого из них и каждого известного процесса. Итак, если детектор обнаруживает больше сигнатур распада, соответствующего бозону Хиггса, чем можно было бы ожидать, если бы бозон Хиггса не существовал, то это было бы убедительным доказательством того, что бозон Хиггса.

Образование Бозона Хиггса при столкновении частиц, вероятно, будет очень редким (1 из 10 миллиардов на LHC), и другие возможные события могут иметь аналогичные сигнатуры распада, данные сотен триллионов столкновения должны быть проанализированы и должны быть проанализированы «показать ту же картину », прежде чем можно будет сделать вывод о существовании бозона Хиггса. Чтобы сделать вывод о том, что была обнаружена новая часть, физики элементарных частиц, чтобы статистический анализ независимых детекторов частиц указывал на то, что вероятность не больше одного из миллиона что наблюдаемые сигнатуры распада обусловлены только фоновыми случайными событиями Стандартной модели, т. е. что наблюдаемое количество событий более чем на пять стандартных отклонений (сигма) отличается от ожидаемого, если бы не было новой частицы. Больше данных о столкновении позволяет лучше выполнить физические свойства любой новой наблюдаемой частицы и позволяет физикам решить, действительно ли это бозон Хиггса, как описано в Стандартной модели, или какая-то другая гипотетическая новая частица.

Чтобы бозон Хиггса, был нужен мощный ускоритель частиц , потому что бозоны Хиггса нельзя было увидеть в экспериментах с более низкими энергиями. Коллайдер должен иметь высокую светимость , чтобы было видно достаточно столкновений, чтобы можно было сделать выводы. Наконец, потребовались современные вычислительные средства для обработки огромного количества данных (25 петабайт в год по состоянию на 2012 год), вызывающих в результате столкновения. К объявлению от 4 июля 2012 г. в ЦЕРН был построен новый коллайдер, известный как Большой адронный коллайдер, с запланированной конечной энергией столкновения 14 ТэВ — более семь раз больше любого предыдущего коллайдера — и более Было проанализировано 300 триллионов (3 × 10) протон-протонных столкновений LHC LHC Computing Grid, крупнейшей в мире вычислительной сеткой (по состоянию на 2012 год), включающая более 170 вычислительных мощностей в всемирной сети в 36 странах.

Поиск до 4 июля 2012 г.

Первый обширный поиск бозона Хиггса был проведен в Большой-позитронный коллайдер (LEP) в ЦЕРНе в 1990-е годы. К концу своей службы в 2000 году LEP не нашла доказательств существования Хиггса. Это означало, что если бы бозон Хиггса существовал, он должен был бы быть тяжелее 114,4 ГэВ / c.

Поиск продолжился в Фермилаб в США, где Тэватрон — коллайдер, открывший топ-кварк в 1995 году — был модернизирован для этой цели. Не было никакой гарантии, что Теватрон сможет найти Хиггса, но это был единственный суперколлайдер, который работал, поскольку Большой адронный коллайдер (LHC) все еще строился, запланированный сверхпроводящий сверхпроводящий Коллайдер был закрыт в 1993 году и так и не был достроен. Тэватрон смог исключить только дальнейшие диапазоны для массы Хиггса и был остановлен 30 сентября 2011 года, потому что он больше не мог идти в ногу с LHC. Окончательный анализ данных исключил возможность существования бозона Хиггса с массой от 147 ГэВ / c до 180 ГэВ / c. Кроме того, наблюдался небольшой (но не значительный) избыток событий, возможно, указывающий на бозона Хиггса с массой от 115 ГэВ / c до 140 ГэВ / c.

Большой адронный коллайдер в ЦЕРН в Швейцарии, был разработан специально, чтобы иметь возможность подтвердить или исключить существование бозона Хиггса. Построенный в туннеле длиной 27 км под землей около Женевы, используемые населенным LEP, он разработан для столкновения двух пучков протонов, с использованием энергиями 3,5 ТэВ на пучок (всего 7 ТэВ), или почти в 3, В 6 раз больше. что у Тэватрона, и воспользоваться модернизацией до 2 × 7 ТэВ (всего 14 ТэВ) в будущем. Теория предполагала, что если бозон Хиггса существует, должны столкновения на этих энергетических уровнях быть в состоянии его состояния. Это время один из самых сложных научных инструментов, когда-либо созданных, его эксплуатационная готовность была отложена на 14 месяцев из-за гашения магнитов через девять дней после его первых испытаний, вызванных неисправным электрическим соединением, которое повредили более 50 сверхпроводящих магнитов и загрязнение вакуумную систему.

Сбор данных на LHC наконец начался в марте 2010 года. К декабрю 2011 года два основных детектора частиц на LHC, ATLAS и CMS, сузила диапазон масс, в которых существовать Хиггс, до 116-130 ГэВ (ATLAS) и 115-127 ГэВ (CMS). Также уже имел место ряд многообещающих эксцессов событий, которые «испарились» и оказались не чем иными, как случайными колебаниями. Однако примерно примерно мая 2011 года в эксперименте отметили среди своих результатов медленное появление небольшого, но последовательного набора сигнатур гамма- и 4-лептонных распадов и нескольких других распадов частиц, которые намекают на новые частицу с массой около 125 ГэВ.. Примерно к ноябрю 2011 года аномальные данные на 125 ГэВ становились «слишком большими, чтобы их можно было игнорировать» (хотя все еще далеко от окончательного результата), и руководителем как ATLAS, так и CMS в частном порядке подозревали, что они могли позволить Хиггса. 28 ноября 2011 года на внутренней встрече руководителей двух команд и генерального директора ЦЕРН впервые обсуждаются последние анализы за пределами их команд, из чего следует, что и ATLAS, и CMS могут сходиться к общему результату при 125 ГэВ., и начальная подготовка началась в случае обнаружения. Хотя в то время эта информация не была публично известна, сужение возможного диапазона Хиггса примерно до 115–130 ГэВ и неоднократные наблюдения небольших, но постоянных превышений событий по нескольким каналам, как в ATLAS, так и в CMS в области 124–126 ГэВ (описанные как «Дразнящие намеки» примерно на 2–3 сигмы) были общеизвестными с «большим интересом». Поэтому в конце 2011 года многие ожидали, что LHC предоставит достаточно данных, чтобы исключить возможность открытия бозона Хиггса к концу 2012 года, когда их данные о столкновениях 2012 года (с немного большей энергией столкновения 8 ТэВ)

Обнаружение кандидатов в бозон в ЦЕРН

2-photon Higgs decay.svg4-lepton Higgs decay.svg
Диаграммы Фейнмана, показывающие самые чистые каналы, связанные с маломассивным (~ 125 ГэВ) кандидатом в бозон Хиггса, наблюдаемым ATLAS и CMS на БАК. Доминирующий механизм образования при этой массе включает два глюона от каждого протона, сливающиеся в петлю топ-кварка, который сильно взаимодействует с полем Хиггса с образованием бозона Хиггса.

Слева: канал дифотона: бозон использует распадается на два гамма-фотона посредством виртуального взаимодействия с петлей бозона W или петлей топ-кварка.

Справа: четырехлептонный «золотой канал»: бозон испускает два Z-бозона, каждый из которых распадается на два лептона (электроны, мюоны).

