Как пишется формула оксида азота 2

Оксид азота(II)
Оксид азота(II): химическая формула
Оксид азота(II): вид молекулы
Общие
Систематическое наименование Оксид азота(II)
Химическая формула NO
Физические свойства
Состояние (ст. усл.) бесцветный газ
Молярная масса 30,0061 г/моль
Плотность 0,00134 (газ) г/см³
Термические свойства
Температура плавления −163,6 °C
Температура кипения −151,7 °C
Энтальпия образования (ст. усл.) 81 кДж/моль
Химические свойства
Растворимость в воде 0,01 г/100 мл
Классификация
Рег. номер CAS [10102-43-9]

Оксид азота(II) (мон(о)оксид азота, окись азота, нитрозил-радикал) NO — несолеобразующий оксид азота. В нормальных условиях он представляет собой бесцветный газ, плохо растворимый в воде. Сжижается с трудом[источник не указан 301 день]; в жидком и твёрдом виде имеет голубой цвет.

Наличие неспаренного электрона обусловливает склонность NO к образованию слабосвязанных димеров N2O2. Это непрочные соединения с ΔH° димеризации около 17 кДж/моль. Жидкий оксид азота(II) на 25 % состоит из молекул N2O2, а твёрдый оксид целиком состоит из них.

Получение

Оксид азота(II) — единственный из оксидов азота, который можно получить непосредственно из свободных элементов соединением азота с кислородом при высоких температурах (1200—1300 °C) или в электрическом разряде. В природе он образуется в атмосфере при грозовых разрядах (тепловой эффект реакции −180,9 кДж):

mathsf{N_2 + O_2 rightarrow 2NO}

и тотчас же реагирует с кислородом:

mathsf{2NO + O_2 rightarrow 2NO_2.}

При понижении температуры оксид азота(II) разлагается на азот и кислород, но если температура падает резко, то не успевший разложиться оксид существует достаточно долго: при низкой температуре скорость распада невелика. Такое резкое охлаждение называется «закалкой» и используется при одном из способов получения азотной кислоты.

В лаборатории его обычно получают взаимодействием 30%-ной HNO3 с некоторыми металлами, например, с медью:

mathsf{3Cu + 8HNO_3 rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O.}

Более чистый, не загрязнённый примесями NO можно получить по реакциям:

mathsf{FeCl_2 + NaNO_2 + 2HCl rightarrow FeCl_3 + NaCl + NO + H_2O,}
mathsf{2HNO_2 + 2HI rightarrow 2NO + I_2 + 2H_2O.}

Промышленный способ основан на окислении аммиака при высокой температуре и давлении при участии Pt, Cr2O3 (как катализаторов):

mathsf{4NH_3 + 5O_2 rightarrow 4NO + 6H_2O.}

Химические свойства

При комнатной температуре и атмосферном давлении происходит окисление NO кислородом воздуха:

mathsf{2NO + O_2 rightarrow 2NO_2.}

Для NO характерны также реакции присоединения галогенов с образованием нитрозилгалогенидов, в этой реакции NO проявляет свойства восстановителя с образованием нитрозилхлорида:

mathsf{2NO + Cl_2 rightarrow 2NOCl.}

В присутствии более сильных восстановителей NO проявляет окислительные свойства:

mathsf{2SO_2 + 2NO rightarrow 2SO_3 + N_2.}

В воде NO мало растворим и с ней не реагирует, являясь несолеобразующим оксидом.

Физиологическое действие

Оксид азота (белый) в цитоплазме клеток хвойных пород деревьев через час после механического воздействия. Темно-зелёные круги в клетках — ядра, в некоторых из ядер, в свою очередь, заметны ядрышки (светло-зелёные).

Как и все оксиды азота (кроме N2O), NO — токсичен, при вдыхании поражает дыхательные пути.

За два последних десятилетия было установлено, что эта молекула NO обладает широким спектром биологического действия, которое условно можно разделить на регуляторное, защитное и вредное. NO действует как посредник в передаче клеточных сигналов внутри клетки и между клетками. Оксид азота, производимый клетками эндотелия сосудов, отвечает за расслабление гладких мышц сосудов и их расширение (вазодилатацию), предотвращает агрегацию тромбоцитов и адгезию нейрофилов к эндотелию, участвует в различных процессах в нервной, репродуктивной и иммунной системах. NO также обладает цитотоксическими и цитостатическими свойствами. Клетки-киллеры иммунной системы используют оксид азота для уничтожения бактерий и клеток злокачественных опухолей. С нарушением биосинтеза и метаболизма NO связаны такие заболевания, как эссенциальная артериальная гипертензия, ишемическая болезнь сердца, инфаркт миокарда, первичная легочная гипертензия, бронхиальная астма, невротическая депрессия, эпилепсия, нейродегенеративные заболевания (болезнь Альцгеймера, болезнь Паркинсона), сахарный диабет, импотенция и др.

Оксид азота может синтезироваться несколькими путями. Растения используют неферментативную фотохимическую реакцию между NO2 и каротиноидами. У животных синтез осуществляют семейство NO-синтаз (NOS). NOS-ферменты — члены гем-содержащего суперсемейства ферментов, названных монооксигеназами. В зависимости от структуры и функций, NOS могут быть разделены на три группы: эндотелиальные (eNOS), нейрональные (nNOS) и индуцибельные (iNOS). В активный центр любой из NO-синтаз входит железопорфириновый комплекс, содержащий аксиально координированный цистеин или метионин. Хотя все изоформы NOS катализируют образование NO, они являются продуктами различных генов, каждая из них имеет свои особенности как в механизмах действия и локализации, так и в биологическом значении для организма. Поэтому указанные изоформы принято также подразделять на конститутивную (cNOS) и индуцибельную (iNOS) синтазы оксида азота.

cNOS постоянно находится в цитоплазме, зависит от концентрации ионов кальция и кальмодулина (белок, являющийся внутриклеточным посредником переноса ионов кальция) и способствует выделению небольшого количества NO на короткий период в ответ на стимуляцию рецепторов. Индуцибельная NOS появляется в клетках только после индукции их бактериальными эндотоксинами и некоторыми медиаторами воспаления, такими как гамма-интерферон, фактор некроза опухоли и др. Количество NO, образующегося под влиянием iNOS, может варьировать и достигать больших количеств (наномолей). При этом продукция NO сохраняется длительнее.

Характерной особенностью NO является способность быстро (менее чем за 5 секунд) диффундировать через мембрану синтезировавшей его клетки в межклеточное пространство и легко (без участия рецепторов) проникать в клетки-мишени. Внутри клетки он активирует одни и ингибирует другие ферменты, участвуя в регуляции клеточных функций и фактически действуя как локальная сигнальная молекула. NO играет ключевую роль в подавлении активности бактериальных и опухолевых клеток путем либо блокирования некоторых их железосодержащих ферментов, либо путем повреждения их клеточных структур оксидом азота или свободными радикалами, образующимися из оксида азота. Одновременно в очаге воспаления накапливается супероксид, который вызывает повреждение белков и липидов клеточных мембран, что и объясняет его цитотоксическое действие на клетку-мишень. Следовательно, NO, избыточно накапливаясь в клетке, может действовать двояко: с одной стороны вызывать повреждение ДНК и с другой — давать провоспалительный эффект.

Оксид азота способен инициировать образование кровеносных сосудов. В случае инфаркта миокарда оксид азота играет положительную роль, так как индуцирует новый сосудистый рост, но при раковых заболеваниях тот же самый процесс вызывает развитие опухолей, способствуя питанию и росту раковых клеток. С другой стороны, вследствие этого улучшается доставка оксида азота в опухолевые клетки. Повреждение ДНК под действием NO является одной из причин развития апоптоза (запрограммированный процесс клеточного «самоубийства», направленный на удаление клеток, утративших свои функции). В экспериментах наблюдалось дезаминирование дезоксинуклеозидов, дезоксинуклеотидов и неповрежденной ДНК при воздействии раствора, насыщенного NO. Этот процесс ответствен за повышение чувствительности клеток к алкилирующим агентам и ионизирующему излучению, что используется в антираковой терапии.

