Как пишется число авогадро

Число Авогадро — это число частиц в одном моле любого вещества (атомов, молекул, ионов и др.), т. е. молекулярная масса в граммах и примерно равно 6,02214076 ⋅ 10²³ моль⁻¹. Ещё число Авога́дро называется постоянная Авогадро или константа Авогадро.

Более кратко это число может обозначаться как 6,02 ⋅ 10²³, например: 1 моль железа (Fe) содержит 6,02 · 10²³ атомов Fe.

Моль — это стандартная единица измерения в химии, которая позволяет взвешивать два вещества, таким образом, что получается равное количество атомов (молекул или др.) в обоих веществах.

Обычно число Авогадро обозначается как Число Авогадроили L.

Чему равен 1 моль?

В одном моле 6,02·10²³ молекул (это число Авогадро).

Что показывает постоянная Авогадро?

Это количество молекул (атомов или др.) вещества на моль. Иногда требуется узнать количество молекул (атомов или др.), которые принимают участие в химической реакции.

Моль — это стандартная единица измерения количества вещества, в котором есть столько же частиц, сколько атомов в 12 г. углерода. Это количество равно постоянной Авогадро, т. е. примерно 6,02 · 10²³ атомов на моль.

Формулы Авогадро

(Формулы Авогадро, формула числа молекул,  количество вещества, молярная масса, число Авогадро, na n)

(Формулы Авогадро, формула числа молекул,  количество вещества, молярная масса, число Авогадро, na n)

Закон Авогадро

Два газа, взятые в равных объёмах и при одинаковой температуре и давлении, будут иметь одинаковое число молекул (этот закон работает только для газов).

Следствие о молекулярном весе

При равных объёмах любые газы вмещают одинаковое число молекул, следовательно, молекулярный вес (m) газа будет пропорционален его плотности (d):

m = k · d, (где k – коэффициент пропорциональности).

При одинаковых температурах и давлении объем газа (V) прямо пропорционален количеству газа (n):

V / n = k, (где k – коэффициент пропорциональности).

Следствие о молекулярном объёме

При одинаковых температурах и давлении, равное число молекул двух разных газов займут одинаковый объём:

Можно определить количество газообразного вещества (n), поделив объём газа (V) на молярный объём (Vm).

Можно определить количество газообразного вещества (n), поделив объём газа (V) на молярный объём (Vm).

Следствие о молекулярной плотности

ρ = m / V, где ρ — плотность, m — масса, V — объём.

Эта формула, при нормальных условиях и 1 моль газа выглядит таким образом:

Чтобы получить относительную плотность газа (Р (газа)), нужно поделить молярную массу газа (M) на молярный объём (Vm).

Чтобы получить относительную плотность газа (ρ (газа)), нужно поделить молярную массу газа (M) на молярный объём (Vm).

Смотрите также Числа Фибоначчи и Натуральные числа.

This is a good article. Click here for more information.

From Wikipedia, the free encyclopedia

Avogadro constant
Amadeo Avogadro.png

Amedeo Avogadro, the constant’s namesake

Common symbols

NA, L
SI unit mol−1
Exact value
mole (unit) 6.02214076×1023

The Avogadro constant, commonly denoted NA[1] or L,[2] is the proportionality factor that relates the number of constituent particles (usually molecules, atoms or ions) in a sample with the amount of substance in that sample. It is an SI defining constant with an exact value of 6.02214076×1023 reciprocal moles.[3][4] It is named after the Italian scientist Amedeo Avogadro[5] by Stanislao Cannizzaro, who explained this number four years after Avogadro’s death while at the Karlsruhe Congress in 1860.[6]

The numeric value of the Avogadro constant expressed in reciprocal moles, a dimensionless number, is called the Avogadro’s number.[7] In older literature, the Avogadro number is denoted N[8][9] or N0,[10][11] which is the number of particles that are contained in one mole, exactly 6.02214076×1023.[3]

The Avogadro number is the approximate number of nucleons (protons and neutrons) in one gram of ordinary matter. The value of the Avogadro constant was chosen so that the mass of one mole of a chemical compound, expressed in grams, is approximately the number of nucleons in one constituent particle of the substance. It is numerically equal (for all practical purposes) to the average mass of one molecule (or atom) of a compound in daltons (unified atomic mass units); one dalton being 1/12 of the mass of one carbon-12 atom. For example, the average mass of one molecule of water is about 18.0153 daltons, and one mole of water (N molecules) is about 18.0153 grams. Thus, the Avogadro constant NA is the proportionality factor that relates the molar mass of a substance to the average mass of one molecule.[12]

The Avogadro constant also relates the molar volume of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about 18 mL/mol, the volume occupied by one molecule of water is about 18/6.022×10−23 mL, or about 30 Å3 (cubic angstroms). For a crystalline substance, it similarly relates its molar volume (in mol/mL), the volume of the repeating unit cell of the crystals (in mL), to the number of molecules in that cell.

The Avogadro number (or constant) has been defined in many different ways through its long history. Its approximate value was first determined, indirectly, by Josef Loschmidt in 1865.[13] (Avogadro’s number is closely related to the Loschmidt constant, and the two concepts are sometimes confused.) It was initially defined by Jean Perrin as the number of atoms in 16 grams of oxygen.[5] It was later redefined in the 14th conference of the International Bureau of Weights and Measures (BIPM) as the number of atoms in 12 grams of the isotope carbon-12 (12C).[14] In each case, the mole was defined as the quantity of a substance that contained the same number of atoms as those reference samples. In particular, when carbon-12 was the reference, one mole of carbon-12 was exactly 12 grams of the element.

These definitions meant that the value of the Avogadro number depended on the experimentally determined value of the mass (in grams) of one atom of those elements, and therefore it was known only to a limited number of decimal digits. However, in its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro number N as the exact value 6.02214076×1023, and redefined the mole as the amount of a substance under consideration that contains N constituent particles of the substance. Under the new definition, the mass of one mole of any substance (including hydrogen, carbon-12, and oxygen-16) is N times the average mass of one of its constituent particles – a physical quantity whose precise value has to be determined experimentally for each substance.