Экспериментальный анализ этих каналов достиг значимости более стандартных отклонений (сигма) в обоих экспериментах.

22 июня 2012 года ЦЕРН объявил о предстоящем семинаре, посвященный предварительным результатам за 2012 год, вскоре после этого (примерно с 1 июля 2012 года, согласно анализу распространяющихся слухов в социальных сетей ) средствах массовой информации начали распространяться слухи, но было неясно, это будет более сильным сигналом или формальным открытием. Когда были приглашены пять ведущих физиков, участвовали пять ведущих физиков, которые были приглашены на семинары. пять живые авторы 1964 года — с участием Хиггса, Энглерта, Гуральника, Хагена и Киббла, подтверждающего его приглашение (Браут умер в 2011 году).

4 июля 2012 года оба эксперимента ЦЕРН объявил независимо друг от друга одно и то же открытие: CMS неизвестного ранее бозона с массой 125,3 ± 0,6 ГэВ / c и ATLAS бозона с массой 126, 0 ± 0,6 ГэВ / c. Используя комбинированный анализ двух типов поведения (известных как «каналы»), оба эксперимента независимо друг от друга достигли локального значения 5 сигм, что означает вероятность получить хотя бы такой сильный результат случайно составляет менее одного из трех миллионов. Когда были учтены дополнительные каналы, значимость CMS снизилась до 4,9 сигма.

Две команды работали «слепо» друг от друга примерно с конца 2011 года или начала 2012 года, то есть они не обсуждали свои результаты друг с другом, что дает дополнительную уверенность в том,что любой общий вывод является подтвержденным подтверждением наличия частицы. Этот уровень доказательств, подтвержденных двумя отдельными группами и экспериментами, соответствует формальному уровню доказательства, необходимому для объявления подтвержденного открытия открытия.

31 июля 2012 года коллаборация ATLAS представила дополнительный анализ данных о «наблюдении новой частицы», включая данные из третьего канала, что повысило значимость до 5,9 сигма (1 из 588 миллионов вероятности достижения по крайней мере, в качестве качества убедительного доказательства только случайные фоновые эффекты) и масса 126,0 ± 0,4 (стат) ± 0,4 (sys) ГэВ / c, а CMS повысила значимость до 5-сигма и массы 125,3 ± 0,4 (стат) ± 0,5 (сис) ГэВ / c.

Новая часть протестирована как возможный бозон Хиггса

После открытия 2012 года все еще не было подтверждено, является ли частица 125 ГэВ / c бозоном Хиггса. С одной стороны, наблюдения оставались согласованными с наблюдаемой бозоном Хиггса Стандартной модели, и частица распалась по крайней мере на некоторых из предсказанных каналов. Более того, коэффициенты ветвления для наблюдаемых каналов в соответствовали прогнозам Стандартной модели в экспериментальных неопределенностях. Однако экспериментальные неопределенности в настоящее время все еще оставляют место для альтернативных объяснений, а это означает, что объявление об открытии бозона Хиггса было бы преждевременным. Чтобы предоставить больше возможностей для сбора данных, предлагаемое закрытие LHC в 2012 году и модернизации на 2013–2014 годы были отложены на семь недель до начала 2013 года.

В ноябре 2012 года на конференции в Киото заявители заявили, что данные, собранные с июля, соответствуют требованиям Стандартной модели больше, чем ее альтернативы, с диапазонами результатов для нескольких взаимодействий, совпадающих с предсказаниями теории. Физик Мэтт Страсслер выдвинул «основным» доказательством, что новая часть не является псевдоскалярной частицей с отрицательной четкостью (что согласуется с этим открытием для бозона Хиггса), «испарением» или отсутствием повышенной значимость для предшествующих намеков на результаты нестандартной модели, ожидаемые перспективы Стандартной модели с W- и Z-бозонами, отсутствие «значимых новых последствий» за или против суперсимметрии и в целом не значимые отклонения на сегодняшний день от результатов ожидаемых для бозона Хиггса Стандартной модели. Однако некоторые виды расширений Стандартной модели также будут давать очень похожие результаты; поэтому комментаторы отметили, что они все еще остаются изученными еще долгое время после их открытия, чтобы быть полностью изученными, чтобы быть уверенным, и десятилетия, чтобы полностью понять обнаруженную частицу.

Эти результаты означали, что по состоянию на Январь 2013 года ученые были очень уверены, что появились неизвестные частицу с массой ~ 125 ГэВ / с, и не были введены в заблуждение экспериментальной ошибкой или случайным результатом. Они также были уверены, из наблюдательных наблюдений, что новая частица была своего рода бозоном. Поведение и частицы, исследованные с июля 2012 года, также казались довольно близкими к поведению, ожидаемому от бозона Хиггса. Даже в этом случае это мог быть бозон Хиггса или какой-либо другой неизвестный бозон, поскольку будущие тесты могут показать поведение, не соответствующее бозону Хиггса, поэтому по состоянию на декабрь 2012 года ЦЕРН все еще заявлял, что новая часть «согласуется» с Бозон Хиггса, и ученые еще не утверждали, что это был бозон Хиггса. Несмотря на это, в конце 2012 года широко распространенные сообщения в средствах массовой информации заявили (ошибочно), что бозон Хиггса был подтвержден в течение года.

В январе 2013 года генеральный директор ЦЕРН Рольф-Дитер Хойер заявил что на основе анализа данных на сегодняшний день ответ может быть возможен «ближе» к середине 2013 года, заместитель председателя кафедры физики в Брукхейвенской национальной лаборатории заявил в феврале 2013 года, что для «окончательного» ответа может потребоваться «еще один несколько лет» после перезапуска коллайдера в 2015 г.. Исследованиям ЦЕРН Серджио Бертолуччи заявил, что подтверждение спина 0 является основным оставшимся требованием для определения того, является ли частица по крайней чем-то вроде бозона Хиггса.

Подтверждение существования и текущего состояния

14 марта 2013 г. ЦЕРН подтвердил, что:

«CMS и ATLAS сравнили ряд вариантов спиновой четности этих частиц, и все они предпочитают отсутствие спина и даже четность [два основных критерия бозона Хиггса, согласующихся с Стандартной моделью]». Это вместе с измерениями новой частицы с другими частицами убедительно указывает на то, что это бозон Хиггса ».

Это также делает частицу первой элементарной скалярной частицей, которая должна быть обнаружены в природе.

Примеры тестов, используемых для подтверждения того, что обнаруженная часть является бозоном Хиггса:

Требование Как проверено / объяснение Текущее состояние (По состоянию на Июль 2017 г.)
Нулевой спин Изучение закономерностей распада. Спин-1 был исключен во время первоначального открытия из-за наблюдаемого распада на два фотона (γ γ), оставшихся спин-0 и спин-2 в качестве оставшихся кандидатов. Спин-0 подтвержден. Гипотеза спина 2 исключена с уровнем достоверности, превышающим 99,9%.
Четкость (положительная) четность Изучение углов, под какие продукты распада разлетаются. Отрицательная четность также не приветствуется, если подтверждена спин 0. Четность подтверждена. Гипотеза отрицательной четкости со спином 0 повышена уровнем достоверности, превышающим 99,9%.
Каналы распада (результаты распада частиц) соответствуют прогнозам Стандартная модель предсказывает характер распада 125 Бозон Хиггса ГэВ. Все ли они видны и по правильной цене?