Клиренс NO (скорость очищения крови от NO в процессе его химических превращений) происходит путем образования нитритов и нитратов и составляет в среднем не более 5 секунд. В клиренс могут быть вовлечены промежуточные ступени, связанные со взаимодействием с супероксидом или с гемоглобином с образованием пероксинитрита. Оксид азота может быть восстановлен NO-редуктазой — ферментом, тесно связанным с NO-синтазой.

В 1998 году Роберту Ферчготту, Луису Игнарро и Фериду Мураду была присуждена Нобелевская премия по физиологии и медицине с формулировкой: «За открытие роли оксида азота как сигнальной молекулы в регуляции сердечно-сосудистой системы».[1]

Применение

commons: Оксид азота(II) на Викискладе?

Получение NO является одной из стадий получения азотной кислоты.

См. также

  • Реактивные формы азота
Оксиды азота
Оксид азота(I) Оксид азота(I) (N2O) Оксид азота(II) Оксид азота(II) (NO)
Оксид азота(III) Оксид азота(III) (N2O3) Оксид азота(IV) Оксид азота(IV) (NO2) Оксид азота(V) Оксид азота(V) (N2O5)

Примечания

  1. Оксид азота в медицине
Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,618
  • гуманитарные
    33,647
  • юридические
    17,917
  • школьный раздел
    611,523
  • разное
    16,896

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Поиск химических веществ по названиям или формулам.

Справочник содержит названия веществ и описания химических формул (в т.ч. структурные формулы и скелетные формулы).


Введите часть названия или формулу для поиска:

Языки:

По умолчанию |

Все возможные |

Из списка

|
Применить к найденному

Оксид азота(II)

Брутто-формула:
NO

CAS# 10102-43-9

Категории:
Оксиды

PubChem CID: 145068

Названия

Русский:

Оксид азота(II)
моноксид азота
монооксид азота
нитрозил-радикал
окись азота

English:

Amidogen, oxo-
INOmax
Mononitrogen monoxide
Nitric oxide(IUPAC)
Nitric oxide trimer
Nitrogen monoxide
Nitrogen oxide, (NO)(CAS)
Nitrogen(II) oxide
Nitrosyl radical
nitrogen monooxide
nitrosyl
oxoazanyl
oxyde azotique

German:

Stickoxid
Stickstoffmonoxid
Stickstoffoxid

العربية:

أحادي أكسيد النيتروجين
أكسيد نيتريك
أول أكسيد النيتروجين

Español:

Monóxido de nitrógeno
Óxido de nitrógeno (II)
Óxido de nitrógeno(II)(IUPAC)
Óxido nítrico

French:

Monoxyde d’azote(IUPAC)
oxyde azotique
oxyde nitrique

हिन्दी:

भूयाति एकजारेय

Italiano:

Monossido di azoto
ossido di azoto(IUPAC)
ossido nitrico

日本語:

一酸化窒素

中文:

一氧化氮

Варианты формулы:

NO

N_(x1,N2,S:||)O

$dashes(/)$dots(Bl)N_(x1,N2)$dashes(>)O

N=O

Химический состав

Реакции, в которых участвует Оксид азота(II)

  • 3Cu + 8HNO3″(30%)» = 3Cu(NO3)2 + 2NO»|^» + 4H2O

  • 3Zn + 8HNO3″(30%)» = 3Zn(NO3)2 + 2NO»|^» + 4H2O

  • Fe + 4HNO3″(25%)» = Fe(NO3)3 + NO»|^» + 2H2O

  • S + 2HNO3″(40%)» = H2SO4 + 2NO»|^»

  • 3P + 5HNO3″(30%)» + 2H2O = 3H3PO4 + 5NO»|^»

И ещё 67 реакций…

Содержание

  1. Получение
  2. Физические свойства
  3. Химические свойства
  4. Физиологическое действие
  5. Токсичность
  6. Действие на растения

Оксид азота(II)оксид азота, окись азота, нитрозил-радикал) NO — несолеобразующий оксид азота.

Оксид азота​(II)​
Общие
Систематическое
наименование
Оксид азота​(II)​
Хим. формула NO
Физические свойства
Состояние бесцветный газ
Молярная масса 30,0061 г/моль
Плотность газ: 1,3402 кг/м³
Энергия ионизации 9,27 ± 0,01 эВ
Термические свойства
Температура
 • плавления −163,6 °C
 • кипения −151,7 °C
Энтальпия
 • образования 81 кДж/моль
Давление пара 34,2 ± 0,1 атм
Химические свойства
Растворимость
 • в воде 0,01 г/100 мл
Классификация
Рег. номер CAS [10102-43-9]
PubChem 145068
Рег. номер EINECS 233-271-0
SMILES

[N]=O

InChI

1S/NO/c1-2

MWUXSHHQAYIFBG-UHFFFAOYSA-N

RTECS QX0525000
ChEBI 16480
Номер ООН 1660
ChemSpider 127983
Безопасность
Пиктограммы СГС Пиктограмма «Череп и скрещённые кости» системы СГСПиктограмма «Опасность для здоровья» системы СГСПиктограмма «Восклицательный знак» системы СГС
NFPA 704

Наличие неспаренного электрона обусловливает склонность NO к образованию слабосвязанных димеров N2O2. Это непрочные соединения с ΔH° димеризации около 17 кДж/моль. Жидкий оксид азота(II) на 25 % состоит из молекул N2O2, а твёрдый целиком состоит из них.

Получение

Оксид азота(II) — единственный из оксидов азота, который можно получить непосредственно из свободных элементов соединением азота с кислородом при высоких температурах (1200—1300 °C) или в электрическом разряде. В природе он образуется в атмосфере при грозовых разрядах (тепловой эффект реакции −180,9 кДж):

и тотчас же реагирует с кислородом:

При понижении температуры оксид азота(II) разлагается на азот и кислород, но если температура падает резко, то не успевший разложиться оксид существует достаточно долго: при низкой температуре скорость распада невелика. Такое резкое охлаждение называется «закалкой» и используется при одном из способов получения азотной кислоты.

В лаборатории его обычно получают взаимодействием 31 % HNO3 с некоторыми металлами, например, с медью:

Более чистый, не загрязнённый примесями NO можно получить по реакциям

Промышленный способ основан на окислении аммиака при высокой температуре и давлении при участии Pt, Cr2O3 (как катализаторов):

Получение NO является одной из стадий получения азотной кислоты.

Физические свойства

В нормальных условиях NO представляет собой бесцветный газ. Плохо растворим в воде. Имеет плотность 1,3402 кг/м³. Сжижается с трудом; в жидком и твёрдом виде имеет голубой цвет.

Химические свойства

При комнатной температуре и атмосферном давлении происходит окисление NO кислородом воздуха:

В результате смесь газов приобретает коричневый цвет.

Для NO характерны также реакции присоединения галогенов с образованием нитрозилгалогенидов, в этой реакции NO проявляет свойства восстановителя с образованием нитрозилхлорида:

В присутствии более сильных восстановителей NO проявляет окислительные свойства:

С водой не реагирует, является несолеобразующим оксидом.

Физиологическое действие

Токсичность

Оксид азота (II) — ядовитый газ с удушающим действием.

Действие на растения

Оксид азота является одним из немногих известных газотрансмиттеров и, кроме того, является также химически высокореактивным свободным радикалом, способным выступать как в роли окислителя, так и в роли восстановителя. Окись азота является ключевым вторичным посредником в организмах позвоночных и играет важную роль в межклеточной и внутриклеточной передаче сигнала и, как следствие, во множестве биологических процессов. Известно, что окись азота производится практически всеми типами живых организмов, от бактерий, грибов и растений до клеток животных.

Окись азота, первоначально известная под именем эндотелиального сосудорасширяющего фактора (химическая природа которого тогда ещё была не известна) синтезируется в организме из аргинина при участии кислорода и НАДФ ферментом синтазой оксида азота. Восстановление неорганических нитратов также может быть использовано для производства организмом эндогенной окиси азота. Эндотелий кровеносных сосудов использует окись азота в качестве сигнала окружающим гладкомышечным клеткам расслабиться, что приводит к вазодилатации и увеличению кровотока. Окись азота является высокореактивным свободным радикалом со временем жизни порядка нескольких секунд, но при этом обладает высокой способностью к проникновению сквозь биологические мембраны. Это делает окись азота идеальной сигнальной молекулой для кратковременного аутокринного (внутри клетки) или паракринного (между близко расположенными или соседними клетками) обмена сигналами.