History[edit]

Origin of the concept[edit]

The Avogadro constant is named after the Italian scientist Amedeo Avogadro (1776–1856), who, in 1811, first proposed that the volume of a gas (at a given pressure and temperature) is proportional to the number of atoms or molecules regardless of the nature of the gas.[15]

The name Avogadro’s number was coined in 1909 by the physicist Jean Perrin, who defined it as the number of molecules in exactly 16 grams of oxygen.[5] The goal of this definition was to make the mass of a mole of a substance, in grams, be numerically equal to the mass of one molecule relative to the mass of the hydrogen atom; which, because of the law of definite proportions, was the natural unit of atomic mass, and was assumed to be 1/16 of the atomic mass of oxygen.

First measurements[edit]

The value of Avogadro’s number (not yet known by that name) was first obtained indirectly by Josef Loschmidt in 1865, by estimating the number of particles in a given volume of gas.[13] This value, the number density n0 of particles in an ideal gas, is now called the Loschmidt constant in his honor, and is related to the Avogadro constant, NA, by

{displaystyle n_{0}={frac {p_{0}N_{rm {A}}}{R,T_{0}}}},

where p0 is the pressure, R is the gas constant, and T0 is the absolute temperature. Because of this work, the symbol L is sometimes used for the Avogadro constant,[16] and, in German literature, that name may be used for both constants, distinguished only by the units of measurement.[17] (However, NA should not be confused with the entirely different Loschmidt constant in English-language literature.)

Perrin himself determined Avogadro’s number by several different experimental methods. He was awarded the 1926 Nobel Prize in Physics, largely for this work.[18]

The electric charge per mole of electrons is a constant called the Faraday constant and has been known since 1834, when Michael Faraday published his works on electrolysis. In 1910, Robert Millikan with the help of Harvey Fletcher obtained the first measurement of the charge on an electron. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number.[19]

SI definition of 1971[edit]

In 1971, the International Bureau of Weights and Measures (BIPM) decided to regard the amount of substance as an independent dimension of measurement, with the mole as its base unit in the International System of Units (SI).[16] Specifically, the mole was defined as an amount of a substance that contains as many elementary entities as there are atoms in 0.012 kilograms of carbon-12.

By this definition, the common rule of thumb that «one gram of matter contains N0 nucleons» was exact for carbon-12, but slightly inexact for other elements and isotopes. On the other hand, one mole of any substance contained exactly as many molecules as one mole of any other substance.

As a consequence of this definition, in the SI system the Avogadro constant NA had the dimensionality of reciprocal of amount of substance rather than of a pure number, and had the approximate value 6.02×1023 with units of mol−1.[16] By this definition, the value of NA inherently had to be determined experimentally.

The BIPM also named NA the «Avogadro constant«, but the term «Avogadro number» continued to be used especially in introductory works.[20]

SI redefinition of 2019[edit]

In 2017, the BIPM decided to change the definitions of mole and amount of substance.[21][3] The mole was redefined as being the amount of substance containing exactly 6.02214076×1023 elementary entities. One consequence of this change is that the mass of a mole of 12C atoms is no longer exactly 0.012 kg. On the other hand, the dalton (a.k.a. universal atomic mass unit) remains unchanged as 1/12 of the mass of 12C.[22][23] Thus, the molar mass constant is no longer exactly 1 g/mol, although the difference (4.5×10−10 in relative terms, as of March 2019) is insignificant for practical purposes.[3][1]

Connection to other constants[edit]

The Avogadro constant NA is related to other physical constants and properties.

  • It relates the molar gas constant R and the Boltzmann constant kB, which in the SI is defined to be exactly 1.380649×10−23 J/K:[3]
    R = kB NA = 8.314462618… J⋅mol−1⋅K−1
  • It relates the Faraday constant F and the elementary charge e, which in the SI is defined as exactly 1.602176634×10−19 coulombs:[3]
    F = e NA = 9.648533212×104 C⋅mol−1
  • It relates the molar mass constant Mu and the atomic mass constant mu currently 1.66053906660(50)×10−27 kg:[24]
    Mu = mu NA = 0.99999999965(30)×10−3 kg⋅mol−1
  • σ = 1 / {NA }[25]

See also[edit]

  • Mole Day
  • CODATA 2018

References[edit]

