Как пишется буквенные выражения

Математика, 2 класс

Урок № 25. Буквенные выражения

Перечень вопросов, рассматриваемых в теме:

— Что такое буквенное выражение?

— Как найти значение буквенного выражения?

Глоссарий по теме:

Числовое выражение – выражение, составленное из чисел, знаков математических действий и скобок.

Значение выражения – это число, полученное в результате выполнения всех действий в выражении.

Буквенное выражение – выражение, составленное из чисел, букв, знаков математических действий и скобок.

Переменная – это значение буквы в буквенном выражении.

Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):

  1. Математика. 2 класс. Учебник для общеобразовательных организаций. В 2 ч. Ч.1/ М. И. Моро, М.А.Бантова, Г.В.Бельтюкова и др. — 8-е изд. – М.: Просвещение, 2017. – с.76.
  2. Математика. Рабочая тетрадь. 2 класс. Учебное пособие для общеобразовательных организаций. В 2 ч. Ч.1/ М. И. Моро, М.А.Бантова – 6-е изд., дораб. – М.: Просвещение, 2016. – с.67.
  3. Для тех, кто любит математику. Пособие для учащихся общеобразовательных организаций. М. И. Моро, С. И. Волкова – 9-е изд. – М.: Просвещение, 2014. – с.17.

Теоретический материал для самостоятельного изучения

Вы уже умеете решать примеры «с окошками». 5 + = 8

Мы подбираем число, чтобы равенство было верным. Это число 3. Подставим вместо «окошка» это число. Получим равенство: 5 + 3 = 8

Кроме равенства, вы умеете решать «с окошком» и неравенства. Мы подбираем число или числа, чтобы неравенство было верным. 5 + > 8

Это могут быть любые числа, больше числа 3.

5 + 4 > 8

5 + 10 > 8

С «окошками» можно записывать и просто выражения:

«сумма числа четыре и неизвестного числа», 4 +

«разность неизвестного числа и числа три». — 3

Вместо «окошка» в математике записывают латинские буквы.

Запишем выражение с буквой «a»: 5 + а

Выражение с буквами называется «буквенное выражение»

Чаще всего используют маленькие латинские буквы:

Вместо буквы, как и вместо «окошка» можно подставлять различные числа и находить значения выражений. Посмотрите, как можно заменить букву числом в выражении 6 + d.

d = 89, 6 + 89

d = 7, 6 + 7

Если буква — слагаемое, то мы можем заменить её любым числом. Буква может быть как первым, так и вторым слагаемым.

9 + х

х = 56, 9 + 56

х = 2, 9 + 2

Заменим букву числом в выражении: а – 7. Посмотри, как это сделать.

а = 98, 98 – 7

а = 10, 10 – 7

Обратите внимание, что если буква – это уменьшаемое, то мы не можем заменить её любым числом.Оно должно быть обязательно больше или равно вычитаемому.

Так, для выраженияа – 7, значение переменной а равно:

а = 7, 8, 9, 10…

Заменим букву числом в выражении: 4 – с. Посмотри, как это сделать.

с = 0, 4 – 0

с = 3, 4 – 3

с = 8, 4 – 8 НЕЛЬЗЯ

Обратите внимание, что если буква – это вычитаемое, то мы не можем заменить её любым числом. Оно должно быть обязательно меньше или равно уменьшаемому.

Так, для выражения 4 – с, значение переменной с равно:

с = 4, 3, 2, 1, 0.

Вывод: Буквенным выражением называется выражение, состоящее их чисел, букв латинского алфавита, знаков действий. Число, полученное в результате выполнения всех действий после подстановки чисел вместо букв, в числовом выражении называют значением этого выражения. Значение этого выражения будет зависеть от того, какими будут значения этих букв – переменных

Тренировочные задания.

1.Зачеркните числа, которые нельзя поставить вместо переменной в выражение

а – 8 12, 45, 6, 34, 7, 10, 8, 4, 56

Правильные ответы:

12, 45, 6, 34, 7, 10, 8, 4, 56

2. Восстановите алгоритм решения буквенных выражений

Алгоритм решения буквенных выражений

  1. Записать выражение.
  2. Подставить значение переменной в выражение.
  3. Прочитать выражение.
  4. Вычислить значение выражения.

Правильные ответы:

Алгоритм решения буквенных выражений

  1. Прочитать выражение.
  2. Записать выражение.
  3. Подставить значение переменной в выражение.
  4. Вычислить значение выражения.

Буквенное выражение (или выражение с переменными) — это математическое выражение, которое состоит из чисел, букв и знаков математических операций. Например, следующее выражение является буквенным:

a + b + 4

С помощью буквенных выражений можно записывать законы, формулы, уравнения и функции. Умение манипулировать буквенными выражениями — залог хорошего знания алгебры и высшей математики.

Любая серьёзная задача в математике свóдится к решению уравнений. А чтобы уметь решать уравнения, нужно уметь работать с буквенными выражениями.

Чтобы работать с буквенными выражениями, нужно хорошо изучить базовую арифметику: сложение, вычитание, умножение, деление, основные законы математики, дроби, действия с дробями, пропорции. И не просто изучить, а понять досконально.

Переменные

Буквы, которые содержатся в буквенных выражениях, называются переменными.

Например, в выражении a + b + 4 переменными являются буквы a и b. Если вместо этих переменных подставить любые числа, то буквенное выражение a + b + 4 обратится в числовое выражение, значение которого можно будет найти.

Числа, которые подставляют вместо переменных называют значениями переменных. Например, изменим значения переменных a и b. Для изменения значений используется знак равенства

a = 2, b = 3

Мы изменили значения переменных a и b. Переменной a присвоили значение 2, переменной b присвоили значение 3. В результате буквенное выражение a + b + 4 обращается в обычное числовое выражение 2 + 3 + 4, значение которого можно найти:

2 + 3 + 4 = 9

Когда происходит умножение переменных, то они записываются вместе. Например, запись ab означает то же самое, что и запись a × b. Если подставить вместо переменных a и b числа 2 и 3, то мы получим 6

2 × 3 = 6

Слитно также можно записать умножение числа на выражение в скобках. Например, вместо a × (b + c) можно записать a(b + c). Применив распределительный закон умножения, получим a(b + c) = ab + ac.


Коэффициенты

В буквенных выражениях часто можно встретить запись, в которой число и переменная записаны вместе, например 3a. На самом деле это короткая запись умножения числа 3 на переменную a и эта запись выглядит как 3 × a.

Другими словами, выражение 3a является произведением числа 3 и переменной a. Число 3 в этом произведении называют коэффициентом. Этот коэффициент показывает во сколько раз будет увеличена переменная a. Данное выражение можно прочитать как «a три раза» или «трижды а«, или «увеличить значение переменной a в три раза», но наиболее часто читается как «три a«

К примеру, если переменная a равна 5, то значение выражения 3a будет равно 15.

3 × 5 = 15

Говоря простым языком, коэффициент это число, которое стоит перед буквой (перед переменной).

Букв может быть несколько, например 5abc. Здесь коэффициентом является число 5. Данный коэффициент показывает, что произведение переменных abc увеличивается в пять раз. Это выражение можно прочитать как «abc пять раз» либо «увеличить значение выражения abc в пять раз», либо «пять abc«.

Если вместо переменных abc подставить числа 2, 3 и 4, то значение выражения 5abc будет равно 120

5 × 2 × 3 × 4 = 120

Можно мысленно представить, как сначала перемнóжились числа 2, 3 и 4, и полученное значение увеличилось в пять раз:

пять умножить на два на три на четыре равно 120

Знак коэффициента отнóсится только к коэффициенту, и не отнóсится к переменным!

Рассмотрим выражение 6b. Минус, стоящий перед коэффициентом 6, отнóсится только к коэффициенту 6, и не отнóсится к переменной b. Понимание этого факта позвóлит не ошибаться в будущем со знаками.

Найдем значение выражения 6b при b = 3.

6b это короткая форма записи от × b. Для наглядности запишем выражение 6b в развёрнутом виде и подставим значение переменной b

−6b = −6 × b = −6 × 3 = −18


Пример 2. Найти значение выражения 6b при b = −5

Запишем выражение −6b в развёрнутом виде

−6b = −6 × b

и далее подставим значение переменной b

−6b = −6 × b = −6 × (−5) = 30


Пример 3. Найти значение выражения −5a + b при a = 3 и b = 2

−5a + b это короткая форма записи от −5 × a + b, поэтому для наглядности запишем выражение −5 × a + b в развёрнутом виде и подстáвим значения переменных a и b

−5a + b = −5 × a + b = −5 × 3 + 2 = −15 + 2 = −13


Иногда буквы записаны без коэффициента, например a или ab. В этом случае коэффициентом является единица:

1a, 1ab

но единицу по традиции не записывают, поэтому просто пишут a или ab

Если перед буквой стоит минус, то коэффициентом является число 1. Например, выражение −a на самом деле выглядит как −1a. Это произведение минус единицы и переменной a. Оно получилось следующим образом:

−1 × a = −1a

Здесь крóется небольшой подвох. В выражении −a минус, стоящий перед переменной a на самом деле относится к невидимой единице, а не к переменной a. Поэтому при решении задач следует быть внимательным.

К примеру, если дано выражение −a и нас прóсят найти его значение при a = 2, то в школе мы подставляли двойку вместо переменной a и получали ответ 2, не особо зацикливаясь на том, как это получалось. На самом деле происходило умножение минус единицы на положительное число 2

−a = −1 × a

−1 × a = −1 × 2 = −2

Если дано выражение −a и требуется найти его значение при a = −2, то мы подставляем −2 вместо переменной a

−a = −1 × a

−1 × a = −1 × (−2) = 2

Чтобы не допускать ошибок, первое время невидимые единицы можно записывать явно.

Пример 4. Найти значение выражения abc при a=2, b=3 и c=4

Выражение abc это короткая форма записи от 1×a×b×c. Для наглядности запишем выражение abc в развёрнутом виде и подставим значения переменных a, b и c

1 × a × b × c = 1 × 2 × 3 × 4 = 24


Пример 5. Найти значение выражения abc при a=−2, b=−3 и c=−4

Запишем выражение abc в развёрнутом виде и подставим значения переменных a, b и c

1 × a × b × c = 1 × (−2) × (−3) × (−4) = −24


Пример 6. Найти значение выражения abc при a=3, b=5 и c=7

Выражение abc это короткая форма записи от −1×a×b×c. Для наглядности запишем выражение abc в развёрнутом виде и подставим значения переменных a, b и c

−abc = −1 × a × b × c = −1 × 3 × 5 × 7 = −105


Пример 7. Найти значение выражения abc при a=−2, b=−4 и c=−3

Запишем выражение abc в развёрнутом виде:

−abc = −1 × a × b × c

Подставим значение переменных a, b и c

−abc = −1 × a × b × c = −1 × (−2) × (−4) × (−3) = 24


Как определить коэффициент

Иногда требуется решить задачу, в которой требуется определить коэффициент выражения. В принципе, данная задача очень простá. Достаточно уметь правильно умножать числа.

Чтобы определить коэффициент в выражении, нужно отдельно перемножить числа, входящие в это выражение, и отдельно перемножить буквы. Получившийся числовой сомножитель и будет коэффициентом.

Пример 1. Определить коэффициент в выражении: 7m×5a×(−3)×n

Выражение состоит из нескольких сомножителей. Это можно отчетливо увидеть, если записать выражение в развёрнутом виде. То есть произведения 7m и 5a записать в виде 7×m и 5×a

7 × m × 5 × a × (−3) × n

Применим сочетательный закон умножения, который позволяет перемножать сомножители в любом порядке. А именно, отдельно перемнóжим числа и отдельно перемнóжим буквы (переменные):

−3 × 7 × 5 × m × a × n = −105man

Коэффициент равен −105. После завершения буквенную часть желательно расположить в алфавитном порядке:

−105amn


Пример 2. Определить коэффициент в выражении: −a×(−3)×2

Перемножим отдельно числа и буквы:

−a × (−3 ) × 2 = −3 × 2 × (−a) = −6 × (−a) = 6a

Коэффициент равен 6.


Пример 3. Определить коэффициент в выражении: минус одна третья mn три a

Перемножим отдельно числа и буквы:

минус одна третья mn три a равно минус amn

Коэффициент равен −1. Обратите внимание, что единица не записана, поскольку коэффициент 1 принято не записывать.

Эти казалось бы простейшие задачи могут сыграть с нами очень злую шутку. Часто выясняется, что знак коэффициента поставлен не верно: либо пропущен минус либо наоборот он поставлен зря. Чтобы избежать этих досадных ошибок, тема умножения целых чисел должна быть изучена на хорошем уровне.


Слагаемые в буквенных выражениях

При сложении нескольких чисел получается сумма этих чисел. Числа, которые складывают называют слагаемыми. Слагаемых может быть несколько, например:

1 + 2 + 3 + 4 + 5

Когда выражение состоит из слагаемых, вычислять его намного проще, поскольку складывать легче, чем вычитать. Но в выражении может присутствовать не только сложение, но и вычитание, например:

1 + 2 − 3 + 4 − 5

В этом выражении числа 3 и 5 являются вычитаемыми, а не слагаемыми. Но нам ничего не мешает, заменить вычитание сложением. Тогда мы снова получим выражение, состоящее из слагаемых:

1 + 2 + (−3) + 4 + (−5)

Не суть, что числа −3 и −5 теперь со знаком минус. Главное, что все числа в данном выражении соединены знаком сложения, то есть выражение является суммой.