Независимо от активности синтазы оксида азота, существует и другой путь биосинтеза окиси азота, так называемый нитрат-нитрит-оксидный путь, состоящий в последовательном восстановлении пищевых нитратов и нитритов, получаемых из растительной пищи. Было показано, что богатые нитратами овощи, в особенности листовая зелень, такая, как шпинат и руккола, а также свёкла, способны повышать уровень эндогенной окиси азота и обеспечивать защиту миокарда от ишемии, а также снижать артериальное давление у лиц с предрасположенностью к артериальной гипертензии или начинающимся развитием АГ. Для того, чтобы организм мог производить окись азота из нитратов пищи по нитрат-нитрит-оксидному пути, сначала обязательно должно произойти восстановление нитратов до нитритов с помощью сапрофитных бактерий (бактерий-комменсалов), которые обитают во рту. Мониторинг содержания окиси азота в слюне позволяет обнаружить биотрансформацию растительных нитратов в нитриты и окись азота. Повышение уровня окиси азота в слюне наблюдается при диетах, богатых листовой зеленью. В свою очередь, листовая зелень — часто важнейший компонент многих антигипертензивных и «сердечных» диет, разработанных для лечения гипертонической болезни, ишемической болезни сердца, сердечной недостаточности.

Выработка окиси азота повышена у людей, живущих в горах, особенно на больших высотах. Это способствует приспособлению организма к условиям пониженного парциального давления кислорода и уменьшению вероятности гипоксии за счёт увеличения кровотока как в лёгких, так и в периферических тканях. Известные эффекты окиси азота включают в себя не только вазодилатацию, но и участие в нейротрансмиссии в качестве газотрансмиттера, и активацию роста волос, и образование реактивных промежуточных продуктов обмена, и участие в процессе эрекции пениса (благодаря способности окиси азота расширять сосуды полового члена). Фармакологически активные нитраты, такие, как нитроглицерин, амилнитрит, нитропруссид натрия, реализуют своё вазодилатирующее, антиангинальное (антиишемическое), гипотензивное и спазмолитическое действие благодаря тому, что из них в организме образуется окись азота. Вазодилатирующее гипотензивное лекарство миноксидил содержит остаток NO и может работать, кроме всего прочего, ещё и как агонист NO. Аналогично, силденафил и подобные ему препараты способствуют улучшению эрекции преимущественно за счёт того, что усиливают работу связанного с NO сигнального каскада в половом члене.

Окись азота способствует поддержанию гомеостаза сосудов, вызывая расслабление гладких мышц стенок сосудов и угнетая их рост и утолщение интимы сосудов (гипертензивное ремоделирование сосудов), а также угнетая адгезию и агрегацию тромбоцитов и адгезию лейкоцитов к эндотелию сосудов. У больных с атеросклерозом сосудов, сахарным диабетом или гипертензией часто имеются признаки нарушения обмена оксида азота или нарушения во внутриклеточных каскадах передачи сигнала от оксида азота.

Было также показано, что высокое потребление соли снижает образование окиси азота у больных с гипертонической болезнью, хотя биодоступность окиси азота не меняется, остаётся прежней.

Окись азота также образуется в процессе фагоцитоза такими способными к фагоцитозу клетками, как моноциты, макрофаги, нейтрофилы, как часть иммунного ответа на вторжение чужеродных микроорганизмов (бактерий, грибков и др.). Клетки, способные к фагоцитозу, содержат индуцируемую синтазу оксида азота (iNOS), которая активируется γ-интерфероном или сочетанием фактора некроза опухоли со вторым сигналом воспаления. С другой стороны, β-трансформирующий фактор роста (TGF-β) оказывает сильное угнетающее действие на активность iNOS и биосинтез оксида азота фагоцитами. Интерлейкины 4 и 10 оказывают слабое угнетающее действие на активность iNOS и биосинтез оксида азота соответствующими клетками. Таким образом, иммунная система организма обладает способностью регулировать активность iNOS и доступный фагоцитам арсенал средств иммунного ответа, что играет роль в регуляции процессов воспаления и силы иммунных реакций. Оксид азота секретируется фагоцитами в процессе иммунного ответа в качестве одного из свободных радикалов и является высокотоксичным для бактерий и внутриклеточных паразитов, включая лейшманий и малярийных плазмодиев. Механизм бактерицидного, противогрибкового и антипротозойного действия оксида азота включает в себя повреждение ДНК бактерий, грибков и простейших и повреждение железосодержащих белков с разрушением комплексов железа с серой и образованием нитрозилов железа.

В ответ на это многие патогенные бактерии, грибки и простейшие эволюционно развили механизмы устойчивости к образующемуся в процессе фагоцитоза оксиду азота или механизмы его быстрого обезвреживания. Поскольку повышение образования эндогенного оксида азота является одним из маркеров воспаления и поскольку эндогенный оксид азота может оказывать провоспалительное действие при таких состояниях, как бронхиальная астма и бронхообструктивные заболевания, в практической медицине наблюдается повышенный интерес к возможному использованию анализа на содержание оксида азота в выдыхаемом воздухе в качестве простого дыхательного теста при заболеваниях дыхательных путей, сопровождающихся их воспалением. Пониженные уровни эндогенного оксида азота в выдыхаемом воздухе были обнаружены у курильщиков и у велосипедистов, подвергающихся воздействию загрязнения воздуха. В то же время в других популяциях (то есть не среди велосипедистов) с воздействием загрязнения воздуха ассоциировалось повышение уровня эндогенного оксида азота в выдыхаемом воздухе.

Эндогенный оксид азота может привносить свой вклад в повреждение тканей при ишемии и последующей реперфузии, поскольку в процессе реперфузии может образовываться избыточное количество оксида азота, который может реагировать с супероксидом или пероксидом водорода и образовывать сильный и токсичный окислитель, повреждающий ткани — пероксинитрит. Напротив, при отравлении паракватом вдыхание оксида азота способствует повышению выживаемости и лучшему восстановлению больных, поскольку паракват вызывает образование в лёгких больших количеств супероксида и пероксида водорода, снижение биодоступности NO вследствие его связывания с супероксидом и образования пероксинитрита и угнетение активности синтазы оксида азота.

У растений эндогенный оксид азота может производиться одним из четырёх способов:

  1. При помощи аргинин-зависимой синтазы оксида азота; (хотя существование у растений прямых гомологов синтазы оксида азота животных всё ещё является предметом дискуссий и признаётся не всеми специалистами),
  2. При помощи находящейся в плазматической мембране растительных клеток нитрат-редуктазы, восстанавливающей усваиваемые из почвы нитраты и нитриты;
  3. При помощи электронного транспорта, происходящего в митохондриях;
  4. При помощи неферментативного окисления аммиака или неферментативного восстановления нитратов и нитритов.

У растений эндогенный оксид азота также является сигнальной молекулой (газотрансмиттером), способствует снижению или предотвращению оксидативного стресса клеток, а также играет роль в защите растений от патогенных микроорганизмов и грибков. Было показано, что воздействие низких концентраций экзогенного оксида азота на срезанные цветы и другие растения увеличивает продолжительность времени до их увядания, пожелтения и осыпания листьев и лепестков.

Два важнейших механизма, при помощи которых эндогенный оксид азота проявляет своё биологическое действие на клетки, органы и ткани — это S-нитрозилирование тиоловых соединений (включая тиоловые группы серосодержащих аминокислот, таких, как цистеин) и нитрозилирование ионов переходных металлов. S-нитрозилирование означает обратимое преобразование тиоловых групп (например, цистеиновых остатков в составе молекул белков) в S-нитрозотиолы (RSNO). S-нитрозилирование является важным механизмом динамической, обратимой посттрансляционной модификации и регуляции функций многих, если не всех, основных классов белков. Нитрозилирование ионов переходных металлов подразумевает связывание NO с ионом переходного металла, такого, как железо, медь, цинк, хром, кобальт, марганец, в том числе с ионами переходных металлов в составе простетических групп или активных каталитических центров металлоферментов. В этой роли NO является нитрозильным лигандом. Типичные случаи нитрозилирования ионов переходных металлов включают в себя нитрозилирование гем-содержащих белков, таких, как цитохром, гемоглобин, миоглобин, что приводит к нарушению функции белка (в частности, невозможности гемоглобина выполнять свою транспортную функцию, или инактивации фермента). Особенно важную роль играет нитрозилирование двухвалентного железа, поскольку связывание нитрозильного лиганда с ионом двухвалентного железа особенно сильное и приводит к образованию очень прочной связи. Гемоглобин является важным примером белка, функция которого может изменяться под влиянием NO обоими способами: NO может как непосредственно связываться с железом в составе гема в реакции нитрозилирования, так и образовывать S-нитрозотиолы при S-нитрозилировании серосодержащих аминокислот в составе гемоглобина.