  1. ^ a b Bureau International des Poids et Mesures (2019): The International System of Units (SI), 9th edition, English version, page 134. Available at the BIPM website.
  2. ^ H. P. Lehmann, X. Fuentes-Arderiu, and L. F. Bertello (1996): «Glossary of terms in quantities and units in Clinical Chemistry (IUPAC-IFCC Recommendations 1996)»; page 963, item «Avogadro constant». Pure and Applied Chemistry, volume 68, issue 4, pages 957–1000. doi:10.1351/pac199668040957
  3. ^ a b c d e f Newell, David B.; Tiesinga, Eite (2019). «The International System of Units (SI)». Nist. NIST Special Publication 330. Gaithersburg, Maryland: National Institute of Standards and Technology. doi:10.6028/nist.sp.330-2019. S2CID 242934226.
  4. ^ de Bievre, P.; Peiser, H. S. (1992). «Atomic Weight: The Name, Its History, Definition and Units». Pure and Applied Chemistry. 64 (10): 1535–1543. doi:10.1351/pac199264101535. S2CID 96317287.
  5. ^ a b c Perrin, Jean (1909). «Mouvement brownien et réalité moléculaire». Annales de Chimie et de Physique. 8e Série. 18: 1–114. Extract in English, translation by Frederick Soddy.
  6. ^ «Stanislao Cannizzaro | Science History Institute». Science History Institute. June 2016. Retrieved 2 June 2022.
  7. ^ «Avogadro’s number». Encyclopedia Britannica. Retrieved 26 February 2023.
  8. ^ Linus Pauling (1970), General Chemistry, page 96. Dover Edition, reprinted by Courier in 2014; 992 pages. ISBN 9780486134659
  9. ^ Marvin Yelles (1971): McGraw-Hill Encyclopedia of Science and Technology, Volume 9, 3rd edition; 707 pages. ISBN 9780070797987
  10. ^ Richard P. Feynman: The Feynman Lectures on Physics, Volume II
  11. ^ Max Born (1969): Atomic Physics, 8th Edition. Dover edition, reprinted by Courier in 2013; 544 pages. ISBN 9780486318585
  12. ^ Okun, Lev B.; Lee, A. G. (1985). Particle Physics: The Quest for the Substance of Substance. OPA Ltd. p. 86. ISBN 978-3-7186-0228-5.
  13. ^ a b Loschmidt, J. (1865). «Zur Grösse der Luftmoleküle». Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Wien. 52 (2): 395–413. English translation.
  14. ^ International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), pp. 114–15, ISBN 92-822-2213-6, archived (PDF) from the original on 4 June 2021, retrieved 16 December 2021
  15. ^ Avogadro, Amedeo (1811). «Essai d’une maniere de determiner les masses relatives des molecules elementaires des corps, et les proportions selon lesquelles elles entrent dans ces combinaisons». Journal de Physique. 73: 58–76. English translation.
  16. ^ a b c Bureau International des Poids et Mesures (1971): 14th Conference Générale des Poids et Mesures Archived 2020-09-23 at the Wayback Machine Available at the BIPM website.
  17. ^ Virgo, S.E. (1933). «Loschmidt’s Number». Science Progress. 27: 634–649. Archived from the original on 4 April 2005.
  18. ^ Oseen, C.W. (December 10, 1926). Presentation Speech for the 1926 Nobel Prize in Physics.
  19. ^ (1974): Introduction to the constants for nonexperts, 1900–1920 From the Encyclopaedia Britannica, 15th edition; reproduced by NIST. Accessed on 2019-07-03.
  20. ^ Kotz, John C.; Treichel, Paul M.; Townsend, John R. (2008). Chemistry and Chemical Reactivity (7th ed.). Brooks/Cole. ISBN 978-0-495-38703-9. Archived from the original on 16 October 2008.
  21. ^ International Bureau for Weights and Measures (2017): Proceedings of the 106th meeting of the International Committee for Weights and Measures (CIPM), 16-17 and 20 October 2017, page 23. Available at the BIPM website Archived 2021-02-21 at the Wayback Machine.
  22. ^ Pavese, Franco (January 2018). «A possible draft of the CGPM Resolution for the revised SI, compared with the CCU last draft of the 9th SI Brochure». Measurement. 114: 478–483. Bibcode:2018Meas..114..478P. doi:10.1016/j.measurement.2017.08.020. ISSN 0263-2241.
  23. ^ «Unified atomic mass unit». The IUPAC Compendium of Chemical Terminology. 2014. doi:10.1351/goldbook.U06554.
  24. ^ «2018 CODATA Value: atomic mass constant». The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 20 May 2019.
  25. ^ Brown, Richard J. C. (10 April 2019). «Future requirements for non-decimal unit prefixes in chemical measurement». Accreditation and Quality Assurance [de]. 24 (3): 245–247. doi:10.1007/s00769-019-01374-y. S2CID 146005120. Archived from the original on 20 December 2022. Retrieved 20 December 2022.

External links[edit]

  • 1996 definition of the Avogadro constant from the IUPAC Compendium of Chemical TerminologyGold Book«)
  • Some Notes on Avogadro’s Number, 6.022×1023 (historical notes)
  • An Exact Value for Avogadro’s Number – American Scientist
  • Avogadro and molar Planck constants for the redefinition of the kilogram
  • Murrell, John N. (2001). «Avogadro and His Constant». Helvetica Chimica Acta. 84 (6): 1314–1327. doi:10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q.
  • Scanned version of «Two hypothesis of Avogadro», 1811 Avogadro’s article, on BibNum

This is a good article. Click here for more information.

From Wikipedia, the free encyclopedia

Avogadro constant
Amadeo Avogadro.png

Amedeo Avogadro, the constant’s namesake

Common symbols

NA, L
SI unit mol−1
Exact value
mole (unit) 6.02214076×1023

The Avogadro constant, commonly denoted NA[1] or L,[2] is the proportionality factor that relates the number of constituent particles (usually molecules, atoms or ions) in a sample with the amount of substance in that sample. It is an SI defining constant with an exact value of 6.02214076×1023 reciprocal moles.[3][4] It is named after the Italian scientist Amedeo Avogadro[5] by Stanislao Cannizzaro, who explained this number four years after Avogadro’s death while at the Karlsruhe Congress in 1860.[6]

The numeric value of the Avogadro constant expressed in reciprocal moles, a dimensionless number, is called the Avogadro’s number.[7] In older literature, the Avogadro number is denoted N[8][9] or N0,[10][11] which is the number of particles that are contained in one mole, exactly 6.02214076×1023.[3]

The Avogadro number is the approximate number of nucleons (protons and neutrons) in one gram of ordinary matter. The value of the Avogadro constant was chosen so that the mass of one mole of a chemical compound, expressed in grams, is approximately the number of nucleons in one constituent particle of the substance. It is numerically equal (for all practical purposes) to the average mass of one molecule (or atom) of a compound in daltons (unified atomic mass units); one dalton being 1/12 of the mass of one carbon-12 atom. For example, the average mass of one molecule of water is about 18.0153 daltons, and one mole of water (N molecules) is about 18.0153 grams. Thus, the Avogadro constant NA is the proportionality factor that relates the molar mass of a substance to the average mass of one molecule.[12]

The Avogadro constant also relates the molar volume of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about 18 mL/mol, the volume occupied by one molecule of water is about 18/6.022×10−23 mL, or about 30 Å3 (cubic angstroms). For a crystalline substance, it similarly relates its molar volume (in mol/mL), the volume of the repeating unit cell of the crystals (in mL), to the number of molecules in that cell.