Оба выражения 1 + 2 − 3 + 4 − 5 и 1 + 2 + (−3) + 4 + (−5) равны одному и тому значению — минус единице:

1 + 2 − 3 + 4 − 5 = −1

1 + 2 + (−3) + 4 + (−5) = −1

Таким образом, значение выражения не пострадает от того, что мы где-то заменим вычитание сложением.

Заменять вычитание сложением можно и в буквенных выражениях. Например, рассмотрим следующее выражение:

7a + 6b − 3c + 2d − 4s

Заменим вычитание сложением там, где это можно:

7a + 6b + (−3c) + 2d + (−4s)

При любых значениях переменных a, b, c, d и s выражения 7a + 6b − 3c + 2d − 4s и 7a + 6b + (−3c) + 2d + (−4s) будут равны одному и тому же значению.

Вы должны быть готовы к тому, что учитель в школе или преподаватель в институте может называть слагаемыми даже те числа (или переменные), которые ими не являются.

Например, если на доске будет записана разность a − b, то учитель не будет говорить, что a — это уменьшаемое, а b — вычитаемое. Обе переменные он назовет одним общим словом — слагаемые. А всё потому, что выражение вида a − b математик видит, как сумму a + (−b). В таком случае выражение становится суммой, а переменные a и (−b) станóвятся слагаемыми.


Подобные слагаемые

Подобные слагаемые — это слагаемые, которые имеют одинаковую буквенную часть.

Например, рассмотрим выражение 7a + 6b + 2a. Слагаемые 7a и 2a имеют одинаковую буквенную часть — переменную a. Значит слагаемые 7a и 2a являются подобными.

Обычно подобные слагаемые складывают, чтобы упростить выражение или решить какое-нибудь уравнение. Это действие называют приведéнием подобных слагаемых.

Чтобы привести подобные слагаемые, нужно сложить коэффициенты этих слагаемых, и полученный результат умножить на общую буквенную часть.

Например, приведём подобные слагаемые в выражении 3a + 4a + 5a. В данном случае подобными являются все слагаемые. Слóжим их коэффициенты и результат умножим на общую буквенную часть — на переменную a

3a + 4a + 5a = (3 + 4 + 5)×a = 12a

Подобные слагаемые обычно привóдят в уме и результат записывают сразу:

3a + 4a + 5a = 12a

Также, можно рассуждать следующим образом:

Было 3 переменные a, к ним прибавили еще 4 переменные a и ещё 5 переменных a. В итоге получили 12 переменных a

двенадцать переменных a

Если подсчитать на рисунке количество переменных a, то насчитается 12.

Рассмотрим несколько примеров на приведение подобных слагаемых. Учитывая, что данная тема очень важна, на первых порах будем записывать подробно каждую мелочь. Несмотря на то, что здесь всё очень просто, большинство людей допускают множество ошибок. В основном по невнимательности, а не по незнанию.

Пример 1. Привести подобные слагаемые в выражении 3a + 2a + 6a + 8a

Сложим коэффициенты в данном выражении и полученный результат умножим на общую буквенную часть:

3a + 2a + 6a + 8a= (3 + 2 + 6 + 8) × a = 19a

Конструкцию (3 + 2 + 6 + 8)  × a можно не записывать, поэтому сразу запишем ответ

3a + 2a + 6a + 8a = 19a


Пример 2. Привести подобные слагаемые в выражении 2a + a

Второе слагаемое a записано без коэффициента, но на самом деле перед ним стоит коэффициент 1, который мы не видим по причине того, что его не записывают. Стало быть, выражение выглядит следующим образом:

2a + 1a

Теперь приведем подобные слагаемые. То есть сложим коэффициенты и результат умножим на общую буквенную часть:

2a + 1a = (2 + 1) × a = 3a

Запишем решение покороче:

2a + a = 3a

Приводя подобные слагаемые в выражении 2a+a, можно рассуждать и по-другому:

Было 2 переменные a, добавили ещё одну переменную a, в итоге получилось 3 переменные a.

три переменные a


Пример 3. Привести подобные слагаемые в выражении 2a − a

Заменим вычитание сложением:

2a + (−a)

Второе слагаемое (−a) записано без коэффициента, но на самом деле оно выглядит как (−1a). Коэффициент −1 опять же невидимый по причине того, что его не записывают. Стало быть, выражение выглядит следующим образом:

2a + (−1a)

Теперь приведем подобные слагаемые. Сложим коэффициенты и результат умножим на общую буквенную часть:

2a + (−1a) = (2 + (−1)) × a = 1a = a

Обычно записывают короче:

2a − a = a

Приводя подобные слагаемые в выражении 2a−a можно рассуждать и по-другому:

Было 2 переменные a, вычли одну переменную a, в итоге осталась одна единственная переменная a

одна единственная переменная a


Пример 4. Привести подобные слагаемые в выражении 6a − 3a + 4a − 8a

Заменим вычитание сложение там, где это можно:

6a − 3a + 4a − 8a = 6a + (−3a) + 4a + (−8a)

Теперь приведем подобные слагаемые. Сложим коэффициенты и результат умножим на общую буквенную часть

(6 + (−3) + 4 + (−8)) × a = −1a = −a

Запишем решение покороче:

6a − 3a + 4a − 8a = −a


Встречаются выражения, которые содержат несколько различных групп подобных слагаемых. Например, 3a + 3b + 7a + 2b. Для таких выражений справедливы те же правила, что и для остальных, а именно складывание коэффициентов и умножение полученного результата на общую буквенную часть. Но чтобы не допустить ошибок, удобно разные группы слагаемых подчеркнуть разными линиями.

Например, в выражении 3a + 3b + 7a + 2b те слагаемые, которые содержат переменную a, можно подчеркнуть одной линией, а те слагаемые которые содержат переменную b, можно подчеркнуть двумя линиями:

три а плюс б плюс семь а плюс два б

Теперь можно привести подобные слагаемые. То есть сложить коэффициенты и полученный результат умножить на общую буквенную часть. Сделать это нужно для обеих групп слагаемых: для слагаемых, содержащих переменную a и для слагаемых содержащих переменную b.

3a + 3b + 7a + 2b = (3+7)×a + (3 + 2)×b = 10a + 5b

Опять же повторимся, выражение несложное, и подобные слагаемые можно приводить в уме:

3a + 3b + 7a + 2b = 10a + 5b


Пример 5. Привести подобные слагаемые в выражении 5a − 6a −7b + b

Заменим вычитание сложение там, где это можно:

5a − 6a −7b + b = 5a + (−6a) + (−7b) + b

Подчеркнём подобные слагаемые разными линиями. Слагаемые, содержащие переменные a подчеркнем одной линией, а слагаемые содержащие переменные b, подчеркнем двумя линиями:

пять а плюс минус шесть а плюс минус семь б плюс б

Теперь можно привести подобные слагаемые. То есть сложить коэффициенты и полученный результат умножить на общую буквенную часть:

5a + (−6a) + (−7b) + b = (5 + (−6))×a + ((−7) + 1)×b = −a + (−6b)


Если в выражении содержатся обычные числа без буквенных сомножителей, то они складываются отдельно.

Пример 6. Привести подобные слагаемые в выражении 4a + 3a − 5 + 2b + 7

Заменим вычитание сложением там, где это можно:

4a + 3a − 5 + 2b + 7 = 4a + 3a + (−5) + 2b + 7

Приведем подобные слагаемые. Числа −5 и 7 не имеют буквенных сомножителей, но они являются подобными слагаемыми — их необходимо просто сложить. А слагаемое 2b останется без изменений, поскольку оно единственное в данном выражении, имеющее буквенный сомножитель b, и его не с чем складывать:

4a + 3a + (−5) + 2b + 7 = (4 + 3)×a + 2b + (−5) + 7 = 7a + 2b + 2

Запишем решение покороче:

4a + 3a − 5 + 2b + 7 = 7a + 2b + 2


Слагаемые можно упорядочивать, чтобы те слагаемые, которые имеют одинаковую буквенную часть, располагались в одной части выражения.

Пример 7. Привести подобные слагаемые в выражении 5t+2x+3x+5t+x

Поскольку выражение является суммой из нескольких слагаемых, это позволяет нам вычислять его в любом порядке. Поэтому слагаемые, содержащие переменную t, можно записать в начале выражения, а слагаемые содержащие переменную x в конце выражения:

5t + 5t + 2x + 3x + x

Теперь можно привести подобные слагаемые:

5t + 5t + 2x + 3x + x = (5+5)×t + (2+3+1)×x = 10t + 6x

Запишем решение покороче:

5t + 2x + 3x + 5t + x = 10t + 6x


Сумма противоположных чисел равна нулю. Это правило работает и для буквенных выражений. Если в выражении встретятся одинаковые слагаемые, но с противоположными знаками, то от них можно избавиться на этапе приведения подобных слагаемых. Иными словами, просто вычеркнуть их из выражения, поскольку их сумма равна нулю.

Пример 8. Привести подобные слагаемые в выражении 3t − 4t − 3t + 2t

Заменим вычитание сложением там, где это можно:

3t − 4t − 3t + 2t = 3t + (−4t) + (−3t) + 2t

Слагаемые 3t и (−3t) являются противоположными. Сумма противоположных слагаемых равна нулю. Если убрать этот ноль из выражения, то значение выражения не изменится, поэтому мы его и уберём. А уберём мы его обычным вычеркиванием слагаемых 3t и (−3t)

три т плюс минус четыре т плюс минус три т плюс два т

В итоге у нас останется выражение (−4t) + 2t. В данном выражении можно привести подобные слагаемые и получить окончательный ответ:

(−4t) + 2t = ((−4) + 2)×t = −2t

Запишем решение покороче:

три т плюс минус четыре т плюс минус три т плюс два т короткое рещение


Упрощение выражений

Часто можно встретить задание, в котором сказано «упростите выражение» и далее приводится выражение, которое требуется упростить. Упростить выражение значит сделать его прóще и корóче.

На самом деле мы уже занимались упрощением выражений, когда сокращали дроби. После сокращения дробь становилась короче и проще для восприятия.

Рассмотрим следующий пример. Упростить выражение две четвёртых .

Это задание буквально можно понять так: «Примените к данному выражению любые допустимые действия, но сделайте его прóще».

В данном случае можно осуществить сокращение дроби, а именно разделить числитель и знаменатель дроби на 2:

сокращение дроби две четвертых на два Что ещё можно сделать? Можно вычислить полученную дробь одна вторая . Тогда мы получим десятичную дробь 0,5

сокращение дроби две четвертых на два второй этап

В итоге дробь две четвёртых упростилась до 0,5.

Первый вопрос, который нужно себе задавать при решении подобных задач, должен быть: «а что можно сделать?». Потому что есть действия, которые можно делать, и есть действия, которые делать нельзя.

Ещё один важный момент, о котором нужно помнить, заключается в том что значение выражение не должно измениться после упрощения выражения. Вернемся к выражению две четвёртых. Данное выражение представляет собой деление, которое можно выполнить. Выполнив это деление, мы получаем значение данного выражения, которое равно 0,5

два разделить на четыре равно пять десятых решение уголком

Но мы упростили выражение две четвёртых и получили новое упрощённое выражение одна вторая. Значение нового упрощённого выражения по-прежнему равно 0,5

единица разделить на два пятое действие

Но выражение одна вторая мы тоже попытались упростить, вычислив его. В итоге получили окончательный ответ 0,5.

Таким образом, как бы мы не упрощали выражение, значение получаемых выражений по-прежнему равно 0,5. Значит упрощение выполнялось верно на каждом этапе. Именно к этому нужно стремиться при упрощении выражений — значение выражения не должно пострадать от наших действий.

Часто требуется упрощать буквенные выражения. Для них справедливы те же правила упрощения, что и для числовых выражений. Можно выполнять любые допустимые действия, лишь бы не изменилось значение выражения.

Рассмотрим несколько примеров.

Пример 1. Упростить выражение 5,21s × t × 2,5

Чтобы упростить данное выражение, можно отдельно перемножить числа и отдельно перемножить буквы. Это задание очень похоже на то, которое мы рассматривали, когда учились определять коэффициент:

5,21s × t × 2,5 = 5,21 × 2,5 × s × t = 13,025 × st = 13,025st

Таким образом, выражение 5,21s × t × 2,5 упростилось до 13,025st.