Таким образом, существует несколько механизмов, при помощи которых эндогенный оксид азота оказывает влияние на биологические процессы в живых организмах, клетках и тканях. Эти механизмы включают окислительное нитрозилирование железосодержащих и других металлосодержащих белков, таких, как рибонуклеотид-редуктаза, аконитаза, активацию растворимой гуанилатциклазы с повышением образования цГМФ, стимуляцию АДФ-зависимого рибозилирования белков, S-нитрозилирование сульфгидрильных (тиоловых) групп белков, приводящее к их посттрансляционной модификации (активации либо инактивации), активацию регулируемых факторов транспорта железа, меди и других переходных металлов. Было также показано, что эндогенный оксид азота способен активировать ядерный фактор транскрипции каппа (NF-κB) в мононуклеарных клетках периферической крови. А известно, что NF-κB является важным фактором транскрипции в регуляции процессов апоптоза и воспаления, и в частности важным фактором транскрипции в процессе индукции экспрессии гена индуцируемой синтазы оксида азота. Таким образом, продукция эндогенного оксида азота саморегулируется — повышение уровня NO угнетает дальнейшую экспрессию индуцируемой синтазы оксида азота и предотвращает чрезмерное повышение её уровня и чрезмерное повреждение тканей организма хозяина в процессе воспаления и иммунного ответа.

Известно также, что вазодилатирующее действие оксида азота опосредуется в основном через стимуляцию им активности растворимой гуанилатциклазы, являющейся гетеродимерным ферментом, активирующимся при нитрозилировании. Стимуляция активности гуанилатциклазы приводит к накоплению циклического ГМФ. Увеличение концентрации в клетке циклического ГМФ приводит к повышению активности протеинкиназы G. Протеинкиназа G, в свою очередь, фосфорилирует ряд важных внутриклеточных белков, что приводит к обратному захвату ионов кальция из цитоплазмы во внутриклеточные хранилища и к открытию активируемых кальцием калиевых каналов. Снижение концентрации ионов кальция в цитоплазме клетки приводит к тому, что киназа лёгкой цепи миозина, активируемая кальцием, теряет активность и не может фосфорилировать миозин, что приводит к нарушению образования в молекуле миозина «мостиков» и нарушению его свёртывания в более компактную структуру (сокращения), а следовательно и к расслаблению гладкомышечной клетки. А расслабление гладкомышечных клеток стенок сосудов ведёт к расширению сосудов (вазодилатации) и увеличению кровотока.

Запишите формулы оксидов азота (II), (V), (I), (III), (IV).

reshalka.com

ГДЗ учебник по химии 8 класс Габриелян. §18. Вопросы и задания. Номер №1

Решение

Степень окисления кислорода в оксидах постоянна: −2.
1. N (II).

N

+
2

O


2

.
Наименьшее общее кратное для элементов: 2.
Разделим наименьшее общее кратное на степень окисления каждого элемента − определим индексы, т.е. число атомов каждого элемента в формуле данного вещества: 2 : 2 = 1; 2 : 2 = 1.
Таким образом, NO − оксид азота (II).
2. N (V).

N

+
5

O


2

.
Наименьшее общее кратное для элементов: 5 * 2 = 10.
Разделим наименьшее общее кратное на степень окисления каждого элемента: 10 : 5 = 2; 10 : 2 = 5.
Таким образом,

N

2

O

5

− оксид азота (V).
3. N (I).

N

+
1

O


2

.
Наименьшее общее кратное для элементов: 1 * 2 = 2.
Разделим наименьшее общее кратное на степень окисления каждого элемента: 2 : 1 = 2; 2 : 2 = 1.
Таким образом,

N

2

O
− оксид азота (I).
4. N (III).

N

+
3

O


2

.
Наименьшее общее кратное для элементов: 3 * 2 = 6.
Разделим наименьшее общее кратное на степень окисления каждого элемента: 6 : 3 = 2; 6 : 2 = 13
Таким образом,

N

2

O

3

− оксид азота (III).
5. N (IV).

N

+
4

O


2

.
Наименьшее общее кратное для элементов: 4.
Разделим наименьшее общее кратное на степень окисления каждого элемента: 4 : 4 = 1; 4 : 2 = 2
Таким образом,
N

O

2

− оксид азота (IV).

Оксид азота​(II)​
Изображение химической структуры Изображение молекулярной модели
Общие
Систематическое
наименование
Оксид азота​(II)​
Хим. формула NO
Физические свойства
Состояние бесцветный газ
Молярная масса 30,0061 г/моль
Плотность газ: 1,3402 кг/м³
Энергия ионизации 9,27 ± 0,01 эВ[2]
Термические свойства
Температура
 • плавления −163,6 °C
 • кипения −151,7 °C
 • разложения выше +700 °C
Энтальпия
 • образования 81 кДж/моль
Давление пара 34,2 ± 0,1 атм[2]
Химические свойства
Растворимость
 • в воде 0,01 г/100 мл
Классификация
Рег. номер CAS [10102-43-9]
PubChem 145068
Рег. номер EINECS 233-271-0
SMILES

[N]=O

InChI

InChI=1S/NO/c1-2

MWUXSHHQAYIFBG-UHFFFAOYSA-N

RTECS QX0525000
ChEBI 16480
Номер ООН 1660
ChemSpider 127983
Безопасность
Пиктограммы СГС Пиктограмма «Череп и скрещённые кости» системы СГСПиктограмма «Пламя над окружностью» системы СГСПиктограмма «Коррозия» системы СГС
NFPA 704

NFPA 704 four-colored diamond

0

3

0

OX

[1]

Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Логотип Викисклада Медиафайлы на Викискладе

Окси́д азо́та(II) (мон(о)оксид азота, окись азота, нитрозил-радикал) NO — несолеобразующий оксид азота. Молекула года (1992)[3]

Наличие неспаренного электрона обусловливает склонность NO к образованию слабосвязанных димеров N2O2. Это непрочные соединения с ΔH° димеризации около 17 кДж/моль. Жидкий оксид азота(II) на 25 % состоит из молекул N2O2, а твёрдый целиком состоит из них.

Получение

Оксид азота(II) — единственный из оксидов азота, который можно получить непосредственно из свободных элементов соединением азота с кислородом при высоких температурах (1200—1300 °C) или в электрическом разряде. В природе он образуется в атмосфере при грозовых разрядах (тепловой эффект реакции −180,9 кДж):

{displaystyle {ce {N2 + O2 -> 2 NO ^}}}

и тотчас же реагирует с кислородом:

{displaystyle {ce {2 NO + O2 -> 2 NO2 ^}}}.

При понижении температуры оксид азота(II) разлагается на азот и кислород, но если температура падает резко, то не успевший разложиться оксид существует достаточно долго: при низкой температуре скорость распада невелика. Такое резкое охлаждение называется «закалкой» и используется при одном из способов получения азотной кислоты.

В лаборатории его обычно получают взаимодействием 31 % HNO3 с некоторыми металлами, например, с медью:

{displaystyle {ce {3 Cu + 8 HNO3 -> 3 Cu(NO3)2 + 2 NO ^ + 4 H2O}}}.

Более чистый, не загрязнённый примесями NO можно получить по реакциям

{displaystyle {ce {FeCl2 + NaNO2 + 2 HCl -> FeCl3 + NaCl + NO ^ + H2O}}},
{displaystyle {ce {2 HNO2 + 2 HI -> 2 NO ^ + I2 + 2 H2O}}}.

Промышленный способ основан на окислении аммиака при высокой температуре и давлении при участии Pt, Rh, Cr2O3 (как катализаторов):

{displaystyle {ce {4 NH3 + 5 O2 -> 4 NO ^ + 6 H2O}}}.

Получение NO является одной из стадий получения азотной кислоты.