The Avogadro number (or constant) has been defined in many different ways through its long history. Its approximate value was first determined, indirectly, by Josef Loschmidt in 1865.[13] (Avogadro’s number is closely related to the Loschmidt constant, and the two concepts are sometimes confused.) It was initially defined by Jean Perrin as the number of atoms in 16 grams of oxygen.[5] It was later redefined in the 14th conference of the International Bureau of Weights and Measures (BIPM) as the number of atoms in 12 grams of the isotope carbon-12 (12C).[14] In each case, the mole was defined as the quantity of a substance that contained the same number of atoms as those reference samples. In particular, when carbon-12 was the reference, one mole of carbon-12 was exactly 12 grams of the element.

These definitions meant that the value of the Avogadro number depended on the experimentally determined value of the mass (in grams) of one atom of those elements, and therefore it was known only to a limited number of decimal digits. However, in its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro number N as the exact value 6.02214076×1023, and redefined the mole as the amount of a substance under consideration that contains N constituent particles of the substance. Under the new definition, the mass of one mole of any substance (including hydrogen, carbon-12, and oxygen-16) is N times the average mass of one of its constituent particles – a physical quantity whose precise value has to be determined experimentally for each substance.

History[edit]

Origin of the concept[edit]

The Avogadro constant is named after the Italian scientist Amedeo Avogadro (1776–1856), who, in 1811, first proposed that the volume of a gas (at a given pressure and temperature) is proportional to the number of atoms or molecules regardless of the nature of the gas.[15]

The name Avogadro’s number was coined in 1909 by the physicist Jean Perrin, who defined it as the number of molecules in exactly 16 grams of oxygen.[5] The goal of this definition was to make the mass of a mole of a substance, in grams, be numerically equal to the mass of one molecule relative to the mass of the hydrogen atom; which, because of the law of definite proportions, was the natural unit of atomic mass, and was assumed to be 1/16 of the atomic mass of oxygen.

First measurements[edit]

The value of Avogadro’s number (not yet known by that name) was first obtained indirectly by Josef Loschmidt in 1865, by estimating the number of particles in a given volume of gas.[13] This value, the number density n0 of particles in an ideal gas, is now called the Loschmidt constant in his honor, and is related to the Avogadro constant, NA, by

{displaystyle n_{0}={frac {p_{0}N_{rm {A}}}{R,T_{0}}}},

where p0 is the pressure, R is the gas constant, and T0 is the absolute temperature. Because of this work, the symbol L is sometimes used for the Avogadro constant,[16] and, in German literature, that name may be used for both constants, distinguished only by the units of measurement.[17] (However, NA should not be confused with the entirely different Loschmidt constant in English-language literature.)

Perrin himself determined Avogadro’s number by several different experimental methods. He was awarded the 1926 Nobel Prize in Physics, largely for this work.[18]

The electric charge per mole of electrons is a constant called the Faraday constant and has been known since 1834, when Michael Faraday published his works on electrolysis. In 1910, Robert Millikan with the help of Harvey Fletcher obtained the first measurement of the charge on an electron. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number.[19]

SI definition of 1971[edit]

In 1971, the International Bureau of Weights and Measures (BIPM) decided to regard the amount of substance as an independent dimension of measurement, with the mole as its base unit in the International System of Units (SI).[16] Specifically, the mole was defined as an amount of a substance that contains as many elementary entities as there are atoms in 0.012 kilograms of carbon-12.

By this definition, the common rule of thumb that «one gram of matter contains N0 nucleons» was exact for carbon-12, but slightly inexact for other elements and isotopes. On the other hand, one mole of any substance contained exactly as many molecules as one mole of any other substance.

As a consequence of this definition, in the SI system the Avogadro constant NA had the dimensionality of reciprocal of amount of substance rather than of a pure number, and had the approximate value 6.02×1023 with units of mol−1.[16] By this definition, the value of NA inherently had to be determined experimentally.

The BIPM also named NA the «Avogadro constant«, but the term «Avogadro number» continued to be used especially in introductory works.[20]

SI redefinition of 2019[edit]

In 2017, the BIPM decided to change the definitions of mole and amount of substance.[21][3] The mole was redefined as being the amount of substance containing exactly 6.02214076×1023 elementary entities. One consequence of this change is that the mass of a mole of 12C atoms is no longer exactly 0.012 kg. On the other hand, the dalton (a.k.a. universal atomic mass unit) remains unchanged as 1/12 of the mass of 12C.[22][23] Thus, the molar mass constant is no longer exactly 1 g/mol, although the difference (4.5×10−10 in relative terms, as of March 2019) is insignificant for practical purposes.[3][1]

Connection to other constants[edit]

The Avogadro constant NA is related to other physical constants and properties.

  • It relates the molar gas constant R and the Boltzmann constant kB, which in the SI is defined to be exactly 1.380649×10−23 J/K:[3]
    R = kB NA = 8.314462618… J⋅mol−1⋅K−1
  • It relates the Faraday constant F and the elementary charge e, which in the SI is defined as exactly 1.602176634×10−19 coulombs:[3]
    F = e NA = 9.648533212×104 C⋅mol−1
  • It relates the molar mass constant Mu and the atomic mass constant mu currently 1.66053906660(50)×10−27 kg:[24]
    Mu = mu NA = 0.99999999965(30)×10−3 kg⋅mol−1
  • σ = 1 / {NA }[25]

See also[edit]

  • Mole Day
  • CODATA 2018

References[edit]