Пример 2. Упростить выражение −0,4 × (−6,3b) × 2

Второе произведение (−6,3b) можно перевести в понятный для нас вид, а именно записать в виде (−6,3)×b, затем отдельно перемножить числа и отдельно перемножить буквы:

0,4 × (−6,3b) × 2 = 0,4 × (−6,3) × b × 2 = 5,04b

Таким образом, выражение −0,4 × (−6,3b) × 2 упростилось до 5,04b


Пример 3. Упростить выражение две третьих а умножить на минус одну целую одну вторую б ц

Распишем данное выражение более подробно, чтобы хорошо увидеть, где числа, а где буквы:

две третьих а умножить на минус одну целую одну вторую б ц в подробном виде

Теперь отдельно перемножим числа и отдельно перемножим буквы:

две третьих а умножить на минус одну целую одну вторую б ц в подробном виде вычисление

Таким образом, выражение две третьих а умножить на минус одну целую одну вторую б ц упростилось до −abc. Данное решение можно записать покороче:

две третьих а умножить на минус одну целую одну вторую б ц в подробном виде короткое вычисление

При упрощении выражений, дроби можно сокращать в процессе решения, а не в самом конце, как мы это делали с обычными дробями. Например, если в ходе решения мы наткнёмся на выражение вида Двенадцать умножить на девять умножить на шесть разделить на три умножить на два умножить на четыре , то вовсе необязательно вычислять числитель и знаменатель и делать что-то вроде этого:

Двенадцать умножить на девять умножить на шесть разделить на три умножить на два умножить на четыре полное решение

Дробь можно сократить, выбирая по множителю в числителе и в знаменателе и сокращать эти множители на их наибольший общий делитель. Другими словами, использовать короткую версию сокращения дроби, в которой мы не расписываем подробно на что был разделен числитель и знаменатель.

Например, в числителе множитель 12 и в знаменателе множитель 4 можно сократить на 4. Четвёрку храним в уме, а разделив 12 и 4 на эту четвёрку, ответы записываем рядом с этими числами, предварительно зачеркнув их

Двенадцать умножить на девять умножить на шесть разделить на три умножить на два умножить на четыре сократили на три 12 и 4

Далее в числителе множитель 9 и в знаменателе множитель 3 можно сократить на 3

Двенадцать умножить на девять умножить на шесть разделить на три умножить на два умножить на четыре сократили на три 9 и 3

Далее в числителе множитель 6 и в знаменателе множитель 2 можно сократить на 2

Двенадцать умножить на девять умножить на шесть разделить на три умножить на два умножить на четыре сократили на три 6 и 2

Теперь можно перемножить получившиеся маленькие множители. В данном случае их немного и можно перемножить в уме:

Двенадцать умножить на девять умножить на шесть разделить на три умножить на два умножить на четыре короткое решение

Со временем можно обнаружить, что решая ту или иную задачу, выражения начинают «толстеть», поэтому желательно приучиться к быстрым вычислениям. То, что можно вычислить в уме, нужно вычислять в уме. То, что можно быстро сократить, нужно быстро сокращать.

Пример 4. Упростить выражение минус три целых одна третья а умножить на минус ноль целых девять б на пять двенадцатых

Перемножим отдельно числа и отдельно буквы:

минус три целых одна третья а умножить на минус ноль целых девять б на пять двенадцатых равно пять четвертых ab

Таким образом, выражение минус три целых одна третья а умножить на минус ноль целых девять б на пять двенадцатых упростилось до пять четвертых ab


Пример 5. Упростить выражение минус три четвертых м умножить на минус две третьих умножить на два м

Перемножим отдельно числа и отдельно буквы:

минус три четвертых м умножить на минус две третьих умножить на два м равно мн

Таким образом, выражение минус три четвертых м умножить на минус две третьих умножить на два м упростилось до mn.


Пример 6. Упростить выражение минус шесть целых четыре умножить на минус три четвертых x

Запишем данное выражение более подробно, чтобы хорошо увидеть, где числа, а где буквы:

минус шесть целых четыре умножить на минус три четвертых x расписано

Теперь отдельно перемножим числа и отдельно буквы. Для удобства вычислений десятичную дробь −6,4 и смешанное число Минус одна целая и одна третья можно перевести в обыкновенные дроби:

минус шесть целых четыре умножить на минус три четвертых x равно минус тридцать пятых stx

Таким образом, выражение минус шесть целых четыре умножить на минус три четвертых x упростилось до минус шесть целых четыре десятых stx

Решение для данного примера можно записать значительно короче. Выглядеть оно будет следующим образом:

минус шесть целых четыре умножить на минус три четвертых x короткое решение


Пример 7. Упростить выражение шестнадцать вторых ab умножить на одну десятую c умножить на шесть десятых d

Перемножим отдельно числа и отдельно буквы. Для удобства вычисления смешанное число шестнадцать целых две третьих и десятичные дроби 0,1 и 0,6 можно перевести в обыкновенные дроби:

шестнадцать вторых ab умножить на одну десятую c умножить на шесть десятых d равно abcd

Таким образом, выражение шестнадцать вторых ab умножить на одну десятую c умножить на шесть десятых d упростилось до abcd. Если пропустить подробности, то данное решение можно записать значительно короче:

шестнадцать вторых ab умножить на одну десятую c умножить на шесть десятых d равно abcd коротко

Обратите внимание на то, как сократилась дробь. Новые множители, которые получаются в результате сокращения предыдущих множителей, тоже допускается сокращать.

line

Теперь поговорим о том, чего делать нельзя. При упрощении выражений категорически нельзя перемножать числа и буквы, если выражение является суммой, а не произведением.

Например, если требуется упростить выражение 5a + 4b, то нельзя записывать следующим образом:

5a плюс 4б не равно двадцть аб

Это равносильно тому, что если бы нас попросили сложить два числа, а мы бы их перемножали вместо того, чтобы складывать.

При подстановке любых значений переменных a и b выражение 5a  +4b обращается в обыкновенное числовое выражение. Предположим, что переменные a и b имеют следующие значения:

a = 2, b = 3

Тогда значение выражения будет равно 22

5a + 4b = 5 × 2 + 4 × 3 = 10 + 12 = 22

Сначала выполняется умножение, а затем полученные результаты складывают. А если бы мы попытались упростить данное выражение, перемножив числа и буквы, то получилось бы следующее:

5a + 4b = 5 × 4 × a × b = 20ab

20ab = 20 × 2 × 3 = 120

Получается совсем другое значение выражения. В первом случае получилось 22, во втором случае 120. Это означает, что упрощение выражения 5a + 4b было выполнено неверно.

После упрощения выражения, его значение не должно изменяться при одних и тех же значениях переменных. Если при подстановке в изначальное выражение любых значений переменных получается одно значение, то после упрощения выражения должно получаться то же самое значение, что и до упрощения.

С выражением 5a + 4b на самом деле ничего делать нельзя. Оно не упрощается.

line

Если в выражении содержатся подобные слагаемые, то их можно сложить, если нашей целью является упрощение выражения.

Пример 8. Упростить выражение 0,3a−0,4a+a

Чтобы упростить данное выражение можно привести подобные слагаемые:

0,3a − 0,4a + a = 0,3a + (−0,4a) + a = (0,3 + (−0,4) + 1)×a = 0,9a

или покороче: 0,3a − 0,4a + a = 0,9a

Таким образом, выражение 0,3a−0,4a+a упростилось до 0,9a


Пример 9. Упростить выражение −7,5a − 2,5b + 4a

Чтобы упростить данное выражение можно привести подобные слагаемые:

−7,5a − 2,5b + 4a = −7,5a + (−2,5b) + 4a = ((−7,5) + 4)×a + (−2,5b) = −3,5a + (−2,5b)

или покороче −7,5a − 2,5b + 4a = −3,5a + (−2,5b)

Слагаемое (−2,5b) осталось без изменений, поскольку его не с чем было складывать.


Пример 10. Упростить выражение две третьих а плюс одна целая одна третья а минус одна третья а

Чтобы упростить данное выражение можно привести подобные слагаемые:

две третьих а плюс одна целая одна третья а минус одна третья а равно пять третьих а

Коэффициент одна целая одна третья был переведён в неправильную дробь для удобства вычисления.

Таким образом, выражение две третьих а плюс одна целая одна третья а минус одна третья а упростилось до пять третьих а


Пример 11. Упростить выражение минус одна четвертая x плюс x плюс три четрвертых x

Чтобы упростить данное выражение можно привести подобные слагаемые:

минус одна четвертая x плюс x плюс три четрвертых x равно минус одна вторая x

Таким образом, выражение минус одна четвертая x плюс x плюс три четрвертых x упростилось до минус пять десятых икс.

В данном примере целесообразнее было бы сложить первый и последний коэффициент в первую очередь. В этом случае мы получили бы короткое решение. Выглядело бы оно следующим образом:

минус одна четвертая x плюс x плюс три четрвертых x равно минус одна вторая x коротко


Пример 12. Упростить выражение минус две пятых б минус три седьмых ц минус одна десятая б

Чтобы упростить данное выражение можно привести подобные слагаемые:

минус две пятых б минус три седьмых ц минус одна десятая б равно минус одна вторая б плюс минус три седьмых ц

Таким образом, выражение минус две пятых б минус три седьмых ц минус одна десятая б упростилось доминус одна вторая b плюс минус три седьмых ц.

Слагаемое минус три седьмых ц осталось без изменения, поскольку его не с чем было складывать.

Данное решение можно записать значительно короче. Выглядеть оно будет следующим образом:

минус две пятых б минус три седьмых ц минус одна десятая б коротко

В коротком решении пропущены этапы замены вычитания сложением и подробная запись, как дроби приводились к общему знаменателю.

Ещё одно различие заключается в том, что в подробном решении ответ выглядит как минус одна вторая b плюс минус три седьмых ц, а в коротком как минус одна вторая б минус три седьмых ц. На самом деле, это одно и то же выражение. Различие в том, что в первом случае вычитание заменено сложением, поскольку в начале когда мы записывали решение в подробном виде, мы везде где можно заменили вычитание сложением, и эта замена сохранилась и для ответа.


Тождества. Тождественно равные выражения

После того как мы упростили какое-нибудь выражение, оно станóвится проще и короче. Чтобы проверить верно ли упрощено выражение, достаточно подстáвить любые значения переменных сначала в предыдущее выражение, которое требовалось упростить, а затем в новое, которое упростили. Если значение в обоих выражениях будет одинаковым, то это означает, что выражение упрощено верно.

Рассмотрим простейший пример. Пусть требуется упростить выражение 2a × 7b. Чтобы упростить данное выражение, можно по-отдельности перемнóжить числа и буквы:

2a × 7b = 2 × 7 × a × b = 14ab

Проверим верно ли мы упростили выражение. Для этого подставим любые значения переменных a и b сначала в первое выражение, которое требовалось упростить, а затем во второе, которое упростили.

Пусть значения переменных a, b будут следующими:

a = 4
b = 5

Подстáвим их в первое выражение 2a × 7b

2a × 7b = 2 × 4 × 7 × 5 = 280

Теперь подстáвим те же значения переменных в выражение, которое получилось в результате упрощения выражения 2× 7b, а именно в выражение 14ab

14ab = 14 × 4 × 5 = 280

Видим, что при a = 4 и b = 5 значение первого выражения 2× 7b и значение второго выражения 14ab равны

2a × 7b = 2 × 4 × 7 × 5 = 280

14ab = 14 × 4 × 5 = 280

То же самое произойдет и для любых других значений. Например, пусть a = 1 и b = 2

2a × 7b = 2 × 1 × 7 × 2 = 28

14ab = 14 × 1 × = 28

Таким образом, выражения 2× 7b и 14ab при любых значениях переменных равны одному и тому же значению. Такие выражения называют тождественно равными.

Делаем вывод, что между выражениями 2× 7b и 14ab можно поставить знак равенства, поскольку они равны одному и тому же значению:

2× 7b = 14ab

Равенством называют любое выражение, которые соединено знаком равенства (=).

А равенство вида 2× 7b = 14ab называют тождеством.

Тождеством называют равенство, которое верно при любых значениях переменных.

Другие примеры тождеств:

a + b = b + a

a(b + c) = ab + ac

a(bc) = (ab)c

Да, законы математики, которые мы изучали, являются тождествами.

Верные числовые равенства тоже являются тождествами. Например:

2 + 2 = 4

3 + 3 = 5 + 1

10 = 7 + 2 + 1

Решая сложную задачу, чтобы облегчить себе вычисление, сложное выражение заменяют на более простое выражение, тождественно равное предыдущему. Такую замену называют тождественным преобразованием выражения или просто преобразованием выражения.

Например, мы упростили выражение 2× 7b, и получили более простое выражение 14ab. Это упрощение можно называть тождественным преобразованием.

Часто можно встретить задание, в котором сказано «докажите, что равенство является тождеством» и далее приводится равенство, которое требуется доказать. Обычно это равенство состоит из двух частей: левой и правой части равенства. Наша задача состоит в том, чтобы выполнить тождественные преобразования с одной из частей равенства и получить другую часть. Либо выполнить тождественные преобразования с обеими частями равенства и сделать так, чтобы в обеих частях равенства оказались одинаковые выражения.

Например, докажем, что равенство 0,5a × 5b = 2,5ab является тождеством.

Упростим левую часть этого равенства. Для этого перемножим числа и буквы по отдельности:

0,5 × 5 × a × b = 2,5ab

2,5ab = 2,5ab

В результате небольшого тождественного преобразования, левая часть равенства стала равна правой части равенства. Значит мы доказали, что равенство 0,5a × 5b = 2,5ab является тождеством.