Что особенно важно, мы должны вести распады на пары фотонов (γ γ), W и Z бозонов (WW и ZZ), нижних кварков ( bb) и тау-лептонов (τ τ) среди исходов.

bb, γ γ, τ τ, WW и ZZ наблюдались. Все уровни сигнала согласуются с предсказанием Стандартной модели.
Взаимосвязь с массой (т. Е. Сила взаимодействия с частицами Стандартной модели, пропорциональная их массе) Физик элементарных частиц Адам Фальковски утверждает, что существенное качества бозона Хиггса заключаются в том, что это частица со спином 0 (скалярная), которая также связана с массой (W- и Z-бозоны); доказательства одного спина 0 недостаточно. Связь с массой убедительно доказана («При уровне достоверности 95% c V находится в пределах 15% от стандартного модельного значения c V = 1 «).
Результаты для более высоких энергий остаются согласованными После перезапуска LHC в 2015 г. при более высокой энергии 13 ТэВ выполняет поиск нескольких частиц Хиггса (как предсказывается в некоторых теориях).) и продолжались испытания других версий теории частиц. Эти результаты с более высокими значениями энергии должны продолжать давать результаты, согласующиеся с теориями Хиггса. Анализ столкновений до июля 2017 г. не показывает отклонений от Стандартной модели, с экспериментальной точностью лучше, чем результаты при более низких энергиях.

Выводы с 2013 года

В июле 2017 года ЦЕРН подтвердил, что все измерения все еще согласуются с предсказаниями Стандартной модели, и назвал обнаруженную частицу просто «бозоном Хиггса». По состоянию на 2019 год Большой адрон ный коллайдер продолжал получать результаты, подтверждающие понимание поля и частицы Хиггса в 2013 году.

Экспериментальная работа LHC с момента перезапуска в 2015 году включала зондирование Хиггса. поля и бозона на более высоком уровне детализации и подтверждения того, верны ли менее распространенные предсказания. В частности, исследования с 2015 года предоставили убедительные доказательства предсказанного прямого распада на фермионы, такие как пары нижних кварков (3,6 σ), — описанные как «важная веха» в понимании его короткое время жизни и другие редкие распады — а также для подтверждения распада на пары тау-лептонов (5.9 σ). ЦЕРН описал это как имеющее первостепенное значение для установления связи бозона Хиггса с лептонами и представляет собой важный шаг на пути к измерению его связи с фермионами третьего поколения, очень тяжелыми копиями электронов и кварков, роль которых в природе глубокая тайна ». Опубликованные на 19 марта 2018 г. результаты при 13 ТэВ для ATLAS и CMS содержали измерения массы Хиггса на уровне 124,98 ± 0,28 ГэВ и 125,26 ± 0,21 ГэВ соответственно.

В июле 2018 года эксперименты ATLAS и CMS сообщили о наблюдении распада бозона Хиггса на пару нижних кварков, что составляет примерно 60% всех его распадов.

Теоретические вопросы

Теоретическая необходимость в нарушении симметрии Хиггса

«проиллюстрировано «: — На высоких уровнях энергии (слева) шар оседает в центре, и результат симметричен. На более низких уровнях энергии (справа) общие «правила» остаются симметричными, но вступает в действие потенциал «мексиканской шляпы»: «локальная» симметрия неизбежно нарушается, так как в конечном итоге мяч должен катиться в ту или иную сторону.

Калибровочная инвариантность является важным свойством современных теорий частиц, таких как Стандартная модель, отчасти благодаря ее успеху в других областях фундаментальной физики, таких как электромагнетизм и сильное взаимодействие (квантовая хромодинамика ). Однако до Шелдон Л. Глэшоу расширил модели электрослабого объединения в В 1961 году возникли большие трудности в разработке калибровочных теорий для слабого ядерного взаимодействия или возможног о единого электрослабого взаимодействия. Фермионы с массовым членом нарушили бы калибровочную симметрию и поэтому не могут быть калибровочно-инвариантными. (Это можно увидеть, исследуя лагранжиан Дирака для фермиона с точки зрения левой и правой составляющих; мы находим, что ни одна из частиц с половиной спина не могла бы изменить спиральность, как требуется для массы, поэтому они должны быть безмассовыми.) Наблюдается, что W- и Z-бозоны обладают массой, но член бозонной массы содержит члены, которые явно зависят от выбора калибровки, и поэтому эти массы также не могут быть калибровочно-инвариантными.. Следовательно, кажется, что ни один из фермионов или бозонов стандартной модели не мог бы «начать» с массы как встроенного свойства, кроме как отказавшись от калибровочной инвариантности. Чтобы сохранить калибровочную инвариантность, эти частицы должны были приобретать свою массу посредством какого-то другого механизма или взаимодействия. Кроме того, все, что придавало этим частицам их массу, не должно было «нарушать» калибровочную инвариантность в качестве основы для других частей теорий, где она работала хорошо, и не должно было требовать или предсказывать неожиданные безмассовые частицы или дальнодействующие силы (по-видимому, неизбежные следствие теоремы Голдстоуна ), которое на самом деле не существовало в природе.

Решение всех этих перекрывающихся проблем пришло из открытия ранее незамеченного пограничного случая, скрытого в математике теоремы Голдстоуна, что при определенных условиях теоретически возможно нарушение симметрии без нарушения калибровки. инвариантность и отсутствие каких-либо новых безмассовых частиц или сил и наличие «разумных» (перенормируемых ) результатов математически. Это стало известно как механизм Хиггса.

Сводка взаимодействий между некоторыми частицами, описываемых Стандартной моделью.

Стандартная модель предполагает наличие поля , которое является ответственный за этот эффект, называемый полем Хиггса (символ: ϕ { displaystyle phi}phi ), которое имеет необычное свойство ненулевой амплитуды в его основном состоянии ; то есть ненулевое ожидаемое значение вакуума. Он может иметь такой эффект из-за своего необычного потенциала в форме «мексиканской шляпы», самая низкая «точка» которого не находится в его «центре». Проще говоря, в отличие от всех других известных полей, поле Хиггса требует меньше энергии, чтобы иметь ненулевое значение, чем нулевое значение, поэтому в конечном итоге оно везде имеет ненулевое значение. Ниже определенного чрезвычайно высокого уровня энергии существование этого ненулевого ожидания вакуума спонтанно нарушает электрослабую калибровочную симметрию, что, в свою очередь, приводит к возникновению механизма Хиггса и запускает приобретение массы этими частицами, взаимодействующими с полем. Этот эффект возникает потому, что компоненты скалярного поля поля Хиггса «поглощаются» массивными бозонами в виде степеней свободы и связываются с фермионами через связь Юкавы, тем самым производя ожидаемые массовые термины. Когда в этих условиях нарушается симметрия, возникающие голдстоуновские бозоны взаимодействуют с полем Хиггса (и с другими частицами, способными взаимодействовать с полем Хиггса) вместо того, чтобы становиться новыми безмассовыми частицами. Сложные проблемы обеих базовых теорий «нейтрализуют» друг друга, и остаточный результат состоит в том, что элементарные частицы приобретают постоянную массу в зависимости от того, насколько сильно они взаимодействуют с полем Хиггса. Это простейший известный процесс, способный придавать массу калибровочным бозонам, оставаясь при этом совместимым с калибровочными теориями. Его квант будет скалярным бозоном, известным как бозон Хиггса.

