Как пишется химический элемент аммоний

Открытие планетарного масштаба. Так можно назвать обнаружение учеными Урана. Планета открыта в 1781-ом году.

Ее обнаружение стало поводом для наречения одного из элементов таблицы Менделеева
. Уран
металлический выделили из смоляной обманки в 1789-ом.

Шумиха вокруг новой планеты еще не улеглась, поэтому, идея о названии нового вещества лежала на поверхности.

В конце 18-го века еще не было понятия радиоактивности. Между тем, это основное свойство земного урана.

Ученые, работавшие с ним, облучались, сами того не зная. Кто был первопроходцем, и каковы другие свойства элемента, расскажем далее.

Свойства урана

Уран – элемент
, открытый Мартином Клапротом. Он сплавил смоляную с едким . Продукт сплавления был неполностью растворим.

Клапрот понял, что предполагаемых , и в составе минерала нет. Тогда, ученый растворил обманку в .

Из раствора выпали шестигранные зеленого цвета. На них химик воздействовал желтой кровяной , то есть, гексацианоферратом калия.

Из раствора выпал бурый осадок. Этот окисел Клапрот восстановил льняным маслом, прокалил. Получился порошок.

Пришлось прокаливать уже его, смешав с бурым . В спекшейся массе обнаружились зерна нового металла.

Позже выяснилось, что это был не чистый уран
, а его диоксид. Отдельно элемент получили лишь через 60 лет, в 1841-ом году. А еще через 55 Антуан Беккерель открыл явление радиоактивности.

Радиоактивность урана
обусловлена способностью ядра элемента захватывать нейтроны и дробиться. При этом, выделяется внушительная энергия.

Она обусловлена кинетическими данными излучения и осколков. Есть возможность обеспечить непрерывное деление ядер.

Цепная реакция запускается при обогащении природного урана его 235-ым изотопом. Его не то, чтобы добавляют в металл.

Наоборот, из руды убирают малорадиоактивный и неэффективный 238-ой нуклид, а так же, 234-ый.

Их смесь именуют обедненной, а оставшийся уран называют обогащенным. Именно такой нужен промышленникам. Но, об этом поговорим в отдельной главе.

Уран излучает
, как альфа-, так и бета- с гамма-лучами. Их обнаружили, увидев влияние металла на фотографическую пластину, обернутую черной .

Стало понятно, что новый элемент что-то излучает. Пока супруги Кюри исследовали, что именно, Мария получила дозу радиации, ставшей причиной развития у химика рака крови, от которого женщина умерла в 1934-ом году.

Бета-излучение способно разрушить не только человеческий организм, но и сам металл. Какой элемент образуется из урана?
Ответ: — бревий.

Иначе его называют протактинием. Обнаружен в 1913-ом, как раз при изучении урана.

Последний превращается в бревий без сторонних воздействий и реактивов, лишь от бета-распада.

Внешне уран – химический элемент
— цвета с металлическим блеском.

Так выглядят все актиноиды, к коим и относится 92-ое вещество. Начинается группа с 90-го номера, а заканчивается 103-им.

Стоя в начале списка, радиоактивный элемент уран
, проявляет себя, как окислитель. Степени окисления могут быть 2-ой, 3-ей, 4-ой, 5-ой, 6-ой.

То есть, химически 92-ой металл активен. Если истереть уран в порошок, он самовоспламениться на воздухе.

В обычном виде вещество окислится при контакте с кислородом, покрывшись радужной пленкой.

Если довести температуру до 1000 градусов Цельсия, хим. элемент уран
соединиться с . Образуется нитрид металла. Это вещество желтого цвета.

Брось его в воду, — раствориться, как и чистый уран. Разъедают его и все кислоты. Из органических элемент вытесняет водород.

Выталкивает его уран, так же, из соляных растворов , , , , . Если такой раствор встряхнуть, частицы 92-го металла начнут светиться.

Урановые соли
нестабильны, распадаются на свету, или в присутствии органики.

Индифферентен элемент, пожалуй, лишь к щелочам. С ними в реакцию металл не вступает.

Открытие урана
– это обнаружение сверхтяжелого элемента. Его масса позволяет выделить металл, точнее, минералы с ним, из руды.

Достаточно раздробить ее и засыпать в воду. Урановые частицы осядут первыми. С этого начинается добыча металла. Подробности, в следующей главе.

Добыча урана

Получив тяжелый осадок, промышленники выщелачивают концентрат. Цель – перевести уран в раствор. Используют серную кислоту.

Исключение делают для смолки. Этот минерал в кислоте не растворим, поэтому, используют щелочи. Секрет трудностей в 4-валентном состоянии урана.

Не проходит кислотное выщелачивание и с , . В этих минералах 92-ой металл тоже 4-валентный.

На такой воздействуют гидроксидом , известным, как едкий натр. В остальных случаях хороша кислородная продувка. Не надо отдельно запасаться серной кислотой.

Достаточно нагреть руду с сульфидными минералами до 150-ти градусов и направить на нее кислородную струю. Это ведет к образованию в кислоты, вымывающей уран
.