Из тождественных преобразований мы научились складывать, вычитать, умножать и делить числа, сокращать дроби, приводить подобные слагаемые, а также упрощать некоторые выражения.

Но это далеко не все тождественные преобразования, которые существуют в математике. Тождественных преобразований намного больше. В будущем мы ещё не раз в этом убедимся.

Задания для самостоятельного решения:

Задание 1. Найдите значение выражения два икс игрек при икс равно одна вторая и игрек равно одна четвертая

Задание 2. Найдите значение выражения минус икс игрек при икс равно одна целая одна вторая и игрек равно две целых одна четверть

Задание 4. Найдите значение выражения минус две сотых а б при а равно четыре десятых и б минус сто двадцать пять

Задание 5. Запишите в виде буквенного выражения следующую последовательность действий:

  • Число a умножить на три, и из этого произведения вычесть пятнадцать
  • Число t умножить на девять, и к полученному произведению прибавить тридцать пять

Задание 6. Приведите подобные слагаемые в следующем выражении:

Задание 7. Приведите подобные слагаемые в следующем выражении:

Задание 8. Приведите подобные слагаемые в следующем выражении:

Задание 9. Приведите подобные слагаемые в следующем выражении:

Задание 10. Приведите подобные слагаемые в следующем выражении:

Задание 11. Упростите выражение:

Задание 12. Упростите выражение:

Задание 13. Упростите выражение:

Задание 14. Упростите выражение:

Задание 15. Упростите выражение:

Задание 16. Упростите выражение:

Задание 17. Упростите выражение:

Задание 18. Упростите выражение:

Задание 19. Упростите выражение:

Задание 20. Упростите выражение:


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже



Числовые выражения: что это

Числовое выражение — это запись, которая состоит из чисел и знаков арифметического действия между ними.

Именно числовые выражения окружают нас повсюду — не только на уроках математики, но и в магазине, на кухне или когда мы считаем время. Простые примеры, в которых нужно вычислить разность, сумму, получить результат умножения или деления — это все числовые выражения. 

Например:

  • 23 + 5

  • 5 — 2

  • 52 * 3

  • 28 : 7

Это простые числовые выражения.

Более сложные числовые выражения состоят из нескольких чисел и знаков арифметических действий:

  • (5 * 3) — (5 * 2)

  • 6 : (7 — 4)

  • (45 + 45) : 9

  • 11 * (5 * 5)

Число, которое мы получаем после выполнения всех арифметических действий в числовом выражении, называют значением этого выражения.

Вспомним, какие виды арифметических действий есть.
+  — знак сложения, найти сумму.
—  — знак вычитания, найти разность.
* — знак умножения, найти произведение. 
: —   знак деления, найти частное.

  • 5 + 6 = 11

    11 — значение числового выражения 5 + 6.

    6 * 8 = 48

    48 — значение числового выражения 6 * 8.

При вычислении сложных числовых выражений нужно строго соблюдать очередность выполнения арифметических действий:

  • Сначала выполняется действие, записанное в скобках.

  • Затем выполняются действия деления и умножения слева направо.

  • В последнюю очередь выполняются действия сложения и вычитания слева направо.

Онлайн-курсы математики для детей помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Пример 1. Найдите значение числового выражения: 3 * (2 + 8) — 4 

 

  1. 2 + 8 = 10

  2. 3 * 10 = 30

  3. 30 — 4 = 26

3 * (2 + 8) — 4  = 26.

Пример 2. Найдите значение числового выражения: (6 + 7) * (13 + 2)

 

  1. 6 + 7 = 13

  2. 13 + 2 = 15

  3. 13 * 15 = 195

(6 + 7) * (13 + 2) = 195

Часто бывает нужно сравнить два числовых выражения.

Сравнить числовые выражения — значит найти значения каждого выражения и сравнить их. 

Пример 1. Сравните два числовых выражения: 6 + 8 и 2 * 2

 

  1. Сначала находим значение первого выражения:

    6 + 8 = 14

  2. Затем находим значение второго выражения:

    2 * 2 = 4

  3. Сравниваем получившиеся результаты:

    14 больше 4

    14 > 4

    6 + 8 > 2 * 2

Пример 2. Сравните следующие числовые выражения:
5 * (12 — 2) — 7 и (115 + 9) —  (7 — 3)

 

  1. Находим значение первого выражения, соблюдая порядок выполнения арифметических действий:

    12 — 2 = 10

    5 * 10 = 50

    50 — 7 = 43

    5 * (12 — 2) — 7 = 43

  2. Затем находим значение:

    115 + 9 = 124

    7 — 3 = 4

    124 — 4 = 120

  3. Сравниваем полученные результаты:

    43 меньше 120

    43 < 120

    5 * (12 — 2) — 7 < (115 + 9) —  (7 — 3).

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Реши домашку по математике на 5.

Подробные решения помогут разобраться в самой сложной теме.

Реши домашку по математике на 5.

Буквенные выражения 

Кажется, с числовыми выражениями все достаточно просто. Буквенные выражения немногим сложнее.

В буквенном выражение есть цифры, знаки арифметических действия и буквы. 

Получается, что буквенное выражение — это числовое выражение, в котором есть не только числа, но и буквы.

  • Например:

    (5 + a) * 7

    7 * (x — 2)

    (6 — 2) + (3 + x)

Это буквенные выражения. Для записи буквенных выражений используют буквы латинского алфавита.

У буквенных выражений, как и у числовых, есть определенный алгоритм вычисления:

  • Сначала следует прочитать его полностью.

  • Затем оно записывается.

  • Третьим шагом идет подстановка значения неизвестного в выражение.

  • А затем производится вычисление, согласно очередности выполнения арифметических действий.

Пример 1. Найдите значение выражения при x = 4: 5 + x.

  1. Читаем: найдите сумму числа 5 и x.
  2. Подставляем вместо неизвестного x число 4.
  3. Вычисляем: 5 + 4 = 9.

Пример 2. Найдите значение выражения: (4 + a) * (2 + x) при а = 2 и х = 5.

 

  1. Читаем: найдите произведение суммы числа 4 и а и суммы числа 2 и x.

  2. Подставляем вместо неизвестного a число 2.

  3. Вычисляем 4 + 2 = 6.

  4. Подставляем вместо неизвестного x число 5.

  5. Вычисляем 2 + 5 = 7.

  6. Находим произведение 6 * 7 = 42.

  7. Записываем результат: (4 + 2) * (2 + 5) = 42.

Выражения с переменными

Переменная — буквенное обозначение элемента, который может принимать любое числовое значение.

  • Например, в выражении x + a — 8

    x — переменная

    a — переменная

Если вместо переменных подставить числа, то буквенное выражение x + a — 8 станет числовым выражением. Вот так:

  • подставляем вместо переменной x число 5, а вместо переменной a — число 10, получаем  5 + 10 — 8.

Числа, которые подставляют вместо переменных — это значения переменных. В нашем примере это числа 5 и 10.

После подстановки значения переменных находим значение  x + a — 8 = 5 + 10 — 8 = 7.

Часто можно встретить буквенные выражения, записанные следующим образом:

5x — 4a

Число и переменная записаны без знака арифметического действия. Так коротко записывается умножение. 

  • 5x — 4a = 5*x — 4*a

5x — это произведение числа 5 и переменной x.

4a — это произведение числа 4 и переменной a.

Числа 4 и 5 называют коэффициентами.

Коэффициент показывает, во сколько раз будет увеличена переменная.

Теперь вы вооружены всеми необходимыми теоретическими знаниями о числовых и буквенных выражениях. Давайте немного поупражняемся в решении задачек и примеров, чтобы научиться применять полученные знания на практике. 

Задание раз.

Запишите выражения:

  1. Сумма 6 и a.

  2. Разность 8 и x.

  3. Сумма x — 2 и 6.

  4. Разность 15 и x — y.

  5. Сумма 45 + 5 и 12 — 6.

Ответ:

  1. 6 + a.

  2. 8 — x.

  3. (x — 2) + 6.

  4. 15 — (x — y).

  5. (45 + 5) + (12 — 6).

Задание два.

Составьте буквенное выражение:

Сумма разности b и 345 и суммы 180 и x.

Ответ: (b — 345) + (180 + x).

Задание три.

Составьте буквенное выражение:

Разность разности 30 и y и разности a и b.

Ответ: (30 — y) — (a — b).

Задание четыре.

Составьте выражение для решения задачи и найдите его значение.

Ролл «Калифорния» стоит 480 рублей — это на 40 рублей меньше, чем ролл «Филадельфия». Сколько будут стоить оба ролла?

Как решаем:

Калифорния — 480 рублей.

Филадельфия — 480 + 40.

Калифорния + Филадельфия = ?

480 + (480 + 40).

Мы помним, что выполнение арифметических действий в числовом выражении имеет строгую последовательность. Сначала — действие в скобках:

480 + 520 = 1 000. 

Ответ: роллы “Калифорния” и “Филадельфия” вместе стоят 1 000 рублей.

Задание пять.

Составьте выражение для решения задачи и найдите его значение.

Маша посмотрела за день 150 видео в ТикТок, а Лена — на 13 видео больше. Сколько всего видео было просмотрено обеими девочками?

Маша — 150 видео.

Лена — 150 + 13 видео.

Маша + Лена = ? видео.

150 + (150 + 13).

Выполняем сначала действие в скобках: 150 + 13 = 163.

150 + 163 = 313.

Ответ: Маша и Лена посмотрели всего 313 видео.

Задание шесть.

Вычислите:

(500 + 300) : a — 15,

при условии, что a = 10.

Как решаем:

Подставляем число 10 (значение переменной) вместо переменной

(500 + 300) : 10 — 15

Затем выполняем сначала арифметическое действие в скобках: 500 + 300 = 800.

Затем выполняем деление 800 : 10 = 80.

Выполняем вычитание 80 — 15 = 65.

Ответ: (500 + 300) : 10 — 15 = 65.

Задание семь.

Вычислите:

(270 — 120) * (x — 10),

при условии, что x = 45.

Как решаем: подставляем число 45 (значение переменной) вместо переменной x

(270 — 120) * (45 — 10).

Затем выполняем сначала арифметическое действие в скобках: 270 — 120 = 150.

Выполняем арифметическое действие во вторых скобках: 45 — 10 = 35.

Затем выполняем умножение 150 * 35 = 5 250.

Ответ: (270 — 120) * (45 — 10) = 5 250.

Задание восемь.

Вычислите:

(50 * x) — (3 * y)

при условии, что x = 2; y = 10

Как решаем:

Подставляем число 2 вместо переменной x

(50 * 2) — (3 * y).

Подставляем число 10 вместо переменной y

(50 * 2) — (3 * 10).

Затем выполняем сначала арифметическое действие в скобках: 50 * 2 = 100.

Выполняем арифметическое действие во вторых скобках: 3 * 10 = 30.

Затем выполняем вычитание 100 — 30 = 70

Ответ: (50 * 2) — (3 * 10) = 70.

Буквенное выражение (или выражение с переменными) — это математическое выражение, которое состоит из чисел, букв и знаков математических операций. Например, следующее выражение является буквенным:

a + b + 4

С помощью буквенных выражений можно записывать законы, формулы, уравнения и функции. Умение манипулировать буквенными выражениями — залог хорошего знания алгебры и высшей математики.

Любая серьёзная задача в математике свóдится к решению уравнений. А чтобы уметь решать уравнения, нужно уметь работать с буквенными выражениями.

Чтобы работать с буквенными выражениями, нужно хорошо изучить базовую арифметику: сложение, вычитание, умножение, деление, основные законы математики, дроби, действия с дробями, пропорции. И не просто изучить, а понять досконально.

Переменные

Буквы, которые содержатся в буквенных выражениях, называются переменными.

Например, в выражении a + b + 4 переменными являются буквы a и b. Если вместо этих переменных подставить любые числа, то буквенное выражение a + b + 4 обратится в числовое выражение, значение которого можно будет найти.

Числа, которые подставляют вместо переменных называют значениями переменных. Например, изменим значения переменных a и b. Для изменения значений используется знак равенства

a = 2, b = 3

Мы изменили значения переменных a и b. Переменной a присвоили значение 2, переменной b присвоили значение 3. В результате буквенное выражение a + b + 4 обращается в обычное числовое выражение 2 + 3 + 4, значение которого можно найти:

2 + 3 + 4 = 9

Когда происходит умножение переменных, то они записываются вместе. Например, запись ab означает то же самое, что и запись a × b. Если подставить вместо переменных a и b числа 2 и 3, то мы получим 6

2 × 3 = 6

Слитно также можно записать умножение числа на выражение в скобках. Например, вместо a × (b + c) можно записать a(b + c). Применив распределительный закон умножения, получим a(b + c) = ab + ac.


Коэффициенты

В буквенных выражениях часто можно встретить запись, в которой число и переменная записаны вместе, например 3a. На самом деле это короткая запись умножения числа 3 на переменную a и эта запись выглядит как 3 × a.

Другими словами, выражение 3a является произведением числа 3 и переменной a. Число 3 в этом произведении называют коэффициентом. Этот коэффициент показывает во сколько раз будет увеличена переменная a. Данное выражение можно прочитать как «a три раза» или «трижды а«, или «увеличить значение переменной a в три раза», но наиболее часто читается как «три a«

К примеру, если переменная a равна 5, то значение выражения 3a будет равно 15.