Альтернативные модели

Минимальная стандартная модель Как описано выше, это простейшая известная модель механизма Хиггса с одним полем Хиггса. Однако также возможен расширенный сектор Хиггса с дополнительными дублетами или триплетами частиц Хиггса, и многие расширения Стандартной модели имеют эту особенность. Неминимальный сектор Хиггса, одобренный теорией, — это модели с двумя дублетами Хиггса (2HDM), которые предсказывают существование квинтета скалярных частиц: двух CP- четные нейтральные бозоны Хиггса h и H, CP-нечетный нейтральный бозон Хиггса A и две заряженные частицы Хиггса H. Суперсимметрия («SUSY») такжечастица: если Вселенная — это ответ, то в чем вопрос?» Редактор Ледермана решил, что название было слишком спорным, убедил его изменить название на «Частица Бога: если Вселенная — это ответ, то в чем вопрос?»

использование этого термина в СМИ, возможно, способствовало более широкому распространению осведомленности, многие ученые считают это названием неуместным, поскольку оно является сенсационной гиперболой и вводит читателей в заблуждение; части также не имеет ничего общего с каким-либо Богом, оставляет открытыми многочисленными вопросы фундаментальной физики и не объясняет окончательное происхождение вселенной. Хиггс, атеист, как сообщалось, был недоволен и заявлено в интервью 2008 года, что он нашел это «смущающим», потому что это был «вид злоупотребления… который, я думаю, может обидеть некоторых людей ». Это прозвище высмеивали и в основных СМИ. Научный писатель Ян Сэмпл заявил в своей книге 2010 года о поиске, что это прозвище «ненавидят все [d]» физиков и возможно, «высмеивают» в истории физики, но это (согласно Ледерману) издатель отверг все названия, в котором упоминается «Хиггс», как лишенные воображения и слишком неизвестные.

Ледерман начинает обзор долгих человеческих поисков знаний и объясняет, что его ироничное название проводит аналогию между влиянием поля Хиггса на фундаментальные симметрии в Большом взрыве, а также очевидный хаос структур, частиц, сил и Используий, которые создали и сформировали нашу библейскую историей Вавилон, в котором основной единый язык раннего Бытия был фрагментирован на множество несопоставимых языков и культурных.

Сегодня… у нас есть стандартная модель, которая уменьшает всю реальность до дюжины или около частиц и четырех сил…. Это с трудом завоеванная простота [… и…] удивительно точная. Но он также неполный и, по сути, внутренне противоречивый… Этот бозон так важен для нашего окончательного понимания структуры материи, настолько важен для нашего окончательного понимания структуры материи, но настолько неуловим, что я дал ему прозвище: Частица Бога. Почему Бог Частица? Две причины. Во-первых, издатель не позволил нам называть это проклятой частицей, которое оно вызывает. И, во-втором, есть своего рода связь с другой книгой, гораздо более старой…

— М. Ледерман и Дик Терези, Частица Бога: Если Вселенная — это ответ, В чем вопрос стр.

Ледерман спрашивает, был ли бозон Хиггса добавлен только для этой цели, чтобы сбить с толку и сбить с толку тех, кто ищет знания о Вселенной, и будут ли физики сбиты с толку этим, как рассказывается в истории, или в итоге преодолеют проблему и поймут, «насколько прекрасна эта вселенная». Вселенная [Бог] создал ».

Другие предложения

Конкурс на переименование, проведенный британской газетой The Guardian в 2009 году, привел к тому, что их научный корреспондент выбрал имя «the бутылка шампанского бозон »как лучший:« Дно бутылки шампанского имеет форму большого Хиггса и часто используется в качестве иллюстрации в лекциях по физике. Так что это не досадно грандиозное имя, он запоминающийся, и [он] имеет некоторую физическую связь ». Имя Хиггсон также было предложено в статье, опубликованной в интернет-публикации Physicsworld.com Института физики.

Образовательные объяснения и аналогии

Фотография света, проходящего через дисперсионная призма : эффект радуги возникает из-за того, что на фотоны не все в одинаковой степени влияет дисперсионный материал призмы.

Было много публичных обсуждений аналогичные и объяснения для частица Хиггса и то, как поле силы, включающее освещение попытка объяснения самих себя и конкурс в 1993 году на лучшее объяснение тогдашним министром Великобритании сэром Уильямом Уильямомегрейвом и статьи в газетах по всему миру.

Образовательное сотрудничество с участием физика LHC и учителей старших классов в ЦЕРН предполагает, что рассеивание света отвечает за радугу и дисперсионная призма — полезная аналогия для нарушения симметрии поля Хиггса и массового эффекта.

Нарушение симметрии. в оптике В вакууме свет всех цветов (или фотоны всех длин волн ) движутся с одинаковой скоростью, в симметричной ситуации. В некоторых веществах, таких как стекло, вода или воздух, эта симметрия нарушена (см.: Фотоны в материи ). В результате свет с разными длинами волн имеет разные.
Нарушение симметрии. в физике элементарных частиц В «наивных» калибровочных теориях все калибровочные бозоны и другие фундаментальные частицы безмассовы — также симметричная скорость. В присутствии поля Хиггса эта симметрия нарушается. В результате частиц разных типов будут иметь разную массу.

Мэтт Страсслер использует электрические поля в качестве аналогии:

Некоторые частицы взаимодействуют с полем Хиггса, а другие — нет. Те частицы, которые чувствуют поле Хиггса, представляют собой так, как будто у них есть масса. Нечто подобное происходит в электрическом поле — заряженные объекты притягиваются, а нейтральные объекты могут проходить сквозь них, не подвергаясь воздействию. Так что вы можете думать о поиске Хиггса как о попытке создания волны в поле Хиггса [создать бозоны Хиггса], чтобы доказать, что оно действительно существует.

Аналогичное объяснение было предложено Хранитель :

Бозон Хиггса — это по сути, рябь в поле, которое, как утверждается, возникло при рождении Вселенной и пространства по сей день… Однако частица имеет решающее значение: это дымящийся пистолет, свидетельство, необходимое для того, чтобы показать теория верна.

Влияние поля Хигготеет на частицы было классно описано физиком Дэвидом Миллером как сродни, полными комнатными группами, равномерно распределенными по: толпа тяготеет к известным людям и замедляет их, но не замедляет вниз другие. Он также обратил внимание на хорошо известные эффекты в физике твердого тела, где эффективная масса электрона может быть намного больше, чем обычно, в кристаллической решетки.

Аналогии, основанные на эффекты перетаскивания, включая аналогии с «сиропом » или «патокой », также хорошо известны, но могут вводить в простой резистивный эффект может также противоречить третьему закону Ньютона.