  1. ^ a b Bureau International des Poids et Mesures (2019): The International System of Units (SI), 9th edition, English version, page 134. Available at the BIPM website.
  2. ^ H. P. Lehmann, X. Fuentes-Arderiu, and L. F. Bertello (1996): «Glossary of terms in quantities and units in Clinical Chemistry (IUPAC-IFCC Recommendations 1996)»; page 963, item «Avogadro constant». Pure and Applied Chemistry, volume 68, issue 4, pages 957–1000. doi:10.1351/pac199668040957
  3. ^ a b c d e f Newell, David B.; Tiesinga, Eite (2019). «The International System of Units (SI)». Nist. NIST Special Publication 330. Gaithersburg, Maryland: National Institute of Standards and Technology. doi:10.6028/nist.sp.330-2019. S2CID 242934226.
  4. ^ de Bievre, P.; Peiser, H. S. (1992). «Atomic Weight: The Name, Its History, Definition and Units». Pure and Applied Chemistry. 64 (10): 1535–1543. doi:10.1351/pac199264101535. S2CID 96317287.
  5. ^ a b c Perrin, Jean (1909). «Mouvement brownien et réalité moléculaire». Annales de Chimie et de Physique. 8e Série. 18: 1–114. Extract in English, translation by Frederick Soddy.
  6. ^ «Stanislao Cannizzaro | Science History Institute». Science History Institute. June 2016. Retrieved 2 June 2022.
  7. ^ «Avogadro’s number». Encyclopedia Britannica. Retrieved 26 February 2023.
  8. ^ Linus Pauling (1970), General Chemistry, page 96. Dover Edition, reprinted by Courier in 2014; 992 pages. ISBN 9780486134659
  9. ^ Marvin Yelles (1971): McGraw-Hill Encyclopedia of Science and Technology, Volume 9, 3rd edition; 707 pages. ISBN 9780070797987
  10. ^ Richard P. Feynman: The Feynman Lectures on Physics, Volume II
  11. ^ Max Born (1969): Atomic Physics, 8th Edition. Dover edition, reprinted by Courier in 2013; 544 pages. ISBN 9780486318585
  12. ^ Okun, Lev B.; Lee, A. G. (1985). Particle Physics: The Quest for the Substance of Substance. OPA Ltd. p. 86. ISBN 978-3-7186-0228-5.
  13. ^ a b Loschmidt, J. (1865). «Zur Grösse der Luftmoleküle». Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Wien. 52 (2): 395–413. English translation.
  14. ^ International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), pp. 114–15, ISBN 92-822-2213-6, archived (PDF) from the original on 4 June 2021, retrieved 16 December 2021
  15. ^ Avogadro, Amedeo (1811). «Essai d’une maniere de determiner les masses relatives des molecules elementaires des corps, et les proportions selon lesquelles elles entrent dans ces combinaisons». Journal de Physique. 73: 58–76. English translation.
  16. ^ a b c Bureau International des Poids et Mesures (1971): 14th Conference Générale des Poids et Mesures Archived 2020-09-23 at the Wayback Machine Available at the BIPM website.
  17. ^ Virgo, S.E. (1933). «Loschmidt’s Number». Science Progress. 27: 634–649. Archived from the original on 4 April 2005.
  18. ^ Oseen, C.W. (December 10, 1926). Presentation Speech for the 1926 Nobel Prize in Physics.
  19. ^ (1974): Introduction to the constants for nonexperts, 1900–1920 From the Encyclopaedia Britannica, 15th edition; reproduced by NIST. Accessed on 2019-07-03.
  20. ^ Kotz, John C.; Treichel, Paul M.; Townsend, John R. (2008). Chemistry and Chemical Reactivity (7th ed.). Brooks/Cole. ISBN 978-0-495-38703-9. Archived from the original on 16 October 2008.
  21. ^ International Bureau for Weights and Measures (2017): Proceedings of the 106th meeting of the International Committee for Weights and Measures (CIPM), 16-17 and 20 October 2017, page 23. Available at the BIPM website Archived 2021-02-21 at the Wayback Machine.
  22. ^ Pavese, Franco (January 2018). «A possible draft of the CGPM Resolution for the revised SI, compared with the CCU last draft of the 9th SI Brochure». Measurement. 114: 478–483. Bibcode:2018Meas..114..478P. doi:10.1016/j.measurement.2017.08.020. ISSN 0263-2241.
  23. ^ «Unified atomic mass unit». The IUPAC Compendium of Chemical Terminology. 2014. doi:10.1351/goldbook.U06554.
  24. ^ «2018 CODATA Value: atomic mass constant». The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 20 May 2019.
  25. ^ Brown, Richard J. C. (10 April 2019). «Future requirements for non-decimal unit prefixes in chemical measurement». Accreditation and Quality Assurance [de]. 24 (3): 245–247. doi:10.1007/s00769-019-01374-y. S2CID 146005120. Archived from the original on 20 December 2022. Retrieved 20 December 2022.

External links[edit]

  • 1996 definition of the Avogadro constant from the IUPAC Compendium of Chemical TerminologyGold Book«)
  • Some Notes on Avogadro’s Number, 6.022×1023 (historical notes)
  • An Exact Value for Avogadro’s Number – American Scientist
  • Avogadro and molar Planck constants for the redefinition of the kilogram
  • Murrell, John N. (2001). «Avogadro and His Constant». Helvetica Chimica Acta. 84 (6): 1314–1327. doi:10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q.
  • Scanned version of «Two hypothesis of Avogadro», 1811 Avogadro’s article, on BibNum

Евгений Мейлихов,
доктор физико-математических наук
«Наука и жизнь» №4, 2017

Итальянский учёный Амедео Авогадро — современник А. С. Пушкина — был первым, кто понял, что количество атомов (молекул) в одном грамм-атоме (моле) вещества одинаково для всех веществ. Знание же этого числа открывает путь к оценке размеров атомов (молекул). При жизни Авогадро его гипотеза не получила должного признания. Истории числа Авогадро посвящена новая книга Евгения Залмановича Мейлихова, профессора МФТИ, главного научного сотрудника НИЦ «Курчатовский институт».

Если бы в результате какой-либо мировой катастрофы все накопленные знания оказались бы уничтоженными и к грядущим поколениям живых существ пришла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что это — атомная гипотеза: <…> все тела состоят из атомов — маленьких телец, находящихся в беспрерывном движении.