Физические свойства

В нормальных условиях NO представляет собой бесцветный газ. Плохо растворим в воде. Имеет плотность 1,3402 кг/м³[4]. Сжижается с трудом; в жидком и твёрдом виде имеет голубой цвет.

Химические свойства

При комнатной температуре и атмосферном давлении происходит окисление NO кислородом воздуха:

{displaystyle {ce {2 NO + O2 -> 2 NO2 ^}}}.

В результате смесь газов приобретает коричневый цвет.

Для NO характерны также реакции присоединения галогенов с образованием нитрозилгалогенидов, в этой реакции NO проявляет свойства восстановителя с образованием нитрозилхлорида:

{displaystyle {ce {2 NO + Cl2 -> 2 NOCl ^}}}.

В присутствии более сильных восстановителей NO проявляет окислительные свойства:

{displaystyle {ce {2 SO2 + 2 NO -> 2 SO3 + N2}}}.

При температуре свыше +700 °C в присутствии оксида бария разлагается:

{displaystyle {ce {2 NO ->[BaO, >700^oC] N2 + O2}}}.

С водой не реагирует, является несолеобразующим оксидом.

Физиологическое действие

Токсичность

Оксид азота (II) — ядовитый газ с удушающим действием.

Действие на живые организмы

Оксид азота (белый) в цитоплазме клеток хвойных пород деревьев через час после механического воздействия. Темно-зелёные круги в клетках — ядра, в некоторых из ядер, в свою очередь, заметны ядрышки (светло-зелёные)

Оксид азота (белый) в цитоплазме клеток хвойных пород деревьев через час после механического воздействия. Темно-зелёные круги в клетках — ядра, в некоторых из ядер, в свою очередь, заметны ядрышки (светло-зелёные)

Оксид азота является одним из немногих известных газотрансмиттеров и, кроме того, является также химически высокореактивным свободным радикалом, способным выступать как в роли окислителя, так и в роли восстановителя. Окись азота является ключевым вторичным посредником в организмах позвоночных и играет важную роль в межклеточной и внутриклеточной передаче сигнала и, как следствие, во множестве биологических процессов.[5] Известно, что окись азота производится практически всеми типами живых организмов, от бактерий, грибов и растений до клеток животных.[6]

Окись азота, первоначально известная под именем эндотелиального сосудорасширяющего фактора (химическая природа которого тогда ещё была не известна) синтезируется в организме из аргинина при участии кислорода и НАДФ ферментом синтазой оксида азота. Восстановление неорганических нитратов также может быть использовано для производства организмом эндогенной окиси азота. Эндотелий кровеносных сосудов использует окись азота в качестве сигнала окружающим гладкомышечным клеткам расслабиться, что приводит к вазодилатации и увеличению кровотока. Окись азота является высокореактивным свободным радикалом со временем жизни порядка нескольких секунд, но при этом обладает высокой способностью к проникновению сквозь биологические мембраны. Это делает окись азота идеальной сигнальной молекулой для кратковременного аутокринного (внутри клетки) или паракринного (между близко расположенными или соседними клетками) обмена сигналами.[7]

Независимо от активности синтазы оксида азота, существует и другой путь биосинтеза окиси азота, так называемый нитрат-нитрит-оксидный путь, состоящий в последовательном восстановлении пищевых нитратов и нитритов, получаемых из растительной пищи.[8] Было показано, что богатые нитратами овощи, в особенности листовая зелень, такая, как шпинат и руккола, а также свёкла, способны повышать уровень эндогенной окиси азота и обеспечивать защиту миокарда от ишемии, а также снижать артериальное давление у лиц с предрасположенностью к артериальной гипертензии или начинающимся развитием АГ.[9][10] Для того, чтобы организм мог производить окись азота из нитратов пищи по нитрат-нитрит-оксидному пути, сначала обязательно должно произойти восстановление нитратов до нитритов с помощью сапрофитных бактерий (бактерий-комменсалов), которые обитают во рту.[11] Мониторинг содержания окиси азота в слюне позволяет обнаружить биотрансформацию растительных нитратов в нитриты и окись азота. Повышение уровня окиси азота в слюне наблюдается при диетах, богатых листовой зеленью. В свою очередь, листовая зелень — часто важнейший компонент многих антигипертензивных и «сердечных» диет, разработанных для лечения гипертонической болезни, ишемической болезни сердца, сердечной недостаточности.[12]

Выработка окиси азота повышена у людей, живущих в горах, особенно на больших высотах. Это способствует приспособлению организма к условиям пониженного парциального давления кислорода и уменьшению вероятности гипоксии за счёт увеличения кровотока как в лёгких, так и в периферических тканях. Известные эффекты окиси азота включают в себя не только вазодилатацию, но и участие в нейротрансмиссии в качестве газотрансмиттера, и активацию роста волос,[13] и образование реактивных промежуточных продуктов обмена, и участие в процессе эрекции пениса (благодаря способности окиси азота расширять сосуды полового члена). Фармакологически активные нитраты, такие, как нитроглицерин, амилнитрит, нитропруссид натрия, реализуют своё вазодилатирующее, антиангинальное (антиишемическое), гипотензивное и спазмолитическое действие благодаря тому, что из них в организме образуется окись азота. Вазодилатирующее гипотензивное лекарство миноксидил содержит остаток NO и может работать, кроме всего прочего, ещё и как агонист NO. Аналогично, силденафил и подобные ему препараты способствуют улучшению эрекции преимущественно за счёт того, что усиливают работу связанного с NO сигнального каскада в половом члене.

Окись азота способствует поддержанию гомеостаза сосудов, вызывая расслабление гладких мышц стенок сосудов и угнетая их рост и утолщение интимы сосудов (гипертензивное ремоделирование сосудов), а также угнетая адгезию и агрегацию тромбоцитов и адгезию лейкоцитов к эндотелию сосудов. У больных с атеросклерозом сосудов, сахарным диабетом или гипертензией часто имеются признаки нарушения обмена оксида азота или нарушения во внутриклеточных каскадах передачи сигнала от оксида азота.[14]

Было также показано, что высокое потребление соли снижает образование окиси азота у больных с гипертонической болезнью, хотя биодоступность окиси азота не меняется, остаётся прежней.[15]

Окись азота также образуется в процессе фагоцитоза такими способными к фагоцитозу клетками, как моноциты, макрофаги, нейтрофилы, как часть иммунного ответа на вторжение чужеродных микроорганизмов (бактерий, грибков и др.).[16] Клетки, способные к фагоцитозу, содержат индуцируемую синтазу оксида азота (iNOS), которая активируется γ-интерфероном или сочетанием фактора некроза опухоли со вторым сигналом воспаления.[17][18][19] С другой стороны, β-трансформирующий фактор роста (TGF-β) оказывает сильное угнетающее действие на активность iNOS и биосинтез оксида азота фагоцитами. Интерлейкины 4 и 10 оказывают слабое угнетающее действие на активность iNOS и биосинтез оксида азота соответствующими клетками. Таким образом, иммунная система организма обладает способностью регулировать активность iNOS и доступный фагоцитам арсенал средств иммунного ответа, что играет роль в регуляции процессов воспаления и силы иммунных реакций.[20] Оксид азота секретируется фагоцитами в процессе иммунного ответа в качестве одного из свободных радикалов и является высокотоксичным для бактерий и внутриклеточных паразитов, включая лейшманий[21] и малярийных плазмодиев.[22][23][24] Механизм бактерицидного, противогрибкового и антипротозойного действия оксида азота включает в себя повреждение ДНК бактерий, грибков и простейших[25][26][27] и повреждение железосодержащих белков с разрушением комплексов железа с серой и образованием нитрозилов железа.[28]

В ответ на это многие патогенные бактерии, грибки и простейшие эволюционно развили механизмы устойчивости к образующемуся в процессе фагоцитоза оксиду азота или механизмы его быстрого обезвреживания.[29] Поскольку повышение образования эндогенного оксида азота является одним из маркеров воспаления и поскольку эндогенный оксид азота может оказывать провоспалительное действие при таких состояниях, как бронхиальная астма и бронхообструктивные заболевания, в практической медицине наблюдается повышенный интерес к возможному использованию анализа на содержание оксида азота в выдыхаемом воздухе в качестве простого дыхательного теста при заболеваниях дыхательных путей, сопровождающихся их воспалением. Пониженные уровни эндогенного оксида азота в выдыхаемом воздухе были обнаружены у курильщиков и у велосипедистов, подвергающихся воздействию загрязнения воздуха. В то же время в других популяциях (то есть не среди велосипедистов) с воздействием загрязнения воздуха ассоциировалось повышение уровня эндогенного оксида азота в выдыхаемом воздухе.[30]

Эндогенный оксид азота может привносить свой вклад в повреждение тканей при ишемии и последующей реперфузии, поскольку в процессе реперфузии может образовываться избыточное количество оксида азота, который может реагировать с супероксидом или пероксидом водорода и образовывать сильный и токсичный окислитель, повреждающий ткани — пероксинитрит. Напротив, при отравлении паракватом вдыхание оксида азота способствует повышению выживаемости и лучшему восстановлению больных, поскольку паракват вызывает образование в лёгких больших количеств супероксида и пероксида водорода, снижение биодоступности NO вследствие его связывания с супероксидом и образования пероксинитрита и угнетение активности синтазы оксида азота.