Признание и награды

До конца 2013 года, потому что их можно понять (неправильно). было много дискуссий о том, как точить заслугу, если бозон Хиггса доказан, сделан более эффективным, поскольку Нобелевская премия ожидалась, и очень широкий круг людей, имеющих право на рассмотрение. В их число входят ряд теоретиков, сделавших возможной теорию механизма Хиггса, теоретиков статей PRL 1964 года (включая самого Хиггса), теоретиков, выведших из них рабочую теорию электрослабого взаимодействия и саму Стандартную модель, а также экспериментаторов из ЦЕРНа. другие институты, которые сделали возможным доказательство поля и бозона Хиггса на самом деле. Нобелевская премия ограничена тремя людьми, которые могут разделить награду, и некоторые возможные победители уже являются обладателями призов за другие работы или умерли (премия присуждается только лицам, прижизненным). Существующие призы за работы, касающиеся поля, бозона или механизма Хиггса, включают:

  • Нобелевская премия по физике (1979) — Глэшоу, Салам и Вайнберг, за вклад в теорию единого слабого и электромагнитного взаимодействия между элементарными частицами
  • Нобелевская премия по физике (1999) — ‘т Хоофт и Велтман, за выяснение квантовой структуры электрослабых взаимодействий в физике
  • Дж. Премия Дж. Сакураи в области теоретической физики элементарных частиц (2010 г.) — Хаген, Энглерт, Гуральник, Хиггс, Браут и Киббл за выяснение свойств спонтанного нарушения симметрии в четырехмерной релятивистской калибровочной теории и механизма последовательная генерация масс векторных бозонов (для статей 1964 года, описанных выше)
  • Премия Вольфа (2004) — Энглерта, Браута и Хиггса
  • Премия за прорыв в фундаментальной физике (2013) — Фабиола Джанотти и Питер Дженни, представители сотрудничества ATLAS, и Мишель Делла Негра, Техиндер Сингх Вирди, Гвидо Тонелли и Джозеф Инкандела, бывшие и настоящие представители сотрудничества CMS, «За [их] ведущая роль в научных усилиях, которые привели к открытию новой частицы, подобной Хиггсу, сотрудниками ATLAS и CMS на Большом адронном коллайдере ЦЕРН ».
  • Нобелевская премия по физике (2013) — Питер Хиггс и Франсуа Энглер за теоретическое открытие Ханизм, который способствует нашему понимани ю происхождения массы субатомных частиц и который недавно был подтвержден открытием предсказанной фундаментальной частицы в экспериментах ATLAS и CMS на Большом адронном коллайдере ЦЕРН, соисследователь Энглерта Роберт Браут умер в 2011 году, и Нобелевская премия обычно не вручается посмертно.

Дополнительно Physical Review Letters ’50-летний обзор (2008) признал статьи 1964 года, нарушающие симметрию PRL и статья Вайнберга 1967 года «Модель лептонов» (наиболее цитируемая статья в физике элементарных частиц по состоянию на 2012 год) «вехи».

После сообщения о наблюдении хиггсовподобной частицы в июле 2012 года несколько Индийские СМИ сообщали о предполагаемом пренебрежении кредитом индийского физика Сатиендра Нат Бозе, после работы которого в 1920-х годах класс частиц «бозонов «назван (хотя физики описали связь Бозе с открытием как tenu ous).

Технические аспекты и математическая формулировка

Потенциал поля Хиггса, построенный как функция от

ϕ 0 { displaystyle phi ^ {0}}

phi ^{0}и

ϕ 3 { displaystyle phi ^ {3}}

phi ^{3}. Он имеет профиль мексиканской шляпы или бутылки шампанского на земле.

В Стандартной модели поле Хиггса представляет собой четырехкомпонентное скалярное поле, которое формирует сложный дублет слабого изоспин SU (2) симметрия:

ϕ = 1 2 (ϕ 1 + i ϕ 2 ϕ 0 + i ϕ 3), { displaystyle phi = { frac {1} { sqrt {2}}} left ({ begin {array} {c} phi ^ {1} + i phi ^ {2} \ phi ^ {0} + i phi ^ {3} end {array}} right) ,}{displaystyle phi ={frac {1}{sqrt {2}}}left({begin{array}{c}phi ^{1}+iphi ^{2}\phi ^{0}+iphi ^{3}end{array}}right),}

в то время как поле имеет заряд + ½ при симметрии слабого гиперзаряда U (1).

Примечание. В статье используется соглашение о масштабировании, в котором электрический заряд Q, слабый изоспин, T 3 и слабый гиперзаряд, Y W, связаны соотношением Q = Т 3 + Y W. другое соглашение, используемое в большинстве других статей Википедии : Q = T 3 + ½ Y W.

Хиггсовская часть лагранжиана:

LH = | (∂ μ — i g W μ a 1 2 σ a — i 1 2 g ′ B μ) ϕ | 2 + μ ЧАС 2 ϕ † ϕ — λ (ϕ † ϕ) 2, { displaystyle { mathcal {L}} _ { text {H}} = left | left ( partial _ { mu} — igW _ { mu , a} { tfrac {1} {2}} sigma ^ {a} -i { tfrac {1} {2}} g’B _ { mu} right) phi right | ^ {2} + mu _ { text {H}} ^ {2} phi ^ { dagger} phi — lambda ( phi ^ { dagger} phi) ^ {2} ,}{displaystyle {mathcal {L}}_{text{H}}=left|left(partial _{mu }-igW_{mu ,a}{tfrac {1}{2}}sigma ^{a}-i{tfrac {1}{2}}g'B_{mu }right)phi right|^{2}+mu _{text{H}}^{2}phi ^{dagger }phi -lambda (phi ^{dagger }phi)^{2},}

где W μ a { displaystyle W _ { mu , a}}{displaystyle W_{mu ,a}}и B μ { displaystyle B _ { mu}}B_{mu }являются калибровочные бозоны SU (2) и U (1) симметрии, g { displaystyle g}gи g ′ { displaystyle g ‘}g'соответствующие им константы связи, σ a { displaystyle sigma ^ {a}}sigma ^{a}— это матрицы Паули (полные набор генераторов симметрии SU (2)) и λ>0 { displaystyle lambda>0}lambda>0 и μ H 2>0 { displaystyle mu _ { text {H}} ^ {2}>0}{displaystyle mu _{text{H}}^{2}>0} , так что основное состояние нарушает симметр ию SU (2) (см. рисунок).