Р. Фейнман, «Фейнмановские лекции по физике»

Число Авогадро (константа Авогадро, постоянная Авогадро) определяется как количество атомов в 12 граммах чистого изотопа углерода-12 (12C). Обозначается оно обычно как NA, реже L. Значение числа Авогадро, рекомендованное CODATA (рабочая группа по фундаментальным постоянным) в 2015 году: NA = 6,02214082(11) · 1023 моль−1. Моль — это количество вещества, которое содержит NA структурных элементов (то есть столько же элементов, сколько атомов содержится в 12 г 12C), причем структурными элементами обычно являются атомы, молекулы, ионы и др. По определению атомная единицы массы (а. е. м.) равна 1/12 массы атома 12C. Один моль (грамм-моль) вещества имеет массу (молярную массу), которая, будучи выраженной в граммах, численно равна молекулярной массе этого вещества (выраженной в атомных единицах массы). Например: 1 моль натрия имеет массу 22,9898 г и содержит (примерно) 6,02 · 1023 атомов, 1 моль фторида кальция CaF2 имеет массу (40,08 + 2 · 18,998) = 78,076 г и содержит (примерно) 6,02 · 1023 молекул.

Обложка книги Е. З. Мейлихова «Число Авогадро. Как увидеть атом»

В конце 2011 года на XXIV Генеральной конференции по мерам и весам единогласно принято предложение определить моль в будущей версии Международной системы единиц (СИ) таким образом, чтобы избежать его привязки к определению грамма. Предполагается, что в 2018 году моль будет определён непосредственно числом Авогадро, которому будет приписано точное (без погрешности) значение, базирующееся на результатах измерений, рекомендованных CODATA. Пока же число Авогадро является не принимаемой по определению, а измеряемой величиной.

Эта константа названа в честь известного итальянского химика Амедео Авогадро (1776–1856), который хотя сам этого числа и не знал, но понимал, что это очень большая величина. На заре развития атомной теории Авогадро выдвинул гипотезу (1811 год), согласно которой при одинаковых температуре и давлении в равных объёмах идеальных газов содержится одинаковое число молекул. Позже было показано, что эта гипотеза есть следствие кинетической теории газов, и сейчас она известна как закон Авогадро. Его можно сформулировать так: один моль любого газа при одинаковых температуре и давлении занимает один и тот же объём, при нормальных условиях равный 22,41383 л (нормальным условиям соответствуют давление P0 = 1 атм и температура T0 = 273,15 К). Эта величина известна как молярный объём газа.

Первую попытку найти число молекул, занимающих данный объём, предпринял в 1865 году Й. Лошмидт. Из его вычислений следовало, что количество молекул в единице объёма воздуха равно 1,8 · 1018 см−3, что, как оказалось, примерно в 15 раз меньше правильного значения. Через восемь лет Дж. Максвелл привёл гораздо более близкую к истине оценку — 1,9 · 1019 см−3. Наконец в 1908 году Перрен даёт уже приемлемую оценку: NA = 6,8 · 1023 моль−1 числа Авогадро, найденную из экспериментов по броуновскому движению.

С тех пор было разработано большое число независимых методов определения числа Авогадро, и более точные измерения показали, что в действительности в 1 см3 идеального газа при нормальных условиях содержится (примерно) 2,69 · 1019 молекул. Эта величина называется числом (или постоянной) Лошмидта. Ей соответствует число Авогадро NA ≈ 6,02 · 1023.

Число Авогадро — одна из важных физических постоянных, сыгравших большую роль в развитии естественных наук. Но является ли она «универсальной (фундаментальной) физической постоянной»? Сам этот термин не определён и обычно ассоциируется с более или менее подробной таблицей числовых значений физических констант, которые следует использовать при решении задач. В связи с этим фундаментальными физическими постоянными зачастую считаются те величины, которые не являются константами природы и обязаны своим существованием всего лишь выбранной системе единиц (таковы, например, магнитная и электрическая постоянные вакуума) или условным международным соглашениям (такова, например, атомная единица массы). В число фундаментальных констант часто включают многие производные величины (например, газовую постоянную R, классический радиус электрона re = e2 / mec2 и т. п.) или, как в случае с молярным объёмом, значение некоторого физического параметра, относящегося к специфическим экспериментальным условиям, которые выбраны лишь из соображений удобства (давление 1 атм и температура 273,15 К). С этой точки зрения число Авогадро есть истинно фундаментальная константа.

Истории и развитию методов определения этого числа и посвящена настоящая книга. Эпопея длилась около 200 лет и на разных этапах была связана с многообразными физическими моделями и теориями, многие из которых не потеряли актуальности и по сей день. К этой истории приложили руку самые светлые научные умы — достаточно назвать А. Авогадро, Й. Лошмидта, Дж. Максвелла, Ж. Перрена, А. Эйнштейна, М. Смолуховского. Список можно было бы и продолжить…

Автор должен признаться, что идея книги принадлежит не ему, а Льву Фёдоровичу Соловейчику — его однокашнику по Московскому физико-техническому институту, человеку, который занимался прикладными исследованиями и разработками, но в душе остался физиком-романтиком. Это человек, который (один из немногих) продолжает «и в наш жестокий век» бороться за настоящее «высшее» физическое образование в России, ценит и в меру сил пропагандирует красоту и изящество физических идей. Известно, что из сюжета, который А. С. Пушкин подарил Н. В. Гоголю, возникла гениальная комедия. Конечно, здесь не тот случай, но, может быть, и эта книга покажется кому-то полезной.

Эта книга — не «научно-популярный» труд, хотя и может показаться таковым с первого взгляда. В ней на некотором историческом фоне обсуждается серьёзная физика, используется серьёзная математика и обсуждаются довольно сложные научные модели. Фактически книга состоит из двух (не всегда резко разграниченных) частей, рассчитанных на разных читателей — одним она может показаться интересной с историко-химической точки зрения, а другие, возможно, сосредоточатся на физико-математической стороне проблемы. Автор же имел в виду любознательного читателя — студента физического или химического факультета, не чуждого математики и увлечённого историей науки. Есть ли такие студенты? Точного ответа на этот вопрос автор не знает, но, исходя из собственного опыта, надеется, что есть.