У растений эндогенный оксид азота может производиться одним из четырёх способов:

  1. При помощи аргинин-зависимой синтазы оксида азота;[31][32][33] (хотя существование у растений прямых гомологов синтазы оксида азота животных всё ещё является предметом дискуссий и признаётся не всеми специалистами),[34]
  2. При помощи находящейся в плазматической мембране растительных клеток нитрат-редуктазы, восстанавливающей усваиваемые из почвы нитраты и нитриты;
  3. При помощи электронного транспорта, происходящего в митохондриях;
  4. При помощи неферментативного окисления аммиака или неферментативного восстановления нитратов и нитритов.

У растений эндогенный оксид азота также является сигнальной молекулой (газотрансмиттером), способствует снижению или предотвращению оксидативного стресса клеток, а также играет роль в защите растений от патогенных микроорганизмов и грибков. Было показано, что воздействие низких концентраций экзогенного оксида азота на срезанные цветы и другие растения увеличивает продолжительность времени до их увядания, пожелтения и осыпания листьев и лепестков.[35]

Два важнейших механизма, при помощи которых эндогенный оксид азота проявляет своё биологическое действие на клетки, органы и ткани — это S-нитрозилирование тиоловых соединений (включая тиоловые группы серосодержащих аминокислот, таких, как цистеин) и нитрозилирование ионов переходных металлов. S-нитрозилирование означает обратимое преобразование тиоловых групп (например, цистеиновых остатков в составе молекул белков) в S-нитрозотиолы (RSNO). S-нитрозилирование является важным механизмом динамической, обратимой посттрансляционной модификации и регуляции функций многих, если не всех, основных классов белков.[36] Нитрозилирование ионов переходных металлов подразумевает связывание NO с ионом переходного металла, такого, как железо, медь, цинк, хром, кобальт, марганец, в том числе с ионами переходных металлов в составе простетических групп или активных каталитических центров металлоферментов. В этой роли NO является нитрозильным лигандом. Типичные случаи нитрозилирования ионов переходных металлов включают в себя нитрозилирование гем-содержащих белков, таких, как цитохром, гемоглобин, миоглобин, что приводит к нарушению функции белка (в частности, невозможности гемоглобина выполнять свою транспортную функцию, или инактивации фермента). Особенно важную роль играет нитрозилирование двухвалентного железа, поскольку связывание нитрозильного лиганда с ионом двухвалентного железа особенно сильное и приводит к образованию очень прочной связи. Гемоглобин является важным примером белка, функция которого может изменяться под влиянием NO обоими способами: NO может как непосредственно связываться с железом в составе гема в реакции нитрозилирования, так и образовывать S-нитрозотиолы при S-нитрозилировании серосодержащих аминокислот в составе гемоглобина.[37]

Таким образом, существует несколько механизмов, при помощи которых эндогенный оксид азота оказывает влияние на биологические процессы в живых организмах, клетках и тканях. Эти механизмы включают окислительное нитрозилирование железосодержащих и других металлосодержащих белков, таких, как рибонуклеотид-редуктаза, аконитаза, активацию растворимой гуанилатциклазы с повышением образования цГМФ, стимуляцию АДФ-зависимого рибозилирования белков, S-нитрозилирование сульфгидрильных (тиоловых) групп белков, приводящее к их посттрансляционной модификации (активации либо инактивации), активацию регулируемых факторов транспорта железа, меди и других переходных металлов.[38] Было также показано, что эндогенный оксид азота способен активировать ядерный фактор транскрипции каппа (NF-κB) в мононуклеарных клетках периферической крови. А известно, что NF-κB является важным фактором транскрипции в регуляции процессов апоптоза и воспаления, и в частности важным фактором транскрипции в процессе индукции экспрессии гена индуцируемой синтазы оксида азота. Таким образом, продукция эндогенного оксида азота саморегулируется — повышение уровня NO угнетает дальнейшую экспрессию индуцируемой синтазы оксида азота и предотвращает чрезмерное повышение её уровня и чрезмерное повреждение тканей организма хозяина в процессе воспаления и иммунного ответа.[39]

Известно также, что вазодилатирующее действие оксида азота опосредуется в основном через стимуляцию им активности растворимой гуанилатциклазы, являющейся гетеродимерным ферментом, активирующимся при нитрозилировании. Стимуляция активности гуанилатциклазы приводит к накоплению циклического ГМФ. Увеличение концентрации в клетке циклического ГМФ приводит к повышению активности протеинкиназы G. Протеинкиназа G, в свою очередь, фосфорилирует ряд важных внутриклеточных белков, что приводит к обратному захвату ионов кальция из цитоплазмы во внутриклеточные хранилища и к открытию активируемых кальцием калиевых каналов. Снижение концентрации ионов кальция в цитоплазме клетки приводит к тому, что киназа лёгкой цепи миозина, активируемая кальцием, теряет активность и не может фосфорилировать миозин, что приводит к нарушению образования в молекуле миозина «мостиков» и нарушению его свёртывания в более компактную структуру (сокращения), а следовательно и к расслаблению гладкомышечной клетки. А расслабление гладкомышечных клеток стенок сосудов ведёт к расширению сосудов (вазодилатации) и увеличению кровотока.[40]