3 × 5 = 15

Говоря простым языком, коэффициент это число, которое стоит перед буквой (перед переменной).

Букв может быть несколько, например 5abc. Здесь коэффициентом является число 5. Данный коэффициент показывает, что произведение переменных abc увеличивается в пять раз. Это выражение можно прочитать как «abc пять раз» либо «увеличить значение выражения abc в пять раз», либо «пять abc«.

Если вместо переменных abc подставить числа 2, 3 и 4, то значение выражения 5abc будет равно 120

5 × 2 × 3 × 4 = 120

Можно мысленно представить, как сначала перемнóжились числа 2, 3 и 4, и полученное значение увеличилось в пять раз:

пять умножить на два на три на четыре равно 120

Знак коэффициента отнóсится только к коэффициенту, и не отнóсится к переменным!

Рассмотрим выражение 6b. Минус, стоящий перед коэффициентом 6, отнóсится только к коэффициенту 6, и не отнóсится к переменной b. Понимание этого факта позвóлит не ошибаться в будущем со знаками.

Найдем значение выражения 6b при b = 3.

6b это короткая форма записи от × b. Для наглядности запишем выражение 6b в развёрнутом виде и подставим значение переменной b

−6b = −6 × b = −6 × 3 = −18


Пример 2. Найти значение выражения 6b при b = −5

Запишем выражение −6b в развёрнутом виде

−6b = −6 × b

и далее подставим значение переменной b

−6b = −6 × b = −6 × (−5) = 30


Пример 3. Найти значение выражения −5a + b при a = 3 и b = 2

−5a + b это короткая форма записи от −5 × a + b, поэтому для наглядности запишем выражение −5 × a + b в развёрнутом виде и подстáвим значения переменных a и b

−5a + b = −5 × a + b = −5 × 3 + 2 = −15 + 2 = −13


Иногда буквы записаны без коэффициента, например a или ab. В этом случае коэффициентом является единица:

1a, 1ab

но единицу по традиции не записывают, поэтому просто пишут a или ab

Если перед буквой стоит минус, то коэффициентом является число 1. Например, выражение −a на самом деле выглядит как −1a. Это произведение минус единицы и переменной a. Оно получилось следующим образом:

−1 × a = −1a

Здесь крóется небольшой подвох. В выражении −a минус, стоящий перед переменной a на самом деле относится к невидимой единице, а не к переменной a. Поэтому при решении задач следует быть внимательным.

К примеру, если дано выражение −a и нас прóсят найти его значение при a = 2, то в школе мы подставляли двойку вместо переменной a и получали ответ 2, не особо зацикливаясь на том, как это получалось. На самом деле происходило умножение минус единицы на положительное число 2

−a = −1 × a

−1 × a = −1 × 2 = −2

Если дано выражение −a и требуется найти его значение при a = −2, то мы подставляем −2 вместо переменной a

−a = −1 × a

−1 × a = −1 × (−2) = 2

Чтобы не допускать ошибок, первое время невидимые единицы можно записывать явно.

Пример 4. Найти значение выражения abc при a=2, b=3 и c=4

Выражение abc это короткая форма записи от 1×a×b×c. Для наглядности запишем выражение abc в развёрнутом виде и подставим значения переменных a, b и c

1 × a × b × c = 1 × 2 × 3 × 4 = 24


Пример 5. Найти значение выражения abc при a=−2, b=−3 и c=−4

Запишем выражение abc в развёрнутом виде и подставим значения переменных a, b и c

1 × a × b × c = 1 × (−2) × (−3) × (−4) = −24


Пример 6. Найти значение выражения abc при a=3, b=5 и c=7

Выражение abc это короткая форма записи от −1×a×b×c. Для наглядности запишем выражение abc в развёрнутом виде и подставим значения переменных a, b и c

−abc = −1 × a × b × c = −1 × 3 × 5 × 7 = −105


Пример 7. Найти значение выражения abc при a=−2, b=−4 и c=−3

Запишем выражение abc в развёрнутом виде:

−abc = −1 × a × b × c

Подставим значение переменных a, b и c

−abc = −1 × a × b × c = −1 × (−2) × (−4) × (−3) = 24


Как определить коэффициент

Иногда требуется решить задачу, в которой требуется определить коэффициент выражения. В принципе, данная задача очень простá. Достаточно уметь правильно умножать числа.

Чтобы определить коэффициент в выражении, нужно отдельно перемножить числа, входящие в это выражение, и отдельно перемножить буквы. Получившийся числовой сомножитель и будет коэффициентом.

Пример 1. Определить коэффициент в выражении: 7m×5a×(−3)×n

Выражение состоит из нескольких сомножителей. Это можно отчетливо увидеть, если записать выражение в развёрнутом виде. То есть произведения 7m и 5a записать в виде 7×m и 5×a

7 × m × 5 × a × (−3) × n

Применим сочетательный закон умножения, который позволяет перемножать сомножители в любом порядке. А именно, отдельно перемнóжим числа и отдельно перемнóжим буквы (переменные):

−3 × 7 × 5 × m × a × n = −105man

Коэффициент равен −105. После завершения буквенную часть желательно расположить в алфавитном порядке:

−105amn


Пример 2. Определить коэффициент в выражении: −a×(−3)×2

Перемножим отдельно числа и буквы:

−a × (−3 ) × 2 = −3 × 2 × (−a) = −6 × (−a) = 6a

Коэффициент равен 6.


Пример 3. Определить коэффициент в выражении: минус одна третья mn три a

Перемножим отдельно числа и буквы:

минус одна третья mn три a равно минус amn

Коэффициент равен −1. Обратите внимание, что единица не записана, поскольку коэффициент 1 принято не записывать.

Эти казалось бы простейшие задачи могут сыграть с нами очень злую шутку. Часто выясняется, что знак коэффициента поставлен не верно: либо пропущен минус либо наоборот он поставлен зря. Чтобы избежать этих досадных ошибок, тема умножения целых чисел должна быть изучена на хорошем уровне.


Слагаемые в буквенных выражениях

При сложении нескольких чисел получается сумма этих чисел. Числа, которые складывают называют слагаемыми. Слагаемых может быть несколько, например:

1 + 2 + 3 + 4 + 5

Когда выражение состоит из слагаемых, вычислять его намного проще, поскольку складывать легче, чем вычитать. Но в выражении может присутствовать не только сложение, но и вычитание, например:

1 + 2 − 3 + 4 − 5

В этом выражении числа 3 и 5 являются вычитаемыми, а не слагаемыми. Но нам ничего не мешает, заменить вычитание сложением. Тогда мы снова получим выражение, состоящее из слагаемых:

1 + 2 + (−3) + 4 + (−5)

Не суть, что числа −3 и −5 теперь со знаком минус. Главное, что все числа в данном выражении соединены знаком сложения, то есть выражение является суммой.

Оба выражения 1 + 2 − 3 + 4 − 5 и 1 + 2 + (−3) + 4 + (−5) равны одному и тому значению — минус единице:

1 + 2 − 3 + 4 − 5 = −1

1 + 2 + (−3) + 4 + (−5) = −1

Таким образом, значение выражения не пострадает от того, что мы где-то заменим вычитание сложением.

Заменять вычитание сложением можно и в буквенных выражениях. Например, рассмотрим следующее выражение:

7a + 6b − 3c + 2d − 4s

Заменим вычитание сложением там, где это можно:

7a + 6b + (−3c) + 2d + (−4s)

При любых значениях переменных a, b, c, d и s выражения 7a + 6b − 3c + 2d − 4s и 7a + 6b + (−3c) + 2d + (−4s) будут равны одному и тому же значению.

Вы должны быть готовы к тому, что учитель в школе или преподаватель в институте может называть слагаемыми даже те числа (или переменные), которые ими не являются.

Например, если на доске будет записана разность a − b, то учитель не будет говорить, что a — это уменьшаемое, а b — вычитаемое. Обе переменные он назовет одним общим словом — слагаемые. А всё потому, что выражение вида a − b математик видит, как сумму a + (−b). В таком случае выражение становится суммой, а переменные a и (−b) станóвятся слагаемыми.


Подобные слагаемые

Подобные слагаемые — это слагаемые, которые имеют одинаковую буквенную часть.

Например, рассмотрим выражение 7a + 6b + 2a. Слагаемые 7a и 2a имеют одинаковую буквенную часть — переменную a. Значит слагаемые 7a и 2a являются подобными.

Обычно подобные слагаемые складывают, чтобы упростить выражение или решить какое-нибудь уравнение. Это действие называют приведéнием подобных слагаемых.

Чтобы привести подобные слагаемые, нужно сложить коэффициенты этих слагаемых, и полученный результат умножить на общую буквенную часть.

Например, приведём подобные слагаемые в выражении 3a + 4a + 5a. В данном случае подобными являются все слагаемые. Слóжим их коэффициенты и результат умножим на общую буквенную часть — на переменную a

3a + 4a + 5a = (3 + 4 + 5)×a = 12a

Подобные слагаемые обычно привóдят в уме и результат записывают сразу:

3a + 4a + 5a = 12a

Также, можно рассуждать следующим образом:

Было 3 переменные a, к ним прибавили еще 4 переменные a и ещё 5 переменных a. В итоге получили 12 переменных a

двенадцать переменных a

Если подсчитать на рисунке количество переменных a, то насчитается 12.

Рассмотрим несколько примеров на приведение подобных слагаемых. Учитывая, что данная тема очень важна, на первых порах будем записывать подробно каждую мелочь. Несмотря на то, что здесь всё очень просто, большинство людей допускают множество ошибок. В основном по невнимательности, а не по незнанию.

Пример 1. Привести подобные слагаемые в выражении 3a + 2a + 6a + 8a

Сложим коэффициенты в данном выражении и полученный результат умножим на общую буквенную часть:

3a + 2a + 6a + 8a= (3 + 2 + 6 + 8) × a = 19a

Конструкцию (3 + 2 + 6 + 8)  × a можно не записывать, поэтому сразу запишем ответ

3a + 2a + 6a + 8a = 19a


Пример 2. Привести подобные слагаемые в выражении 2a + a

Второе слагаемое a записано без коэффициента, но на самом деле перед ним стоит коэффициент 1, который мы не видим по причине того, что его не записывают. Стало быть, выражение выглядит следующим образом:

2a + 1a

Теперь приведем подобные слагаемые. То есть сложим коэффициенты и результат умножим на общую буквенную часть:

2a + 1a = (2 + 1) × a = 3a

Запишем решение покороче:

2a + a = 3a

Приводя подобные слагаемые в выражении 2a+a, можно рассуждать и по-другому:

Было 2 переменные a, добавили ещё одну переменную a, в итоге получилось 3 переменные a.

три переменные a


Пример 3. Привести подобные слагаемые в выражении 2a − a

Заменим вычитание сложением:

2a + (−a)

Второе слагаемое (−a) записано без коэффициента, но на самом деле оно выглядит как (−1a). Коэффициент −1 опять же невидимый по причине того, что его не записывают. Стало быть, выражение выглядит следующим образом:

2a + (−1a)

Теперь приведем подобные слагаемые. Сложим коэффициенты и результат умножим на общую буквенную часть:

2a + (−1a) = (2 + (−1)) × a = 1a = a

Обычно записывают короче:

2a − a = a

Приводя подобные слагаемые в выражении 2a−a можно рассуждать и по-другому:

Было 2 переменные a, вычли одну переменную a, в итоге осталась одна единственная переменная a

одна единственная переменная a


Пример 4. Привести подобные слагаемые в выражении 6a − 3a + 4a − 8a

Заменим вычитание сложение там, где это можно:

6a − 3a + 4a − 8a = 6a + (−3a) + 4a + (−8a)

Теперь приведем подобные слагаемые. Сложим коэффициенты и результат умножим на общую буквенную часть

(6 + (−3) + 4 + (−8)) × a = −1a = −a

Запишем решение покороче:

6a − 3a + 4a − 8a = −a


Встречаются выражения, которые содержат несколько различных групп подобных слагаемых. Например, 3a + 3b + 7a + 2b. Для таких выражений справедливы те же правила, что и для остальных, а именно складывание коэффициентов и умножение полученного результата на общую буквенную часть. Но чтобы не допустить ошибок, удобно разные группы слагаемых подчеркнуть разными линиями.

Например, в выражении 3a + 3b + 7a + 2b те слагаемые, которые содержат переменную a, можно подчеркнуть одной линией, а те слагаемые которые содержат переменную b, можно подчеркнуть двумя линиями:

три а плюс б плюс семь а плюс два б

Теперь можно привести подобные слагаемые. То есть сложить коэффициенты и полученный результат умножить на общую буквенную часть. Сделать это нужно для обеих групп слагаемых: для слагаемых, содержащих переменную a и для слагаемых содержащих переменную b.