Введение (в сокращении) к книге: Мейлихов Е. З. Число Авогадро. Как увидеть атом. — Долгопрудный: ИД «Интеллект», 2017.

ЧИСЛО АВОГАДРО

ЧИСЛО АВОГАДРО

ЧИСЛО АВОГАДРО (постоянная Авогадро, обозначение L), постоянная, равная 6,022231023, соответствует числу атомов или молекул, содержащихся в одном МОЛЕ вещества.

Научно-технический энциклопедический словарь.

Смотреть что такое «ЧИСЛО АВОГАДРО» в других словарях:

  • Число Авогадро — Число Авогадро, константа Авогадро  физическая константа, численно равная количеству специфицированных структурных единиц (атомов, молекул, ионов, электронов или любых других частиц) в 1 моле вещества. Определяется как количество атомов в 12 …   Википедия

  • число Авогадро — Avogadro konstanta statusas T sritis chemija apibrėžtis Dalelių (atomų, molekulių, jonų) skaičius viename medžiagos molyje, lygus (6,02204 ± 0,000031)·10²³ mol⁻¹. santrumpa( os) Santrumpą žr. priede. priedas( ai) Grafinis formatas atitikmenys:… …   Chemijos terminų aiškinamasis žodynas

  • число Авогадро — Avogadro konstanta statusas T sritis fizika atitikmenys: angl. Avogadro’s constant; Avogadro’s number vok. Avogadro Konstante, f; Avogadrosche Konstante, f rus. постоянная Авогадро, f; число Авогадро, n pranc. constante d’Avogadro, f; nombre… …   Fizikos terminų žodynas

  • Авогадро постоянная (число Авогадро) — число частиц (атомов, молекул, ионов) в 1 моле вещества (моль это количество вещества, в котором содержится столько же частиц, сколько атомов содержится точно в 12 граммах изотопа углерода 12), обозначаемое символом N = 6,023 • 1023. Одна из… …   Начала современного естествознания

  • АВОГАДРО ПОСТОЯННАЯ — (число Авогадро), число структурных элементов (атомов, молекул, ионов или др. ч ц) в ед. кол ва в ва (в одном моле). Названа в честь А. Авогадро, обозна чается NA. А. п. одна из фундаментальных физических констант, существенная для определения мн …   Физическая энциклопедия

  • АВОГАДРО ПОСТОЯННАЯ — (число Авогадро; обозначается NА), число молекул или атомов в 1 моле вещества, NА = 6,022045(31) х 1023моль 1; назв. по имени А. Авогадро …   Естествознание. Энциклопедический словарь

  • АВОГАДРО ПОСТОЯННАЯ — (число Авогадро), число частиц (атомов, молекул, ионов) в 1 моле в ва. Обозначается NA и равна (6,022045 …   Химическая энциклопедия

  • АВОГАДРО ЧИСЛО — Na = (6,022045±0,000031)*10 23 число молекул в моле любого вещества или число атомов в моле простого вещества. Одна из фундаментальных постоянных, с помощью которой можно определить такие величины, как, например, массу атома или молекулы (см.… …   Энциклопедия Кольера

  • Авогадро, Амедео — В Википедии есть статьи о других людях с такой фамилией, см. Авогадро. Амедео Авогадро, граф Куаренья и Черрето Lorenzo Romano Amedeo Carlo Avogadro di Quaregna e Cerreto …   Википедия

  • АВОГАДРО Амедео — (Avogadro, Amedeo) АМЕДЕО АВОГАДРО (1776 1856), итальянский физик и химик. Родился 9 августа 1776 в Турине в семье чиновника судебного ведомства. Получил юридическое образование и в 1796 стал доктором права. Уже в юности заинтересовался… …   Энциклопедия Кольера

Число́ Авога́дро, конста́нта Авогадро, постоянная Авогадро — физическая величина, численно равная количеству специфицированных структурных единиц (атомов, молекул[1], ионов, электронов или любых других частиц) в 1 моле вещества[2]. Определяется как количество атомов в 12 граммах (точно) чистого изотопа углерода-12. Обозначается обычно как NA[3], а иногда и L[4].

Значение числа Авогадро, рекомендованное CODATA в 2010 году, составляло:

NA = 6,022 141 29(27)·1023 моль−1.

Значение числа Авогадро, рекомендованное CODATA в 2014 году[5]:

NA = 6,022 140 857(74)·1023 моль−1

Моль — количество вещества, которое содержит NA структурных элементов (то есть столько же, сколько атомов содержится в 12 г 12С), причём структурными элементами обычно являются атомы, молекулы, ионы и др. Масса 1 моля вещества (молярная масса), выраженная в граммах, численно равна его молекулярной массе, выраженной в атомных единицах массы.
Например:

  • 1 моль натрия имеет массу 22,9898 г и содержит примерно 6,02·1023 атомов;
  • 1 моль фторида кальция CaF2 имеет массу (40,08 + 2 · 18,998) = 78,076 г и содержит 6,02·1023 ионов кальция и 12,04·1023 ионов фтора;
  • 1 моль тетрахлорида углерода CCl4 имеет массу (12,011 + 4 · 35,453) = 153,823 г и содержит 6,02·1023 молекул тетрахлорида углерода;
  • и т. п.

В конце 2011 года на XXIV Генеральной конференции по мерам и весам единогласно принято предложение[6] определить моль в будущей версии Международной системы единиц (СИ) таким образом, чтобы избежать его привязки к определению килограмма. Предполагается, что моль в 2018 году будет определён на основе числа Авогадро, которому будет приписано точное значение без погрешности, базирующееся на результатах измерений, рекомендованных CODATA. В настоящее время (2018) число Авогадро пока является измеряемой величиной, не принимаемой по определнию. В 2015 году из наиболее прецизионных измерений получено рекомендованное значение числа Авогадро NA = 6,022 140 82(11)·1023 моль−1, полученное в результате усреднения результатов различных измерений[7][8][9].