См. также

  • Реактивные формы азота

Примечания

  1. NITRIC OXIDE | CAMEO Chemicals | NOAA. Дата обращения: 1 апреля 2022. Архивировано 18 июля 2022 года.
  2. 1 2 http://www.cdc.gov/niosh/npg/npgd0448.html
  3. D. E. Koshland, Jr. The Molecule of the Year (англ.) // Science : journal. — 1992. — Vol. 258, no. 5090. — P. 1861. — doi:10.1126/science.1470903. — Bibcode: 1992Sci…258.1861K. — PMID 1470903.
  4. Азота оксиды // Химическая энциклопедия / Ред. колл.: Кнунянц И. Л. и др. — М. : Советская энциклопедия, 1988. — Т. 1 : Абл—Дар. — 623 с.
  5. Weller, Richard, Could the sun be good for your heart? Архивная копия от 16 февраля 2014 на Wayback Machine TedxGlasgow. Filmed March 2012, posted January 2013
  6. Roszer, T (2012) The Biology of Subcellular Nitric Oxide. ISBN 978-94-007-2818-9
  7. Stryer, Lubert. Biochemistry, 4th Edition (англ.). — W.H. Freeman and Company  (англ.) (рус., 1995. — P. 732. — ISBN 0-7167-2009-4.
  8. Plant-based Diets | Plant-based Foods | Beetroot Juice | Nitric Oxide Vegetables. Berkeley Test. Дата обращения: 4 октября 2013. Архивировано из оригинала 4 октября 2013 года.
  9. Ghosh, S. M.; Kapil, V.; Fuentes-Calvo, I.; Bubb, K. J.; Pearl, V.; Milsom, A. B.; Khambata, R.; Maleki-Toyserkani, S.; Yousuf, M.; Benjamin, N.; Webb, A. J.; Caulfield, M. J.; Hobbs, A. J.; Ahluwalia, A. Enhanced Vasodilator Activity of Nitrite in Hypertension: Critical Role for Erythrocytic Xanthine Oxidoreductase and Translational Potential (англ.) // Hypertension : journal. — 2013. — Vol. 61, no. 5. — P. 1091—1102. — doi:10.1161/HYPERTENSIONAHA.111.00933. — PMID 23589565.
  10. Webb, A. J.; Patel, N.; Loukogeorgakis, S.; Okorie, M.; Aboud, Z.; Misra, S.; Rashid, R.; Miall, P.; Deanfield, J.; Benjamin, N.; MacAllister, R.; Hobbs, A. J.; Ahluwalia, A. Acute Blood Pressure Lowering, Vasoprotective, and Antiplatelet Properties of Dietary Nitrate via Bioconversion to Nitrite (англ.) // Hypertension : journal. — 2008. — Vol. 51, no. 3. — P. 784—790. — doi:10.1161/HYPERTENSIONAHA.107.103523. — PMID 18250365.
  11. Hezel, MP; Weitzberg, E. The oral microbiome and nitric oxide homoeostasis (англ.) // Oral Diseases. — 2013. — P. n/a. — doi:10.1111/odi.12157.
  12. Green, Shawn J. Turning DASH Strategy into Reality for Improved Cardio Wellness Outcomes: Part II. Real World Health Care (25 июля 2013). Дата обращения: 4 октября 2013. Архивировано 17 февраля 2015 года.
  13. Proctor, P. H. Endothelium-Derived Relaxing Factor and Minoxidil: Active Mechanisms in Hair Growth (англ.) // Archives in Dermatology : journal. — 1989. — August (vol. 125, no. 8). — P. 1146. — doi:10.1001/archderm.1989.01670200122026. — PMID 2757417.
  14. Dessy, C.; Ferron, O. Pathophysiological Roles of Nitric Oxide: In the Heart and the Coronary Vasculature (англ.) // Current Medical Chemistry – Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry : journal. — 2004. — Vol. 3, no. 3. — P. 207—216. — doi:10.2174/1568014043355348.
  15. Osanai, T; Fujiwara, N; Saitoh, M; Sasaki, S; Tomita, H; Nakamura, M; Osawa, H; Yamabe, H; Okumura, K. Relationship between salt intake, nitric oxide, and asymmetric dimethylarginine and its relevance to patients with end-stage renal disease (англ.) // Blood purification : journal. — 2002. — Vol. 20, no. 5. — P. 466—468. — doi:10.1159/000063555. — PMID 12207094.
  16. Green, SJ; Mellouk, S; Hoffman, SL; Meltzer, MS; Nacy, C. A. Cellular mechanisms of nonspecific immunity to intracellular infection: Cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes (англ.) // Immunology letters : journal. — 1990. — Vol. 25, no. 1—3. — P. 15—9. — doi:10.1016/0165-2478(90)90083-3. — PMID 2126524.
  17. Gorczyniski and Stanely, Clinical Immunology. Landes Bioscience; Austin, TX. ISBN 1-57059-625-5
  18. Green, SJ; Nacy, CA; Schreiber, RD; Granger, DL; Crawford, RM; Meltzer, MS; Fortier, A. H. Neutralization of gamma interferon and tumor necrosis factor alpha blocks in vivo synthesis of nitrogen oxides from L-arginine and protection against Francisella tularensis infection in Mycobacterium bovis BCG-treated mice (англ.) // Infection and immunity  (англ.) (рус. : journal. — 1993. — Vol. 61, no. 2. — P. 689—698. — PMID 8423095.
  19. Kamijo, R; Gerecitano, J; Shapiro, D; Green, SJ; Aguet, M; Le, J; Vilcek, J. Generation of nitric oxide and clearance of interferon-gamma after BCG infection are impaired in mice that lack the interferon-gamma receptor (англ.) // Journal of inflammation : journal. — 1995. — Vol. 46, no. 1. — P. 23—31. — PMID 8832969.
  20. Green, SJ; Scheller, LF; Marletta, MA; Seguin, MC; Klotz, FW; Slayter, M; Nelson, BJ; Nacy, C. A. Nitric oxide: Cytokine-regulation of nitric oxide in host resistance to intracellular pathogens (англ.) // Immunology letters : journal. — 1994. — Vol. 43, no. 1—2. — P. 87—94. — doi:10.1016/0165-2478(94)00158-8. — PMID 7537721.
  21. Green, SJ; Crawford, RM; Hockmeyer, JT; Meltzer, MS; Nacy, C. A. Leishmania major amastigotes initiate the L-arginine-dependent killing mechanism in IFN-gamma-stimulated macrophages by induction of tumor necrosis factor-alpha (англ.) // Journal of immunology  (англ.) (рус. : journal. — 1990. — Vol. 145, no. 12. — P. 4290—4297. — PMID 2124240.
  22. Seguin, M. C.; Klotz, FW; Schneider, I; Weir, JP; Goodbary, M; Slayter, M; Raney, JJ; Aniagolu, JU; Green, S. J. Induction of nitric oxide synthase protects against malaria in mice exposed to irradiated Plasmodium berghei infected mosquitoes: Involvement of interferon gamma and CD8+ T cells (англ.) // Journal of Experimental Medicine  (англ.) (рус. : journal. — Rockefeller University Press  (англ.) (рус., 1994. — Vol. 180, no. 1. — P. 353—358. — doi:10.1084/jem.180.1.353. — PMID 7516412.
  23. Mellouk, S; Green, SJ; Nacy, CA; Hoffman, S. L. IFN-gamma inhibits development of Plasmodium berghei exoerythrocytic stages in hepatocytes by an L-arginine-dependent effector mechanism (англ.) // Journal of immunology  (англ.) (рус. : journal. — 1991. — Vol. 146, no. 11. — P. 3971—3976. — PMID 1903415.
  24. Klotz, FW; Scheller, LF; Seguin, MC; Kumar, N; Marletta, MA; Green, SJ; Azad, A. F. Co-localization of inducible-nitric oxide synthase and Plasmodium berghei in hepatocytes from rats immunized with irradiated sporozoites (англ.) // Journal of immunology  (англ.) (рус. : journal. — 1995. — Vol. 154, no. 7. — P. 3391—3395. — PMID 7534796.

  25. Wink, D.; Kasprzak, K.; Maragos, C.; Elespuru, R.; Misra, M; Dunams, T.; Cebula, T.; Koch, W.; Andrews, A.; Allen, J.; Et, al. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors (англ.) // Science : journal. — 1991. — Vol. 254, no. 5034. — P. 1001—1003. — doi:10.1126/science.1948068. — PMID 1948068.