3a + 3b + 7a + 2b = (3+7)×a + (3 + 2)×b = 10a + 5b

Опять же повторимся, выражение несложное, и подобные слагаемые можно приводить в уме:

3a + 3b + 7a + 2b = 10a + 5b


Пример 5. Привести подобные слагаемые в выражении 5a − 6a −7b + b

Заменим вычитание сложение там, где это можно:

5a − 6a −7b + b = 5a + (−6a) + (−7b) + b

Подчеркнём подобные слагаемые разными линиями. Слагаемые, содержащие переменные a подчеркнем одной линией, а слагаемые содержащие переменные b, подчеркнем двумя линиями:

пять а плюс минус шесть а плюс минус семь б плюс б

Теперь можно привести подобные слагаемые. То есть сложить коэффициенты и полученный результат умножить на общую буквенную часть:

5a + (−6a) + (−7b) + b = (5 + (−6))×a + ((−7) + 1)×b = −a + (−6b)


Если в выражении содержатся обычные числа без буквенных сомножителей, то они складываются отдельно.

Пример 6. Привести подобные слагаемые в выражении 4a + 3a − 5 + 2b + 7

Заменим вычитание сложением там, где это можно:

4a + 3a − 5 + 2b + 7 = 4a + 3a + (−5) + 2b + 7

Приведем подобные слагаемые. Числа −5 и 7 не имеют буквенных сомножителей, но они являются подобными слагаемыми — их необходимо просто сложить. А слагаемое 2b останется без изменений, поскольку оно единственное в данном выражении, имеющее буквенный сомножитель b, и его не с чем складывать:

4a + 3a + (−5) + 2b + 7 = (4 + 3)×a + 2b + (−5) + 7 = 7a + 2b + 2

Запишем решение покороче:

4a + 3a − 5 + 2b + 7 = 7a + 2b + 2


Слагаемые можно упорядочивать, чтобы те слагаемые, которые имеют одинаковую буквенную часть, располагались в одной части выражения.

Пример 7. Привести подобные слагаемые в выражении 5t+2x+3x+5t+x

Поскольку выражение является суммой из нескольких слагаемых, это позволяет нам вычислять его в любом порядке. Поэтому слагаемые, содержащие переменную t, можно записать в начале выражения, а слагаемые содержащие переменную x в конце выражения:

5t + 5t + 2x + 3x + x

Теперь можно привести подобные слагаемые:

5t + 5t + 2x + 3x + x = (5+5)×t + (2+3+1)×x = 10t + 6x

Запишем решение покороче:

5t + 2x + 3x + 5t + x = 10t + 6x


Сумма противоположных чисел равна нулю. Это правило работает и для буквенных выражений. Если в выражении встретятся одинаковые слагаемые, но с противоположными знаками, то от них можно избавиться на этапе приведения подобных слагаемых. Иными словами, просто вычеркнуть их из выражения, поскольку их сумма равна нулю.

Пример 8. Привести подобные слагаемые в выражении 3t − 4t − 3t + 2t

Заменим вычитание сложением там, где это можно:

3t − 4t − 3t + 2t = 3t + (−4t) + (−3t) + 2t

Слагаемые 3t и (−3t) являются противоположными. Сумма противоположных слагаемых равна нулю. Если убрать этот ноль из выражения, то значение выражения не изменится, поэтому мы его и уберём. А уберём мы его обычным вычеркиванием слагаемых 3t и (−3t)

три т плюс минус четыре т плюс минус три т плюс два т

В итоге у нас останется выражение (−4t) + 2t. В данном выражении можно привести подобные слагаемые и получить окончательный ответ:

(−4t) + 2t = ((−4) + 2)×t = −2t

Запишем решение покороче:

три т плюс минус четыре т плюс минус три т плюс два т короткое рещение


Упрощение выражений

Часто можно встретить задание, в котором сказано «упростите выражение» и далее приводится выражение, которое требуется упростить. Упростить выражение значит сделать его прóще и корóче.

На самом деле мы уже занимались упрощением выражений, когда сокращали дроби. После сокращения дробь становилась короче и проще для восприятия.

Рассмотрим следующий пример. Упростить выражение две четвёртых .

Это задание буквально можно понять так: «Примените к данному выражению любые допустимые действия, но сделайте его прóще».

В данном случае можно осуществить сокращение дроби, а именно разделить числитель и знаменатель дроби на 2:

сокращение дроби две четвертых на два Что ещё можно сделать? Можно вычислить полученную дробь одна вторая . Тогда мы получим десятичную дробь 0,5

сокращение дроби две четвертых на два второй этап

В итоге дробь две четвёртых упростилась до 0,5.

Первый вопрос, который нужно себе задавать при решении подобных задач, должен быть: «а что можно сделать?». Потому что есть действия, которые можно делать, и есть действия, которые делать нельзя.

Ещё один важный момент, о котором нужно помнить, заключается в том что значение выражение не должно измениться после упрощения выражения. Вернемся к выражению две четвёртых. Данное выражение представляет собой деление, которое можно выполнить. Выполнив это деление, мы получаем значение данного выражения, которое равно 0,5

два разделить на четыре равно пять десятых решение уголком

Но мы упростили выражение две четвёртых и получили новое упрощённое выражение одна вторая. Значение нового упрощённого выражения по-прежнему равно 0,5

единица разделить на два пятое действие

Но выражение одна вторая мы тоже попытались упростить, вычислив его. В итоге получили окончательный ответ 0,5.

Таким образом, как бы мы не упрощали выражение, значение получаемых выражений по-прежнему равно 0,5. Значит упрощение выполнялось верно на каждом этапе. Именно к этому нужно стремиться при упрощении выражений — значение выражения не должно пострадать от наших действий.

Часто требуется упрощать буквенные выражения. Для них справедливы те же правила упрощения, что и для числовых выражений. Можно выполнять любые допустимые действия, лишь бы не изменилось значение выражения.

Рассмотрим несколько примеров.

Пример 1. Упростить выражение 5,21s × t × 2,5

Чтобы упростить данное выражение, можно отдельно перемножить числа и отдельно перемножить буквы. Это задание очень похоже на то, которое мы рассматривали, когда учились определять коэффициент:

5,21s × t × 2,5 = 5,21 × 2,5 × s × t = 13,025 × st = 13,025st

Таким образом, выражение 5,21s × t × 2,5 упростилось до 13,025st.


Пример 2. Упростить выражение −0,4 × (−6,3b) × 2

Второе произведение (−6,3b) можно перевести в понятный для нас вид, а именно записать в виде (−6,3)×b, затем отдельно перемножить числа и отдельно перемножить буквы:

0,4 × (−6,3b) × 2 = 0,4 × (−6,3) × b × 2 = 5,04b

Таким образом, выражение −0,4 × (−6,3b) × 2 упростилось до 5,04b


Пример 3. Упростить выражение две третьих а умножить на минус одну целую одну вторую б ц

Распишем данное выражение более подробно, чтобы хорошо увидеть, где числа, а где буквы:

две третьих а умножить на минус одну целую одну вторую б ц в подробном виде

Теперь отдельно перемножим числа и отдельно перемножим буквы:

две третьих а умножить на минус одну целую одну вторую б ц в подробном виде вычисление

Таким образом, выражение две третьих а умножить на минус одну целую одну вторую б ц упростилось до −abc. Данное решение можно записать покороче:

две третьих а умножить на минус одну целую одну вторую б ц в подробном виде короткое вычисление

При упрощении выражений, дроби можно сокращать в процессе решения, а не в самом конце, как мы это делали с обычными дробями. Например, если в ходе решения мы наткнёмся на выражение вида Двенадцать умножить на девять умножить на шесть разделить на три умножить на два умножить на четыре , то вовсе необязательно вычислять числитель и знаменатель и делать что-то вроде этого:

Двенадцать умножить на девять умножить на шесть разделить на три умножить на два умножить на четыре полное решение

Дробь можно сократить, выбирая по множителю в числителе и в знаменателе и сокращать эти множители на их наибольший общий делитель. Другими словами, использовать короткую версию сокращения дроби, в которой мы не расписываем подробно на что был разделен числитель и знаменатель.

Например, в числителе множитель 12 и в знаменателе множитель 4 можно сократить на 4. Четвёрку храним в уме, а разделив 12 и 4 на эту четвёрку, ответы записываем рядом с этими числами, предварительно зачеркнув их

Двенадцать умножить на девять умножить на шесть разделить на три умножить на два умножить на четыре сократили на три 12 и 4

Далее в числителе множитель 9 и в знаменателе множитель 3 можно сократить на 3

Двенадцать умножить на девять умножить на шесть разделить на три умножить на два умножить на четыре сократили на три 9 и 3

Далее в числителе множитель 6 и в знаменателе множитель 2 можно сократить на 2

Двенадцать умножить на девять умножить на шесть разделить на три умножить на два умножить на четыре сократили на три 6 и 2

Теперь можно перемножить получившиеся маленькие множители. В данном случае их немного и можно перемножить в уме:

Двенадцать умножить на девять умножить на шесть разделить на три умножить на два умножить на четыре короткое решение

Со временем можно обнаружить, что решая ту или иную задачу, выражения начинают «толстеть», поэтому желательно приучиться к быстрым вычислениям. То, что можно вычислить в уме, нужно вычислять в уме. То, что можно быстро сократить, нужно быстро сокращать.

Пример 4. Упростить выражение минус три целых одна третья а умножить на минус ноль целых девять б на пять двенадцатых

Перемножим отдельно числа и отдельно буквы:

минус три целых одна третья а умножить на минус ноль целых девять б на пять двенадцатых равно пять четвертых ab

Таким образом, выражение минус три целых одна третья а умножить на минус ноль целых девять б на пять двенадцатых упростилось до пять четвертых ab


Пример 5. Упростить выражение минус три четвертых м умножить на минус две третьих умножить на два м

Перемножим отдельно числа и отдельно буквы:

минус три четвертых м умножить на минус две третьих умножить на два м равно мн

Таким образом, выражение минус три четвертых м умножить на минус две третьих умножить на два м упростилось до mn.


Пример 6. Упростить выражение минус шесть целых четыре умножить на минус три четвертых x

Запишем данное выражение более подробно, чтобы хорошо увидеть, где числа, а где буквы:

минус шесть целых четыре умножить на минус три четвертых x расписано

Теперь отдельно перемножим числа и отдельно буквы. Для удобства вычислений десятичную дробь −6,4 и смешанное число Минус одна целая и одна третья можно перевести в обыкновенные дроби:

минус шесть целых четыре умножить на минус три четвертых x равно минус тридцать пятых stx

Таким образом, выражение минус шесть целых четыре умножить на минус три четвертых x упростилось до минус шесть целых четыре десятых stx

Решение для данного примера можно записать значительно короче. Выглядеть оно будет следующим образом:

минус шесть целых четыре умножить на минус три четвертых x короткое решение


Пример 7. Упростить выражение шестнадцать вторых ab умножить на одну десятую c умножить на шесть десятых d

Перемножим отдельно числа и отдельно буквы. Для удобства вычисления смешанное число шестнадцать целых две третьих и десятичные дроби 0,1 и 0,6 можно перевести в обыкновенные дроби:

шестнадцать вторых ab умножить на одну десятую c умножить на шесть десятых d равно abcd

Таким образом, выражение шестнадцать вторых ab умножить на одну десятую c умножить на шесть десятых d упростилось до abcd. Если пропустить подробности, то данное решение можно записать значительно короче:

шестнадцать вторых ab умножить на одну десятую c умножить на шесть десятых d равно abcd коротко

Обратите внимание на то, как сократилась дробь. Новые множители, которые получаются в результате сокращения предыдущих множителей, тоже допускается сокращать.

line

Теперь поговорим о том, чего делать нельзя. При упрощении выражений категорически нельзя перемножать числа и буквы, если выражение является суммой, а не произведением.

Например, если требуется упростить выражение 5a + 4b, то нельзя записывать следующим образом:

5a плюс 4б не равно двадцть аб

Это равносильно тому, что если бы нас попросили сложить два числа, а мы бы их перемножали вместо того, чтобы складывать.

При подстановке любых значений переменных a и b выражение 5a  +4b обращается в обыкновенное числовое выражение. Предположим, что переменные a и b имеют следующие значения:

a = 2, b = 3

Тогда значение выражения будет равно 22

5a + 4b = 5 × 2 + 4 × 3 = 10 + 12 = 22

Сначала выполняется умножение, а затем полученные результаты складывают. А если бы мы попытались упростить данное выражение, перемножив числа и буквы, то получилось бы следующее:

5a + 4b = 5 × 4 × a × b = 20ab

20ab = 20 × 2 × 3 = 120

Получается совсем другое значение выражения. В первом случае получилось 22, во втором случае 120. Это означает, что упрощение выражения 5a + 4b было выполнено неверно.

После упрощения выражения, его значение не должно изменяться при одних и тех же значениях переменных. Если при подстановке в изначальное выражение любых значений переменных получается одно значение, то после упрощения выражения должно получаться то же самое значение, что и до упрощения.

С выражением 5a + 4b на самом деле ничего делать нельзя. Оно не упрощается.

line

Если в выражении содержатся подобные слагаемые, то их можно сложить, если нашей целью является упрощение выражения.