Содержание

  • 1 Закон Авогадро
  • 2 История измерения константы
  • 3 Современные оценки
  • 4 Связь между константами
  • 5 См. также
  • 6 Примечания
  • 7 Литература

Закон Авогадро

На заре развития атомной теории (1811) А. Авогадро выдвинул гипотезу, согласно которой при одинаковых температуре и давлении в равных объёмах идеальных газов содержится одинаковое количество молекул. Позже было показано, что эта гипотеза есть необходимое следствие кинетической теории, и сейчас она известна как закон Авогадро. Его можно сформулировать так: один моль любого газа при одинаковых температуре и давлении занимает один и тот же объём, при нормальных условиях равный 22,41383 литра. Эта величина известна как молярный объём газа.

История измерения константы

Сам Авогадро не делал оценок числа молекул в заданном объёме, но понимал, что это очень большая величина.
Первую попытку найти число молекул, занимающих данный объём, предпринял в 1865 году Йозеф Лошмидт.
Из вычислений Лошмидта следовало, что для воздуха количество молекул на единицу объёма составляет 1,81·1018 см−3, что примерно в 15 раз меньше истинного значения. Через 8 лет Максвелл привёл гораздо более близкую к истине оценку «около 19 миллионов миллионов миллионов» молекул на кубический сантиметр, или 1,9·1019 см−3.
По его оценке числа Авогадро было приблизительно 10^{22}.

В действительности в 1 см³ идеального газа при нормальных условиях содержится 2,68675·1019 молекул.
Эта величина была названа числом (или постоянной) Лошмидта.
С тех пор было разработано большое число независимых методов определения числа Авогадро.
Превосходное совпадение полученных значений является убедительным свидетельством реального количества молекул.

В 1908 г. Перрен даёт приемлемую оценку 6,8cdot 10^{23}
вычисленной из параметров Броуновского движения.

Современные оценки

Один из оптиков австралийского ACPO держит однокилограммовый монокристаллический шар из кремния для проекта International Avogadro Coordination.

Актуальность

Данные в этой статье приведены по состоянию на декабрь 2011 года.

Вы можете помочь, обновив информацию в статье.

Официально принятое в 2010 году значение числа Авогадро было измерено при использовании двух сфер, изготовленных из кремния-28. Сферы были получены в Институте кристаллографии имени Лейбница и отполированы в австралийском Центре высокоточной оптики настолько гладко, что высоты выступов на их поверхности не превышали 98 нм. Для их производства был использован высокочистый кремний-28, выделенный в нижегородском Институте химии высокочистых веществ РАН из высокообогащённого по кремнию-28 тетрафторида кремния, полученного в Центральном конструкторском бюро машиностроения в Санкт-Петербурге.

Располагая такими практически идеальными объектами, можно с высокой точностью подсчитать число атомов кремния в шаре и тем самым определить число Авогадро. Согласно полученным результатам, оно равно 6,02214084(18)·1023 моль−1[10].

Однако в январе 2011 года были опубликованы результаты новых измерений, считающиеся более точными[11]: NA = 6,02214078(18)·1023 моль−1.

На 24-й Генеральной конференции по мерам и весам 17—21 октября 2011 года была единогласно принята резолюция[6], в которой, в частности, предложено в будущей ревизии СИ переопределить моль таким образом, чтобы число Авогадро было равным точно 6,02214X·1023 моль−1, где Х заменяет одну или более значащих цифр, которые будут определены в окончательном релизе на основании наиболее точных рекомендаций CODATA[12]. В этой же резолюции предложено таким же образом определить как точные значения постоянную Планка, элементарный заряд, постоянную Больцмана и максимальную световую эффективность монохроматического излучения для дневного зрения.

Связь между константами

См. также

  • Универсальная газовая постоянная
  • Постоянная Больцмана
  • Уравнение состояния идеального газа
  • Молярный объём газа

Примечания

  1. Ранее выводилось как количество молекул в грамм-молекуле или атомов в грамм-атоме.
  2. Авогадро постоянная // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1. — С. 11. — 704 с. — 100 000 экз.
  3. в отличие от N, обозначающее количество частиц (англ. Particle number)
  4. http://www.iupac.org/publications/books/gbook/green_book_2ed.pdf
  5. CODATA Value: Avogadro constant
  6. 1 2 On the possible future revision of the International System of Units, the SI. Resolution 1 of the 24th meeting of the CGPM (2011).
  7. Точная оценка числа Авогадро поможет дать новое определение килограмма : Наука: Наука и техника: Lenta.ru
  8. The Correlation of the NA Measurements by Counting 28Si Atoms
  9. More Precise Estimate of Avogadro’s Number to Help Redefine Kilogram | American Institute of Physics
  10. Физики уточнили число Авогадро для будущего эталона килограмма (рус.). РИА Новости (20 октября 2010). Проверено 20 октября 2010. Архивировано 28 августа 2011 года.
  11. B. Andreas et al., Determination of the Avogadro Constant by Counting the Atoms in a 28Si Crystal, Phys. Rev. Lett. 106, 2011, 030801
  12. Agreement to tie kilogram and friends to fundamentals — physics-math — 25 October 2011 — New Scientist

Литература

  • Мейлихов Е. З. Число Авогадро. Как увидеть атом. — Долгопрудный, Московская обл.: Интеллект, 2017. — 86 с. — (Истоки современной физики). — 500 экз. — ISBN 978-5-91559-233-8.
  • Число Авогадро // Большая советская энциклопедия

Понравилась статья? Поделить с друзьями:
  • Как пишется фьюжен на английском
  • Как пишется число 999
  • Как пишется фторопласт
  • Как пишется число 950
  • Как пишется француженка на английском