Основное состояние поля Хиггса (нижняя граница потенциала) вырождено с различными основными состояниями, связанными друг с другом калибровочным преобразованием SU (2). Всегда можно выбрать датчик так, чтобы в основном состоянии ϕ 1 = ϕ 2 = ϕ 3 = 0 { displaystyle phi ^ {1} = phi ^ {2} = phi ^ {3} = 0}{displaystyle phi ^{1}=phi ^{2}=phi ^{3}=0}. Ожидаемое значение ϕ 0 { displaystyle phi ^ {0}}phi ^{0}в основном состоянии (математическое ожидание вакуума или VEV) тогда равно ⟨ϕ 0⟩ = 1 2 v { displaystyle langle phi ^ {0} rangle = { tfrac {1} { sqrt {2 ,}}} v}{displaystyle langle phi ^{0}rangle ={tfrac {1}{sqrt {2,}}}v}, где v = 1 λ | μ H | { displaystyle v = { tfrac {1} { sqrt { lambda ,}}} left | mu _ { text {H}} right |}{displaystyle v={tfrac {1}{sqrt {lambda ,}}}left|mu _{text{H}}right|}. Измеренное значение этого параметра составляет ~ 246 ГэВ / c. Он имеет единицы массы и является единственным свободным параметром Стандартной модели, который не является безразмерным числом. Возникают квадратичные члены в W μ { displaystyle W _ { mu}}W_{mu }и B μ { displaystyle B _ { mu}}B_{mu }, которые придают массы бозоны W и Z:

m W = 1 2 v | г |, { Displaystyle м _ { текст {W}} = { tfrac {1} {2}} v left | , g , right | ,}{displaystyle m_{text{W}}={tfrac {1}{2}}vleft|,g,right|,}
m Z = 1 2 vg 2 + g ′ 2, { displaystyle m _ { text {Z}} = { tfrac {1} {2}} v { sqrt {g ^ {2} + {g ‘} ^ {2} }} ,}{displaystyle m_{text{Z}}={tfrac {1}{2}}v{sqrt {g^{2}+{g'}^{2} }},}

с их соотношением, определяющим угол Вайнберга, cos ⁡ θ W = m W m Z = | г | g 2 + g ′ 2 { displaystyle cos theta _ { text {W}} = { frac {m _ { text {W}}} { m _ { text {Z}} }} = { frac { left | , g , right |} { { sqrt {g ^ {2} + {g ‘} ^ {2} }} }}}{displaystyle cos theta _{text{W}}={frac {m_{text{W}}}{ m_{text{Z}} }}={frac {left|,g,right|}{ {sqrt {g^{2}+{g'}^{2} }} }}}, и оставить безмассовый U (1) фотон, γ { displaystyle gamma}gamma . Масса самого бозона Хиггса равна

m H = 2 μ H 2 ≡ 2 λ v 2. { displaystyle m _ { text {H}} = { sqrt {2 mu _ { text {H}} ^ {2} }} Equiv { sqrt {2 lambda v ^ {2} } }.}{displaystyle m_{text{H}}={sqrt {2mu _{text{H}}^{2} }}equiv {sqrt {2lambda v^{2} }}.}

Кварки и лептоны взаимодействуют с полем Хиггса посредством взаимодействия Юкавы членов:

LY = — λ uij ϕ 0 — i ϕ 3 2 u ¯ L iu R j + λ uij ϕ 1 — i ϕ 2 2 d ¯ L iu R j — λ dij ϕ 0 + i ϕ 3 2 d ¯ L id R j — λ dij ϕ 1 + i ϕ 2 2 u ¯ L id R j — λ eij ϕ 0 + i ϕ 3 2 e ¯ L т.е. R j — λ eij ϕ 1 + i ϕ 2 2 ν ¯ L т.е. R j + hc, { displaystyle { begin {align} { mathcal {L}} _ { text {Y}} = — lambda _ {u} ^ {i , j} { frac { phi ^ { 0} -i phi ^ {3} } { sqrt {2 }}} { overline {u}} _ { text {L}} ^ {i} u _ { text {R}} ^ { j} + lambda _ {u} ^ {i , j} { frac { phi ^ {1} -i phi ^ {2} } { sqrt {2 }}} { overline { d}} _ { text {L}} ^ {i} u _ { text {R}} ^ {j} \ — lambda _ {d} ^ {i , j} { frac { phi ^ {0} + i phi ^ {3} } { sqrt {2 }}} { overline {d}} _ { text {L}} ^ {i} d _ { text {R} } ^ {j} — lambda _ {d} ^ {i , j} { frac { phi ^ {1} + i phi ^ {2} } { sqrt {2 }}} { overline {u}} _ { text {L}} ^ {i} d _ { text {R}} ^ {j} \ — lambda _ {e} ^ {i , j} { frac { phi ^ {0} + i phi ^ {3} } { sqrt {2 }}} { overline {e}} _ { text {L}} ^ {i} e _ { text {R}} ^ {j} — lambda _ {e} ^ {i , j} { frac { phi ^ {1} + i phi ^ {2} } { sqrt {2 } }} { overl ine { nu}} _ { text {L}} ^ {i} e _ { text {R}} ^ {j} + { textrm {hc}} , end {выровнено}} }{displaystyle {begin{aligned}{mathcal {L}}_{text{Y}}=-lambda _{u}^{i,j}{frac { phi ^{0}-iphi ^{3} }{sqrt {2 }}}{overline {u}}_{text{L}}^{i}u_{text{R}}^{j}+lambda _{u}^{i,j}{frac { phi ^{1}-iphi ^{2} }{sqrt {2 }}}{overline {d}}_{text{L}}^{i}u_{text{R}}^{j}\-lambda _{d}^{i,j}{frac { phi ^{0}+iphi ^{3} }{sqrt {2 }}}{overline {d}}_{text{L}}^{i}d_{text{R}}^{j}-lambda _{d} ^{i,j}{frac { phi ^{1}+iphi ^{2} }{sqrt {2 }}}{overline {u}}_{text{L}}^{i}d_{text{R}}^{j}\-lambda _{e}^{i,j}{frac { phi ^{0}+iphi ^{3} }{sqrt {2 }}}{overline {e}}_{text{L}}^{i}e_{text{R}}^{j}-lambda _{e}^{i,j}{frac { phi ^{1}+iphi ^{2} }{sqrt {2 }}}{overline {nu }}_{text{L}}^{i}e_{text{R}}^{j}+{textrm {h.c.}},end{aligned}}}

где (d, u, e, ν) L, R i { displaystyle (d, u, e, nu) _ { text {L, R}} ^ {i}}{displaystyle (d,u,e,nu)_{text{L,R}}^{i}}— левосторонние и правосторонние кварки и лептоны i-го поколения, λ u, d, eij { displaystyle lambda _ { text {u, d, e}} ^ {i , j}}{displaystyle lambda _{text{u,d,e}}^{i,j}}— это матрицы конъюгатов Юкавы, где h.c. обозначает эрмитово сопряжение всех предыдущих членов. В основном состоянии нарушения симметрии остаются только члены, содержащие ϕ 0 { displaystyle phi ^ {0}}phi ^{0}, что приводит к массовым членам для фермионов. Вращая кварковые и лептонные поля к базису, где матрицы юкавских связей диагональны, получаем

L m = — m u i u ¯ L i u R i — m d i d ¯ L i d R i — m e i e ¯ L i e R i + h.c., { displaystyle { mathcal {L}} _ { text {m}} = — m _ { text {u}} ^ {i} { overline {u}} _ { text {L}} ^ { i} u _ { text {R}} ^ {i} -m _ { text {d}} ^ {i} { overline {d}} _ { text {L}} ^ {i} d _ { text {R}} ^ {i} -m _ { text {e}} ^ {i} { overline {e}} _ { text {L}} ^ {i} e _ { text {R}} ^ { i} + { textrm {hc}},}{displaystyle {mathcal {L}}_{text{m}}=-m_{text{u}}^{i}{overline {u}}_{text{L}}^{i}u_{text{R}}^{i}-m_{text{d}}^{i}{overline {d}}_{text{L}}^{i}d_{text{R}}^{i}-m_{text{e}}^{i} {overline {e}}_{text{L}}^{i}e_{text{R}}^{i}+{textrm {h.c.}},}

где массы фермионов равны mu, d, ei = 1 2 λ u, d, eiv { displaystyle m _ { text {u, d, e}} ^ {i} = { tfrac {1} { sqrt {2 }}} lambda _ { text {u, d, e}} ^ {i} v}{displaystyle m_{text{u,d,e}}^{i}={tfrac {1}{sqrt {2 }}}lambda _{text{u,d,e }}^{i}v}, а λ u, d, ei { displaystyle lambda _ { text {u, d, e}} ^ {i}}{displaystyle lambda _{text{u,d,e}}^{i}}обозначают собственные значения матриц Юкавы.