Пример 8. Упростить выражение 0,3a−0,4a+a

Чтобы упростить данное выражение можно привести подобные слагаемые:

0,3a − 0,4a + a = 0,3a + (−0,4a) + a = (0,3 + (−0,4) + 1)×a = 0,9a

или покороче: 0,3a − 0,4a + a = 0,9a

Таким образом, выражение 0,3a−0,4a+a упростилось до 0,9a


Пример 9. Упростить выражение −7,5a − 2,5b + 4a

Чтобы упростить данное выражение можно привести подобные слагаемые:

−7,5a − 2,5b + 4a = −7,5a + (−2,5b) + 4a = ((−7,5) + 4)×a + (−2,5b) = −3,5a + (−2,5b)

или покороче −7,5a − 2,5b + 4a = −3,5a + (−2,5b)

Слагаемое (−2,5b) осталось без изменений, поскольку его не с чем было складывать.


Пример 10. Упростить выражение две третьих а плюс одна целая одна третья а минус одна третья а

Чтобы упростить данное выражение можно привести подобные слагаемые:

две третьих а плюс одна целая одна третья а минус одна третья а равно пять третьих а

Коэффициент одна целая одна третья был переведён в неправильную дробь для удобства вычисления.

Таким образом, выражение две третьих а плюс одна целая одна третья а минус одна третья а упростилось до пять третьих а


Пример 11. Упростить выражение минус одна четвертая x плюс x плюс три четрвертых x

Чтобы упростить данное выражение можно привести подобные слагаемые:

минус одна четвертая x плюс x плюс три четрвертых x равно минус одна вторая x

Таким образом, выражение минус одна четвертая x плюс x плюс три четрвертых x упростилось до минус пять десятых икс.

В данном примере целесообразнее было бы сложить первый и последний коэффициент в первую очередь. В этом случае мы получили бы короткое решение. Выглядело бы оно следующим образом:

минус одна четвертая x плюс x плюс три четрвертых x равно минус одна вторая x коротко


Пример 12. Упростить выражение минус две пятых б минус три седьмых ц минус одна десятая б

Чтобы упростить данное выражение можно привести подобные слагаемые:

минус две пятых б минус три седьмых ц минус одна десятая б равно минус одна вторая б плюс минус три седьмых ц

Таким образом, выражение минус две пятых б минус три седьмых ц минус одна десятая б упростилось доминус одна вторая b плюс минус три седьмых ц.

Слагаемое минус три седьмых ц осталось без изменения, поскольку его не с чем было складывать.

Данное решение можно записать значительно короче. Выглядеть оно будет следующим образом:

минус две пятых б минус три седьмых ц минус одна десятая б коротко

В коротком решении пропущены этапы замены вычитания сложением и подробная запись, как дроби приводились к общему знаменателю.

Ещё одно различие заключается в том, что в подробном решении ответ выглядит как минус одна вторая b плюс минус три седьмых ц, а в коротком как минус одна вторая б минус три седьмых ц. На самом деле, это одно и то же выражение. Различие в том, что в первом случае вычитание заменено сложением, поскольку в начале когда мы записывали решение в подробном виде, мы везде где можно заменили вычитание сложением, и эта замена сохранилась и для ответа.


Тождества. Тождественно равные выражения

После того как мы упростили какое-нибудь выражение, оно станóвится проще и короче. Чтобы проверить верно ли упрощено выражение, достаточно подстáвить любые значения переменных сначала в предыдущее выражение, которое требовалось упростить, а затем в новое, которое упростили. Если значение в обоих выражениях будет одинаковым, то это означает, что выражение упрощено верно.

Рассмотрим простейший пример. Пусть требуется упростить выражение 2a × 7b. Чтобы упростить данное выражение, можно по-отдельности перемнóжить числа и буквы:

2a × 7b = 2 × 7 × a × b = 14ab

Проверим верно ли мы упростили выражение. Для этого подставим любые значения переменных a и b сначала в первое выражение, которое требовалось упростить, а затем во второе, которое упростили.

Пусть значения переменных a, b будут следующими:

a = 4
b = 5

Подстáвим их в первое выражение 2a × 7b

2a × 7b = 2 × 4 × 7 × 5 = 280

Теперь подстáвим те же значения переменных в выражение, которое получилось в результате упрощения выражения 2× 7b, а именно в выражение 14ab

14ab = 14 × 4 × 5 = 280

Видим, что при a = 4 и b = 5 значение первого выражения 2× 7b и значение второго выражения 14ab равны

2a × 7b = 2 × 4 × 7 × 5 = 280

14ab = 14 × 4 × 5 = 280

То же самое произойдет и для любых других значений. Например, пусть a = 1 и b = 2

2a × 7b = 2 × 1 × 7 × 2 = 28

14ab = 14 × 1 × = 28

Таким образом, выражения 2× 7b и 14ab при любых значениях переменных равны одному и тому же значению. Такие выражения называют тождественно равными.

Делаем вывод, что между выражениями 2× 7b и 14ab можно поставить знак равенства, поскольку они равны одному и тому же значению:

2× 7b = 14ab

Равенством называют любое выражение, которые соединено знаком равенства (=).

А равенство вида 2× 7b = 14ab называют тождеством.

Тождеством называют равенство, которое верно при любых значениях переменных.

Другие примеры тождеств:

a + b = b + a

a(b + c) = ab + ac

a(bc) = (ab)c

Да, законы математики, которые мы изучали, являются тождествами.

Верные числовые равенства тоже являются тождествами. Например:

2 + 2 = 4

3 + 3 = 5 + 1

10 = 7 + 2 + 1

Решая сложную задачу, чтобы облегчить себе вычисление, сложное выражение заменяют на более простое выражение, тождественно равное предыдущему. Такую замену называют тождественным преобразованием выражения или просто преобразованием выражения.

Например, мы упростили выражение 2× 7b, и получили более простое выражение 14ab. Это упрощение можно называть тождественным преобразованием.

Часто можно встретить задание, в котором сказано «докажите, что равенство является тождеством» и далее приводится равенство, которое требуется доказать. Обычно это равенство состоит из двух частей: левой и правой части равенства. Наша задача состоит в том, чтобы выполнить тождественные преобразования с одной из частей равенства и получить другую часть. Либо выполнить тождественные преобразования с обеими частями равенства и сделать так, чтобы в обеих частях равенства оказались одинаковые выражения.

Например, докажем, что равенство 0,5a × 5b = 2,5ab является тождеством.

Упростим левую часть этого равенства. Для этого перемножим числа и буквы по отдельности:

0,5 × 5 × a × b = 2,5ab

2,5ab = 2,5ab

В результате небольшого тождественного преобразования, левая часть равенства стала равна правой части равенства. Значит мы доказали, что равенство 0,5a × 5b = 2,5ab является тождеством.

Из тождественных преобразований мы научились складывать, вычитать, умножать и делить числа, сокращать дроби, приводить подобные слагаемые, а также упрощать некоторые выражения.

Но это далеко не все тождественные преобразования, которые существуют в математике. Тождественных преобразований намного больше. В будущем мы ещё не раз в этом убедимся.

Задания для самостоятельного решения:

Задание 1. Найдите значение выражения два икс игрек при икс равно одна вторая и игрек равно одна четвертая

Задание 2. Найдите значение выражения минус икс игрек при икс равно одна целая одна вторая и игрек равно две целых одна четверть

Задание 4. Найдите значение выражения минус две сотых а б при а равно четыре десятых и б минус сто двадцать пять

Задание 5. Запишите в виде буквенного выражения следующую последовательность действий:

  • Число a умножить на три, и из этого произведения вычесть пятнадцать
  • Число t умножить на девять, и к полученному произведению прибавить тридцать пять

Задание 6. Приведите подобные слагаемые в следующем выражении:

Задание 7. Приведите подобные слагаемые в следующем выражении:

Задание 8. Приведите подобные слагаемые в следующем выражении:

Задание 9. Приведите подобные слагаемые в следующем выражении:

Задание 10. Приведите подобные слагаемые в следующем выражении:

Задание 11. Упростите выражение:

Задание 12. Упростите выражение:

Задание 13. Упростите выражение:

Задание 14. Упростите выражение:

Задание 15. Упростите выражение:

Задание 16. Упростите выражение:

Задание 17. Упростите выражение:

Задание 18. Упростите выражение:

Задание 19. Упростите выражение:

Задание 20. Упростите выражение:


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

  1. Главная
  2. Справочники
  3. Справочник по математике для начальной школы
  4. Числовые и буквенные выражения

Числовые выражения

В этом разделе мы узнаем, что называют числовым выражением и значением выражения, научимся читать выражения.

Числовое выражение – это запись , состоящая из чисел и знаков действий между ними.

Например, 44 + 32

Значение выражения — это результат выполненных действий.

Например, в записи 44 + 32 = 76, значение выражения — это 76.


Чтение числовых выражений

12 + 9 — сумма

49 — 20 — разность

34 — (8 + 21) — из 34 вычесть сумму чисел 8 и 21

13 + (26 — 8) — к 13 прибавить разность чисел 26 и 8


Решение числовых выражений

45 – (30 + 2) = …
Сначала выполняем действие, записанное в скобках. К 30 прибавляем 2.
30 + 2 = 32
Теперь нужно из 45 вычесть 38.
45 – 32 = 13
45 – (30 + 2) = 13


Сравнение значений числовых выражений

 Сравнить числовое выражение – найти значение каждого из выражений и их сравнить.

Давай сравним значения двух выражений: 14 — 6 и 18 — 9.

Для этого найдем значения каждого из них:

14 — 6 = 8

18 — 9 = 9

8 < 9, значит, 

14 — 6 < 18 — 9


Буквенные выражения

Буквенным называется математическое выражение, в котором используются цифры, знаки действий и буквы. Например, (47 + d) – 11.

В этих выражениях буквы могут обозначать различные числа. Число, которым заменяют букву, называют значением.

Для записи буквенных выражений необходимо знать некоторые буквы латинского алфавита. Мы приводим его полностью, чтобы ты знал, с какими буквами можешь встретиться при составлении, решении или чтении буквенных выражений.

Чаще всего используются буквы:

a, b, c, d, x, y, k, m, n


Алгоритм решения буквенного выражения

Алгоритм — значит, порядок, план выполнения команд.

1.   Прочитать буквенное выражение

2.   Записать буквенное выражение

3.   Подставить значение неизвестного в выражении

4.   Вычислить результат

Например, 28 – с

Читаем выражение: Из 28 вычесть с или Найти разность числа 28 и с

Подставим вместо неизвестного «с» число 4.

У нас получается выражение: 28 – 4 

Вычисляем результат:

28 – 4 = 24


Переменные

Буквы, которые содержатся в буквенных выражениях называются переменными. Например, в выражении с + x + 2 переменными являются буквы c и x. Если вместо этих переменных подставить любые числа, то буквенное выражение с + x + 2 обратится в числовое выражение, значение которого можно будет найти.

Числа, которые подставляют вместо переменных называют значениями переменных. Например, изменим значения переменных c и x. Для изменения значений используется знак равенства

c = 2, x = 3

Мы изменили значения переменных c и x. Переменной присвоили значение 2, переменной x присвоили значение 3, тогда выражение с + х + 2 будет выглядеть так:

2 + 3 + 2

Теперь мы можем найти значение этого выражения:

с + х + 2 = 2 + 3 + 2 = 5 + 2 = 7

Советуем посмотреть:

Уравнения


Правило встречается в следующих упражнениях:

1 класс

Страница 8. Урок 5,
Петерсон, Учебник, часть 2

Страница 43. Урок 22,
Петерсон, Учебник, часть 2

Страница 45. Урок 23,
Петерсон, Учебник, часть 2

Страница 51. Урок 26,
Петерсон, Учебник, часть 2

Страница 57. Урок 29,
Петерсон, Учебник, часть 2

Страница 9. Урок 5,
Петерсон, Учебник, часть 3

Страница 15. Урок 8,
Петерсон, Учебник, часть 3

Страница 19. Урок 10,
Петерсон, Учебник, часть 3

Страница 29. Урок 15,
Петерсон, Учебник, часть 3

Страница 44. Урок 23,
Петерсон, Учебник, часть 3

2 класс

Страница 47,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 33. ПР 3. Вариант 2,
Моро, Волкова, Проверочные работы

Страница 35. ПР 4. Вариант 2,
Моро, Волкова, Проверочные работы

Страница 44. ПР 2. Вариант 1,
Моро, Волкова, Проверочные работы

Страница 14,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 34,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 21. Урок 7,
Петерсон, Учебник, часть 2

Страница 24. Урок 8,
Петерсон, Учебник, часть 2

Страница 83. Урок 34,
Петерсон, Учебник, часть 2

Страница 18. Урок 6,
Петерсон, Учебник, часть 3

3 класс

Страница 26,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 46,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 68,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 33,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 25. Урок 8,
Петерсон, Учебник, часть 1

Страница 31. Урок 11,
Петерсон, Учебник, часть 1

Страница 97. Урок 37,
Петерсон, Учебник, часть 1

Страница 32. Урок 13,
Петерсон, Учебник, часть 2

Страница 84. Урок 36,
Петерсон, Учебник, часть 2

Страница 85. Урок 37,
Петерсон, Учебник, часть 2

4 класс

Страница 7,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 62,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 68,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 88,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 20,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 21,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 33,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 74,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 84,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 36,
Моро, Волкова, Рабочая тетрадь, часть 2