  26. Nguyen, T.; Brunson, D.; Crespi, C. L.; Penman, B. W.; Wishnok, J. S.; Tannenbaum, S. R. DNA Damage and Mutation in Human Cells Exposed to Nitric Oxide in vitro (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1992. — Vol. 89, no. 7. — P. 3030. — doi:10.1073/pnas.89.7.3030. Free text.
  27. Li, Chun-Qi; Pang, Bo; Kiziltepe, Tanyel; Trudel, Laura J.; Engelward, Bevin P.; Dedon, Peter C.; Wogan, Gerald N. Threshold Effects of Nitric Oxide-Induced Toxicity and Cellular Responses in Wild-Type and p53-Null Human Lymphoblastoid Cells (англ.) // Chemical Research in Toxicology  (англ.) (рус. : journal. — 2006. — Vol. 19, no. 3. — P. 399—406. — doi:10.1021/tx050283e. — PMID 16544944. free text
  28. Hibbs, John B.; Taintor, Read R.; Vavrin, Zdenek; Rachlin, Elliot M. Nitric oxide: A cytotoxic activated macrophage effector molecule (англ.) // Biochemical and Biophysical Research Communications  (англ.) (рус. : journal. — 1988. — Vol. 157, no. 1. — P. 87—94. — doi:10.1016/S0006-291X(88)80015-9. — PMID 3196352.
  29. Janeway, C. A.; and others. Immunobiology: the immune system in health and disease (англ.). — 6th. — New York: Garland Science  (англ.) (рус., 2005. — ISBN 0-8153-4101-6.
  30. Jacobs, Lotte; Nawrot, Tim S; De Geus, Bas; Meeusen, Romain; Degraeuwe, Bart; Bernard, Alfred; Sughis, Muhammad; Nemery, Benoit; Panis, Luc. Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution: An intervention study (англ.) // Environmental Health  (англ.) (рус. : journal. — 2010. — Vol. 9. — P. 64. — doi:10.1186/1476-069X-9-64. — PMID 20973949.
  31. Corpas, F. J.; Barroso, JB; Carreras, A; Quirós, M; León, AM; Romero-Puertas, MC; Esteban, FJ; Valderrama, R; Palma, JM; Sandalio, LM; Gómez, M; Del Río, L. A. Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants (англ.) // Plant Physiology : journal. — American Society of Plant Biologists, 2004. — Vol. 136, no. 1. — P. 2722—2733. — doi:10.1104/pp.104.042812. — PMID 15347796.
  32. Corpas, F. J.; Barroso, Juan B.; Carreras, Alfonso; Valderrama, Raquel; Palma, José M.; León, Ana M.; Sandalio, Luisa M.; Del Río, Luis A. Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development (англ.) // Planta : journal. — 2006. — Vol. 224, no. 2. — P. 246—254. — doi:10.1007/s00425-005-0205-9. — PMID 16397797.
  33. Valderrama, R.; Corpas, Francisco J.; Carreras, Alfonso; Fernández-Ocaña, Ana; Chaki, Mounira; Luque, Francisco; Gómez-Rodríguez, María V.; Colmenero-Varea, Pilar; Del Río, Luis A.; Barroso, Juan B. Nitrosative stress in plants (англ.) // FEBS Lett  (англ.) (рус. : journal. — 2007. — Vol. 581, no. 3. — P. 453—461. — doi:10.1016/j.febslet.2007.01.006. — PMID 17240373.
  34. Corpas, F. J.; Barroso, Juan B.; Del Rio, Luis A. Enzymatic sources of nitric oxide in plant cells – beyond one protein–one function (англ.) // New Phytologist  (англ.) (рус. : journal. — 2004. — Vol. 162, no. 2. — P. 246—247. — doi:10.1111/j.1469-8137.2004.01058.x.
  35. Siegel-Itzkovich J. Viagra makes flowers stand up straight // BMJ. — 1999. — 31 июля (т. 319, № 7205). — С. 274—274. — ISSN 0959-8138. — doi:10.1136/bmj.319.7205.274a. [исправить]
  36. van Faassen, E. and Vanin, A. (eds.) (2007) Radicals for life: The various forms of nitric oxide. Elsevier, Amsterdam, ISBN 978-0-444-52236-8
  37. van Faassen, E. and Vanin, A. (2004) «Nitric Oxide», in Encyclopedia of Analytical Science, 2nd ed., Elsevier, ISBN 0-12-764100-9.
  38. Shami, PJ; Moore, JO; Gockerman, JP; Hathorn, JW; Misukonis, MA; Weinberg, J. B. Nitric oxide modulation of the growth and differentiation of freshly isolated acute non-lymphocytic leukemia cells (англ.) // Leukemia research : journal. — 1995. — Vol. 19, no. 8. — P. 527—533. — doi:10.1016/0145-2126(95)00013-E. — PMID 7658698.
  39. Kaibori M., Sakitani K., Oda M., Kamiyama Y., Masu Y. and Okumura T. Immunosuppressant FK506 inhibits inducible nitric oxide synthase gene expression at a step of NF-κB activation in rat hepatocytes (англ.) // J. Hepatol. : journal. — 1999. — Vol. 30, no. 6. — P. 1138—1145. — doi:10.1016/S0168-8278(99)80270-0. — PMID 10406194.
  40. Rhoades, RA; Tanner, G. A. Medical physiology 2nd edition (англ.). — 2003.
п • <abbr title=»Обсуждение этого шаблона»>о</abbr>р Оксиды
H2O
Li2O
LiCoO2
Li3PaO4
Li5PuO6
Ba2LiNpO6
LiAlO2
Li3NpO4
Li2NpO4
Li5NpO6
LiNbO3
BeO B2O3 С3О2
C12O9
CO
C12O12
C4O6
CO2
N2O
NO
N2O3
N4O6
NO2
N2O4
N2O5
O F
Na2O
NaPaO3
NaAlO2
Na2PtO3
MgO AlO
Al2O3
NaAlO2
LiAlO2
AlO(OH)
SiO
SiO2
P4O
P4O2
P2O3
P4O8
P2O5
S2O
SO
SO2
SO3
Cl2O
ClO2
Cl2O6
Cl2O7
K2O
K2PtO3
KPaO3
CaO
Ca3OSiO4
CaTiO3
Sc2O3 TiO
Ti2O3
TiO2
TiOSO4
CaTiO3
BaTiO3
VO
V2O3
V3O5
VO2
V2O5
FeCr2O4
CrO
Cr2O3
CrO2
CrO3
MgCr2O4
MnO
Mn3O4
Mn2O3
MnO(OH)
Mn5O8
MnO2
MnO3
Mn2O7
FeCr2O4
FeO
Fe3O4
Fe2O3
CoFe2O4
CoO
Co3O4
CoO(OH)
Co2O3
CoO2
NiO
NiFe2O4
Ni3O4
NiO(OH)
Ni2O3
Cu2O
CuO
CuFe2O4
Cu2O3
CuO2
ZnO Ga2O
Ga2O3
GeO
GeO2
As2O3
As2O4
As2O5
SeOCl2
SeOBr2
SeO2
Se2O5
SeO3
Br2O
Br2O3
BrO2
Rb2O
RbPaO3
Rb4O6
SrO Y2O3
YOF
YOCl
ZrO(OH)2
ZrO2
ZrOS
Zr2О3Сl2
NbO
Nb2O3
NbO2
Nb2O5
Nb2O3(SO4)2
LiNbO3
Mo2O3
Mo4O11
MoO2
Mo2O5
MoO3
TcO2
Tc2O7
Ru2O3
RuO2
Ru2O5
RuO4
RhO
Rh2O3
RhO2
PdO
Pd2O3
PdO2
Ag2O
Ag2O2
Cd2O
CdO
In2O
InO
In2O3
SnO
SnO2
Sb2O3
Sb2O4
Hg2Sb2O7
Sb2O5
TeO2
TeO3
I2O4
I4O9
I2O5
Cs2O
Cs2ReCl5O
BaO
BaPaO3
BaTiO3
BaPtO3
  HfO(OH)2
HfO2
Ta2O
TaO
TaO2
Ta2O5
WO2Br2
WO2
WO2Cl2
WOBr4
WOF4
WOCl4
WO3
Re2O
ReO
Re2O3
ReO2
Re2O5
ReO3
Re2O7
OsO
Os2O3
OsO2
OsO4
Ir2O3
IrO2
PtO
Pt3O4
Pt2O3
PtO2
K2PtO3
Na2PtO3
PtO3
Au2O
AuO
Au2O3
Hg2O
HgO
(Hg3O2)SO4
Hg2O(CN)2
Hg2Sb2O7
Hg3O2Cl2
Hg5O4Cl2
Tl2O
Tl2O3
Pb2O
PbO
Pb3O4
Pb2O3
PbO2
BiO
Bi2O3
Bi2O4
Bi2O5
PoO
PoO2
PoO3
At
Fr Ra   Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts
La2O2S
La2O3
Ce2O3
CeO2
PrO
Pr2O2S
Pr2O3
Pr6O11
PrO2
NdO
Nd2O2S
Nd2O3
NdHO
Pm2O3 SmO
Sm2O3
EuO
Eu3O4
Eu2O3
EuO(OH)
Eu2O2S
Gd2O3 Tb Dy2O3 Ho2O3
Ho2O2S
Er2O3 Tm2O3 YbO
Yb2O3
Lu2O2S
Lu2O3
LuO(OH)
Ac2O3 UO2
UO3
U3O8
PaO
PaO2
Pa2O5
PaOS
ThO2 NpO
NpO2
Np2O5
Np3O8
NpO3
PuO
Pu2O3
PuO2
PuO3
PuO2F2
AmO2 Cm2O3
CmO2
Bk2O3 Cf2O3 Es Fm Md No Lr


Эта страница в последний раз была отредактирована 18 декабря 2022 в 23:08.

Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.

Понравилась статья? Поделить с друзьями:
  • Как пишется формула объем параллелепипеда
  • Как пишется формула закон ома
  • Как пишется формула дихлорбутан
  • Как пишется формула дискриминанта
  • Как пишется формула гидроксида натрия