См. Также

Стандартная модель
  • Механизм Хиггса
  • История квантовой теории поля
  • Введение в квантовую механику — Нетехническое введение в квантовую физику
  • Некоммутативная стандартная модель
    и некоммутативная геометрия
  • Математическая формулировка Стандартной модели — Математика модели физики элементарных частиц
    • Обзор полей Стандартной модели
    • массовые члены и механизм Хиггса
  • Квантовая калибровочная теория
  • W и Z бозоны — Элементарные частицы; калибровочные бозоны, которые опосредуют слабое взаимодействие
Другое
  • Статистика Бозе-Эйнштейна
  • График Далитца
  • Лихорадка частиц, американский документальный фильм 2013 года, посвященный различным экспериментам на LHC и завершающемуся идентификацией бозона Хиггса
  • Квантовая тривиальность — Возможный результат перенормировки в физике
  • Скалярный бозон
  • Действие Штюкельберга
  • Тахионное поле * ZZ дибозон

Примечания

Ссылки

Дополнительная литература

Внешние ссылки

Популярной наукой, средствами массовой информации и общим освещением

  • наблюдением за бозоном Хиггса в ЦЕРНе
  • Охотой на бозон Хиггса в CMS Эксперимент в ЦЕРН
  • Бозон Хиггса, проведенный исследовательской лабораторией ЦЕРН.
  • Лихорадка частиц, документальный фильм о поисках бозона Хиггса.
  • Разрушители атомов, документальный фильм о поисках бозона Хиггса в Фермилабе.
  • Сборник статей в Гардиан
  • Видео (04:38) — ЦЕРН Объявление 4 июля 2012 г. об открытии частицы, которая, как предполагается, будет хиггсовской Бозон.
  • Видео1 (07:44) + Видео2 (07:44) — Бозон Хиггса, объясненный физиком ЦЕРН, доктором Дэниел Уайтсон (16 июня 2011 г.).
  • HowStuffWorks: Что такое бозон Хиггса?
  • Кэрролл, Шон. «Бозон Хиггса с Шоном Кэрроллом». Шестьдесят символов. Ноттингемский университет.
  • Овербай, Деннис (5 марта 2013 г.). «В погоне за бозоном Хиггса: как две команды соперников в ЦЕРНе искали самую неуловимую частицу физики». New York Times Научные страницы. Проверено 22 июля 2013 г. — статья в стиле «за кулисами» в New York Times о поиске Хиггса на ATLAS и CMS
  • История теории Хиггса, составленная авторами статей в PRL и другие тесно связанные:
    • Хиггс, Питер (2010). «Моя жизнь как бозон» (PDF). Выступление в Королевском колледже, Лондон, 24 ноября 2010 г. Архивировано из оригинального (PDF) 4 ноября 2013 г. Дата обращения 17 января 2013 г. (также: Хиггс, Питер (24 ноября 2010 г.). «Моя жизнь как бозон: история« Хиггса »». International Journal of Modern Physics A. 17 : 86–88. Bibcode : 2002IJMPA..17S..86H. doi : 10.1142 / S0217751X02013046.)
    • Kibble, Tom (2009).. Scholarpedia. Дата обращения 17 января 2013. ( также: Киббл, Том (2009). «Механизм Энглерта-Браута-Хиггса-Гуральника-Хагена-Киббла (история)». Scholarpedia. 4 : 8741. Bibcode : 2009SchpJ… 4.8741K. doi : 10.4249 / scholarpedia.8741.)
    • Гуральник, Джеральд (2009). «История Гуральника, Хагена и Киббла по развитию теории спонтанного нарушения симметрии и калибровочных частиц ». International Journal of Modern Physics A. 24(14): 2601–2627. arXiv : 0907.3466. Bibcode : 2009IJMPA..24. 2601G. doi : 10.1142 / S0217751X09045431. S2CID 16298371., Гуральник, Джераль д (2011). «Начала спонтанного нарушения симметрии в физике элементарных частиц. Труды конференции DPF-2011, Провиденс, Род-Айленд, 8–13 августа 2011 г.». arXiv : 1110.2253v1 [Physics.hist-ph ]., и Гуральник, Джеральд (2013). «Еретические идеи, которые послужили краеугольным камнем для стандартной модели физики элементарных частиц». SPG Mitteilungen, март 2013, № 39, (стр. 14), и Обсуждение в Университете Брауна статей о PRL 1964 года
    • Филип Андерсон (не один из авторов PRL) о нарушении симметрии в сверхпроводимости и его миграции в физику элементарных частиц и статьи PRL
  • Карикатура о поиске
  • Чам, Хорхе (19 февраля 2014 г.). «Правдивые сказки с дороги: новое объяснение бозона Хиггса». Накапливаются все выше и глубже. Проверено 25 февраля 2014 г.
  • Бозон Хиггса, обсуждение на BBC Radio 4 с Джимом Аль-Халили, Дэвидом Варком и Роджером Кэшмором (в наше время, 18 ноября 2004 г.)

Важные документы и другие

  • «Наблюдение» новой частицы в поисках стандартной модели бозона Хиггса с помощью детектора ATLAS на LHC ». Physics Letters B. 716 (2012): 1–29. 2012. arXiv : 1207.7214. Bibcode : 2012PhLB..716…. 1A. doi : 10.1016 / j.physletb.2012.08.020.
  • «Наблюдение нового бозона с массой 125 ГэВ в эксперименте CMS на LHC». Physics Letters B. 716 (2012): 30–61. 2012. arXiv : 1207.7235. Bibcode : 2012PhLB..716… 30C. doi : 10.1016 / j.physletb.2012.08.021.
  • Группа данных о частицах: Обзор поисков бозонов Хиггса.
  • 2001, космическая одиссея: материалы Инаугурационной конференции Мичиганский центр теоретической физики : Мичиган, 21–25 мая 2001 г. (стр. 86–88), изд. Майкл Дж. Дафф, Джеймс Т. Лю, ISBN 978-981-238-231-3, содержащий рассказ Хиггса о бозоне Хиггса.
  • Мигдал, AA; Поляков, А. М. (1966). «Спонтанное нарушение симметрии сильного взаимодействия и отсутствие безмассовых частиц» (PDF). Советская физика в ЖЭТФ. 24 (1): 91. Bibcode : 1967JETP… 24… 91M. S2CID 34510322.- пример русской статьи 1966 года на эту тему.