5 класс

Задание 503,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 939,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1398,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1469,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1836,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 4,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник, часть 1

Номер 256,
Мерзляк, Полонский, Якир, Учебник

Номер 737,
Мерзляк, Полонский, Якир, Учебник

Номер 2,
Мерзляк, Полонский, Якир, Учебник

Номер 6,
Мерзляк, Полонский, Якир, Учебник

6 класс

Номер 329,
Мерзляк, Полонский, Якир, Учебник

Номер 400,
Мерзляк, Полонский, Якир, Учебник

Номер 401,
Мерзляк, Полонский, Якир, Учебник

Номер 962,
Мерзляк, Полонский, Якир, Учебник

Номер 1036,
Мерзляк, Полонский, Якир, Учебник

Номер 1100,
Мерзляк, Полонский, Якир, Учебник

Задание 473,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 597,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 705,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 4,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник, часть 2

7 класс

Номер 259,
Мерзляк, Полонский, Якир, Учебник

Номер 315,
Мерзляк, Полонский, Якир, Учебник

Номер 316,
Мерзляк, Полонский, Якир, Учебник

Номер 480,
Мерзляк, Полонский, Якир, Учебник

Номер 906,
Мерзляк, Полонский, Якир, Учебник

Номер 1040,
Мерзляк, Полонский, Якир, Учебник

Номер 1071,
Мерзляк, Полонский, Якир, Учебник

Номер 1139,
Мерзляк, Полонский, Якир, Учебник

Номер 1,
Мерзляк, Полонский, Якир, Учебник

Номер 2,
Мерзляк, Полонский, Якир, Учебник

8 класс

Номер 2,
Мерзляк, Полонский, Якир, Учебник

Номер 3,
Мерзляк, Полонский, Якир, Учебник

Номер 4,
Мерзляк, Полонский, Якир, Учебник

Номер 46,
Мерзляк, Полонский, Якир, Учебник

Номер 47,
Мерзляк, Полонский, Якир, Учебник

Номер 229,
Мерзляк, Полонский, Якир, Учебник


В математике принято использовать свои обозначения. Запись условий задач с их помощью приводит к появлению так называемых математических выражений. Можно говорить про числовые, буквенные  выражения и математические выражения с переменными. Для удобства и одни, и вторые и третьи называются просто выражениями. В этой статье мы дадим определения и по порядку рассмотрим каждый тип математических выражений.

Числовые выражения

С самый первых уроков математики школьники начинают знакомство с числовыми выражениями. Выражение содержит числа, и действия над этими числами. Возьмем простейшие примеры для счета: 5+2; 3-8; 1+1. Все это — числовые выражения. Если выполнить действия, указанные в выражении, то получится его значение.

Конечно, числовые выражения содержат не только знаки «плюс» и «минус». Они могут включать деление и умножение, содержать скобки, степени, корни, логарифмы и состоять из нескольких действий.

Учитывая все сказанное, дадим определение. Что такое числовое выражение?

Определение. Числовое выражение

Числовые выражения — это комбинация чисел, арифметических действий, знаков дробных черт, корней, логарифмов, тригонометрических и других функций, а также скобок и иных математических символов. 

Числовым выражением считается только та комбинация, которая составлена с учетом математических правил.

Поясним данное определение.

Во-первых, числа. Математическое выражение может содержать любые числа. Это значит, что в математическом выражении можно встретить:

  • натуральные числа: 6, 173, 9,
  • целые числа: 18, 0, 64,
  • рациональные числа:
    обыкновенные дроби 13, 34,
    смешанные числа 618, 8957,
    периодические и непериодические десятичные дроби 9,78, 8,556
  • иррациональные числа: π, e, 
  • комплексные числа: i=-1.

Во-вторых, арифметические действия. то известные нам еще из курса начальной школы сложение, умножение, вычитание и деление. Знаки «+», «-«, «·» и «÷» могут присутствовать в выражении не один раз. Вот пример такого числового выражения: 12+4-3+3÷1·8·6÷2.

деление в выражениях может присутствовать как в виде знака, так и в виде дробной черты. 

Скобки в числовых выражениях

  • указывают порядок выполнения действий: 5-2,5+5*0,25;
  • используются для записи отрицательных чисел: 5+(-2);
  • отделяют аргумент функции: sinπ2-π3;
  • отделяют показатель степени: 2-1,32

Есть и специальные значения для записи скобок. Например, запись 1,75+2 означает, что к целой части числа 1,75прибавляется число 2. 

Согласно определению,  числовые выражения могут содержать степени, корни, логарифмы, тригонометрические и обратные тригонометрическим функции. Приведем пример такого числового выражения: 

В качестве примера использования в числовых выражениях специальных знаков, можно привести знак модуля. 

-225·6+-5-8·2

Буквенные выражения

После знакомства с числовыми выражениями можно вводить понятие буквенных выражений. Интуитивно понятно, что в них вместо чисел используются буквы. Но обо всем по порядку. 

Запишем числовое выражение, но вместо одного числа оставим пустой квадратик.

3+□

В квадратик мы можем вписать любое число. Например, 2, или 1032.

3+2; 3+1032.

Если условится записывать вместо числа в квадратике букву a, означающую данное число, то мы получим буквенное выражение:

3+a

Определение. Буквенное выражение

Выражение, в котором буквы заменяняют некоторые цифры, называется буквенным выражением. Буквенное выражение должно содержать по крайней мере одну букву.

Принципиальная разница числового и буквенного выражений в том, что первое не может содержать букв. В буквенных выражениях чаще всего используются маленькие буквы латинского алфавита a, b, c.. или маленькие греческие буквы α, β, γ.. и т.д.

Приведем пример сложного буквенного выражения.

x3+2-4·x5+4xy+8y238-4×2·arccosα+13×2+2y-1

Выражения с переменными

В рассмотренных выше буквенных выражениях буква обозначала какое-то конкретное числовое значение. Величина, которая может принимать ряд различных значений, называется переменной. Выражение с такой величиной, соответственно, называются выражением с переменной.

Определение. Выражения с переменными

Выражение с переменной — выражение, в котором все или некоторые буквы обозначают величины, принимающие различные значения.

Пусть переменная x  принимает натуральные значения из интервала от 0 до 10. Тогда выражения x2-1 есть выражение с переменной, а x — переменная в этом выражении.

В выражении может быть не одна, а несколько переменных. Например, при переменных x и yвыражение x3·y+y22-1 представляет собой выражение с двумя переменными.

Вообще буквенные выражения и выражения с переменными позволяют посмотреть на задачу вне контекста конкретных чисел, то есть более широко. Они широко используются в математическом анализе для формулировок и доказательств.

Внешний вид буквенного выражения не позволяет узнать, являются входящие в него буквы переменными, или нет. Для этого нужно знать условия конкретной задачи, описываемой выражением. Вне контекста ничто не мешает считать входящие в выражение буквы переменными. Таким образом, разница между понятиями «буквенное выражение» и «выражение с переменными» нивелируется.

Буквенные выражения

Буквенные выражения встречаются во многих формулировках. Различные выражения можно представить в виде букв и затем применять их для действий с числами. Также многие алгоритмы записаны с помощью буквенных выражений.

ОСНОВНЫЕ СВОЙСТВА СЛОЖЕНИЯ И УМНОЖЕНИЯ ЧИСЕЛ

  1. Переместительное свойство сложения – два числа можно складывать в любом порядке, то есть от перемены мест слагаемых сумма не меняется:

(a + b = b + a)

  1. Сочетательное свойство сложения – при сложении трех чисел можно группировать как первые два слагаемых, так и последние два:

(left( a + b right) + c = a + left( b + c right) = a + b + c)

  1. Переместительное свойство умножения – от перемены мест множителей произведение не меняется:

(ab = ba)

  1. Сочетательное свойство умножения – при умножении трех чисел можно группировать как первые два множителя, так и последние два:

(left( text{ab} right)c = aleft( text{bc} right) = abc)

  1. Распределительное свойство – при умножении суммы на число, нужно каждое слагаемое умножить на это число. Аналогично, для разности чисел:

(aleft( b + c right) = ab + ac)

(aleft( b — c right) = ab — ac)

Пример №1:

Чтобы умножить число 25 на 13, можно умножить 25 на сумму (10 + 3).

Решение:

Запишем эти рассуждения с помощью цепочки равенств:

(25 bullet 13 = 25 bullet left( 10 + 3 right) = 25 bullet 10 + 25 bullet 3 = 250 + 75 = 325)

Ответ: 325.

ПРЕОБРАЗОВАНИЕ БУКВЕННЫХ ВЫРАЖЕНИЯ

Преобразование буквенного выражения – это упрощение буквенного выражения, с помощью различных математических операций.

Исходное и преобразованное выражения будут называться тождественно равными или просто равными.

Правила преобразования буквенных выражений

1. В любой сумме слагаемые можно как угодно переставлять и объединять в группы произвольным образом.

Например, выражение (left( a + 11 right) + left( c — d + b right)) можно записать в виде (left( a + 11 right) + left( b — d right) + c)

Например,

Упростим выражение (2a + 3b + a — 5b + с)

Решение:

Данное выражение – сумма, состоящая из пяти слагаемых: (2a,3b,a , –5b и c)

Поменяем местами слагаемые в этой сумме:

(2a + 3b + a — 5b + c = 2a + a + 3b + left( — 5b right) + c)

Сгруппируем два слагаемых содержащих а и два слагаемых, содержащих (b):

(2a + a + 3b + left( — 5b right) + c = left( 2a + a right) + left( 3b + left( — 5b right) right) + c)

Выполним математические преобразования:

(left( 2a + a right) + left( 3b + left( — 5b right) right) + c = 3a — 2b + c)

2. В любом произведении множители можно как угодно переставлять и произвольным образом объединять в группы.

Например,

Упростим произведение( 7a bullet 3b)

Решение:

Посчитаем отдельно числа, а буквенные множители сгруппируем. Вначале запишем вначале произведение числовых множителей, а затем буквенные множители:

(7a bullet 3b = 7 bullet 3 bullet ab = 21ab)

Число, умноженное на буквенный множитель, называют коэффициентом этого произведения. Так в выражении (21text{ab}), числовой множитель 21 является коэффициентом.

Коэффициент равный 1 обычно не пишут, а вместо (- 1) обычно оставляют просто «-». Например, (left( — 1 right) bullet x = — x)

РАСКРЫТИЕ СКОБОК

Из буквенных выражений с помощью знаков действий и скобок можно составить другое буквенное выражение. Например, рассмотри два выражения (5a и 4b — 1). Тогда

(5a + ( 4b — 1)) – сумма выражений (5a и 4b — 1),

(5a — ( 4b — 1)) – разность выражений (5a и 4b — 1),

(5a( 4b — 1)) – произведение выражений (5a и 4b — 1).

Правила раскрытия скобок:

1. Чтобы раскрыть скобки, перед которыми стоит знак (« + » )необходимо просто переписать выражение с сохранением всех знаков перед слагаемыми (можно просто убрать скобки):

(5a + ( 4b — 1) = 5a + 4b — 1)

2. Чтобы раскрыть скобки, перед которыми стоит знак «-» необходимо поменять у каждого слагаемого внутри скобок знак на противоположный:

(5a — left( 4b — 1 right) = 5a + left( left( — 1 right) bullet left( 4b — 1 right) right) = 5a + left( — 4b + 1 right) = 5a — 4b + 1)

3. Чтобы умножить выражение на скобку, необходимо каждое слагаемое внутри скобки умножить на выражение, стоящее перед скобкой и результат сложить:

(5a( 4b — 1) = 5aleft( 4b + left( — 1 right) right) = 5a bullet 4b + 5a bullet left( — 1 right) = 20ab + left( — 5a right) = 20ab — 5a)

ПРИВЕДЕНИЕ ПОДОБНЫХ СЛАГАЕМЫХ

Подобные слагаемые – слагаемые с одинаковой буквенной частью.

Приведение подобных слагаемых – это группировка и сложение подобных слагаемых с целью упрощения буквенного выражения.

Алгоритм приведения подобных слагаемых:

— выделить и сгруппировать подобные слагаемые в выражении;

— сложить коэффициенты выделенных подобных слагаемых;

— умножить полученную сумму на их общую буквенную часть.

Пример №2:

Упростить выражение (5x + 9y + 3y — 11x).

Решение:

У слагаемых (5x), (- 11x) и одна и та же буквенная часть x, следовательно, они являются подобными. Аналогично для( 9y), (3y) общая буквенная часть y.

Сгруппируем эти слагаемые:

(mathbf{5}mathbf{x} + 9y + 3ymathbf{- 11}mathbf{x} = left( mathbf{5}mathbf{x}mathbf{- 11}mathbf{x} right) + left( 9y + 3y right))

Сложим коэффициенты подобных слагаемых в каждой скобке:

(left( mathbf{5}mathbf{x — 11}mathbf{x} right) + left( 9y + 3y right) = mathbf{- 6}mathbf{x} + 12y)

Понравилась статья? Поделить с друзьями:
  • Как пишется буквами 777
  • Как пишется буквами 636
  • Как пишется буквами 600 000
  • Как пишется бытовая характеристика на семью
  • Как пишется быстросъемный