Введение в поле

  • Нарушение электрослабой симметрии — педагогическое введение в нарушение электрослабой симметрии step by step derivations of many key relations, by Robert D. Klauber, 15 January 2018 (archived at Wayback Machine)
  • Spontaneous symmetry breaking, gauge theories, the Higgs mechanism and all that (Bernstein, Reviews of Modern Physics Jan 1974) – an introduction of 47 pages covering the development, history and mathematics of Higgs theories from around 1950 to 1974.

Моделирование, показывающее появление бозона

Моделирование, показывающее появление бозона Хиггса при столкновении двух протонов

Бозон ХиггсаБозон Хиггса

Бозон Хиггса – элементарная частица, природу которой очень сложно постичь без предварительной подготовки и понимания основных физических и астрономических законов Вселенной.

Содержание:

  • 1 Свойства хиггсовского бозона
  • 2 Предсказание и история открытия бозона Хиггса
  • 3 Эксперименты по поиску и оценке параметров бозона Хиггса
  • 4 Интересные факты о бозоне Хиггса
  • 5 Другие массовые названия бозона Хиггса
  • 6 Материалы по теме

Свойства хиггсовского бозона

Бозон Хиггса имеет множество уникальных свойств, позволившим получить ему еще одно название – частица Бога. Открытый квант обладает цветным и электрическими зарядами, а его спин по факту равняется нулю. Это означает, что он не имеет квантового вращения.  К тому же, бозон полноценно участвует в гравитационных реакциях и склонен к распаду на пары из b-кварка и b-антикварка, фотонов, электронов и позитронов в сочетании с нейтрино. Однако параметры этих процессов по ширине не превышают 17 мегаэлектроновольт (МэВ). Помимо вышеперечисленных характеристик частица Хиггса способна распадаться на лептоны и W-бозоны. Но, к сожалению, они видны недостаточно хорошо, что значительно осложняет изучение, контроль и анализ явления. Однако в те редкие моменты, когда их все же получалось фиксировать, удалось установить, что они вполне соответствуют типичным для таких случаев физическим моделям элементарных частиц.

Предсказание и история открытия бозона Хиггса

Диаграмма Фейнмана

Диаграмма Фейнмана, показывающая возможные варианты рождения W- или Z-бозонов, которые при взаимодействии образуют нейтральный бозон Хиггса

В 2013 году англичанин Питер Хиггс и подданный Бельгии Франсуа Энглер получили Нобелевскую премию по физике за открытие и обоснование существования механизма, позволяющего понять, как и из чего происходят массы элементарных частиц. Однако задолго до этого уже проводились различные эксперименты и попытки открыть бозон Хиггса. Еще в 1993 году в Западной Европе начались подобные исследования с использованием мощностей Большого электронно-позитронного коллайдера. Но в итоге они не смогли в полном объеме принести результатов, ожидаемых организаторами данного проекта. К изучению вопроса подключалась и российская наука. Так в 2008-2009 гг. небольшой командой ученых ОИЯИ был произведен уточненный расчет массы хиггсовского бозона. Совсем недавно, весной 2015 года, коллаборации, известные всему научному миру, ATLAS и CMS, вновь провели корректировку массы хиггсовского бозона, которая по этим сведениям приблизительно равна 125,09±0,24 гигаэлектронвольтов (ГэВ).

Эксперименты по поиску и оценке параметров бозона Хиггса

Как уже упоминалось выше, первоначальные поисковые и оценочные эксперименты по определению массы бозона были начаты еще в 1993 году. Комплексные исследования, проводимые на Большом электронно-позитронном коллайдере, финишировали в 2001 году. Полученные благодаря этому эксперименту результаты были дополнительно откорректированы в 2004 году. По уточненным расчетам верхняя грань его массы равнялась 251 гигаэлектроновольт (ГэВ). В 2010 году была выявлена разница, равная 1%, в количестве появляющихся в ходе распада b-мезона, мюонов и антимюонов.

Стандартная модель элементарных частиц

Стандартная модель элементарных частиц

Несмотря на статистические недочеты, получаемые с 2011 года данные с Большого андронного коллайдера, поступали по-прежнему регулярно. Это давало надежду на исправление неточных сведений. Выявленная спустя год новая элементарная частица, которая имела идентичную четность и способность распадаться, как и хиггсовский бозон, была подвергнута серьезной критике и сомнению в 2013 году. Однако уже к концу сезона обработка всех накопленных данных привела к однозначным выводам: новая открытая частица, несомненно, является искомым бозоном Хиггса и принадлежит к Стандартной физической модели.

Интересные факты о бозоне Хиггса

Большой адронный коллайдер

Большой адронный коллайдер. Одной из основных целей проекта является экспериментальное доказательство существования бозона Хиггса и его исследование

Одним из наиболее интереснейших и невероятных фактов о хиггсовском бозоне является то, что его, по сути, не существует в природе. Следовательно, эта частица, в отличие от остальных фундаментальных элементов, не находится в окружающем нас пространстве. Объясняется это тем, что бозон Хиггса исчезает практически моментально после своего рождения. Происходит такая мгновенная метаморфоза посредством распада частицы. При этом за свое наикратчайшее существование бозон даже не успевает войти во взаимодействие с чем-либо еще.

Также весьма интересными и привлекающими к себе внимание фактами можно назвать, так называемые «прозвища», которые были присвоены хиггсовскому бозону. Эпатажные названия попадали в общественное использование благодаря средствам массовой информации. Одно из них было придумано вновь открытому кванту Леоном Ледерманом, лауреатом Нобелевской премии, и звучало как «чертова частица». Однако оно не было пропущено в печатное издание труда редактором и было заменено на «частицу Бога» или «божью частицу».

Другие массовые названия бозона Хиггса

Материалы по теме

Несмотря на популярность ледермановских «прозвищ», данных им бозону Хиггса, подавляющее большинство ученых не одобряют их и чаще используют другое «простонародное» название. Оно переводится как «бозон бутылки с шампанским». Основой для появления такой терминологии в обозначении хиггсовского бозона послужило некое сходство его комплексного поля с дном стеклянной бутылки из-под шампанского. Не меньшее значение для ученых «озорников» имеет и аллегоричное сравнение, намекающее на обилие выпитого шампанского по поводу открытия важной частицы.

Стоит обратить внимание и на то, что имеют место быть, так называемые, бесхиггсовые физические модели, разработанные еще до открытия бозона. Они предполагают своеобразное расширение стандартности.

Современная наука не стоит на месте, а непрерывно и неуклонно развивается. Накопленные в сегодняшней физике и смежных с ней областях знания, позволили не только предсказать, но и, собственно говоря, совершить открытие бозона Хиггса. Но изучение его свойств и обозначение сфер применения добытых сведений находится лишь в начальной стадии. Поэтому современным физикам и астрономам еще предстоит много работы и экспериментов, связанных с исследованием этой основополагающей для Вселенной частицы.

Понравилась статья? Поделить с друзьями:
  • Как пишется божьей или божией помощи
  • Как пишется божией или божьей матери
  • Как пишется божечки кошечки
  • Как пишется божество
  • Как пишется боец на английском