Химический элемент и его применение
связаны с чистыми формами металла. Дабы убрать примеси, используют сорбцию.

Ее проводят на ионообменных смолах. Подходит, так же, экстракция органическими растворителями.

Остается добавить в раствор щелочь, чтобы осадить уранаты аммония, растворить их в азотной кислоте и подвергнуть .

Итогом станут оксиды 92-го элемента. Их нагревают до 800-от градусов и восстанавливают водородом.

Итоговый оксид переводят во фторид урана
, из которого кальциетермическим восстановлением и получают чистый металл. , как видно, не из простых. Зачем же так стараться?

Применение урана

92-ой металл – основное топливо ядерных реакторов. Обедненная смесь подходит для стационарных, а для силовых установок используют обогащенный элемент.

235-ый изотоп, так же, — основа ядерного оружия. Из 92-го металла можно получить и вторичное ядерное топливо.

Здесь стоит задаться вопросом, в какой элемент превращается уран
. Из его 238-го изотопа получают , — еще одно радиоактивное, сверхтяжелое вещество.

У самого 238-го урана
велик период полураспада
, ондлится 4,5 миллиардов лет. Столь длительное разрушение приводит к малой энергоемкости.

Если рассматривать применение соединений урана, пригождаются его оксиды. Их используют в стекольной промышленности.

Оксиды выступают красителями. Можно получить от бледно-желтых до темно-зеленых. В ультрафиолетовых лучах материал флуоресцирует.

Это свойство используют не только в стеклах, но и урановых глазурях для . Оксидов урана в них от 0,3 до 6%.

В итоге, фон безопасен, не превышает 30-ти микрон в час. Фото элементов урана
, точнее, изделий с его участием, весьма красочны. Свечение стекол и посуды притягивает взоры.

Цена урана

За килограмм необогащенной окиси урана дают около 150-ти долларов. Пиковые значения наблюдались в 2007-ом.

Тогда стоимость достигала 300-от долларов за кило. Разработки урановых руд останутся рентабельными и при цене в 90-100 условных единиц.

Кто открыл элемент уран
, не знал, каковы его запасы в земной коре. Теперь, они подсчитаны.

Крупные месторождения с рентабельной ценой добычи истощатся к 2030-му году.

Если не откроют новых залежей, или не найдут альтернативы металлу, его стоимость поползет вверх.

Ядерные технологии в значительной степени основаны на использовании методов радиохимии, которые в свою очередь базируются на ядерно-физических, физических, химических и токсических свойствах ра- диоактиных элементов.

В данной главе мы ограничимся кратким описанием свойств основных делящихся изотопов — урана и плутония.

Уран

Уран (uranium
) U — элемент группы актинидов, 7-0Й период периодической системы, Z=92, атомная масса 238,029; самый тяжёлый из встречающихся в природе.

Известно 25 изотопов урана, все они радиоактивны. Самый лёгкий 217U (Tj/ 2 =26 мс), самый тяжелый 2 4 2 U (7 T J / 2 =i6,8 мин). Имеется 6 ядерных изомеров. В природном уране три радиоактивных изотопа: 2 з 8 и (99, 2 739%, Ti/ 2 =4,47109 л), 2 35U (0.7205%, Г,/2=7,04-109 лет) и 2 34U (0.0056%, Ti/
2=2,48-юз л). Удельная радиоактивность природного урана 2,48104 Бк, разделяется практически пополам между 2 34U и 288 U; 2 35U вносит малый вклад (удельная активность изотопа 2 ззи в природном уране в 21 раз меньше активности 2 3 8 U). Поперечное сечение захвата тепловых нейтронов 46, 98 и 2,7 барн для 2 ззи, 2 35U и 2 3 8 U, соответственно; сечение деления 527 и 584 барн для 2 ззи и 2 з 8 и, соответственно; природной смеси изотопов (0,7% 235U) 4,2 барн.

Табл. 1. Ядерно-физические свойства 2 з9Ри и 2 35Ц.

Табл. 2. Захват нейтронов 2 35Ц и 2 з 8 Ц.

Шесть изотопов урана способны к спонтанному делению: 282 U, 2 ззи, 234U, 235U, 2 з 6 и и 2 з 8 и. Природные изотопы 2 ззи и 2 35U делятся под действием как тепловых, так и быстрых нейтронов, а ядра 2 з 8 и способны к делению только при захвате нейтронов с энергией более 1,1 МэВ. При захвате нейтронов с меньшей энергией ядра 288 U превращаются сначала в ядра 2 -i9U, которые далее испытывают p-распад и переходят сначала в 2 -«*9Np, а затем — в 2 39Pu. Эффективные сечения захвата тепловых нейтронов ядер 2 34U, 2 35U и 2 з 8 и равны 98, 683 и 2,7-барн соответственно. Полное деление 2 35U приводит к «тепловому энергетическому эквиваленту» 2-107 кВтч/кг. В качестве ядерного топлива используют изотопы 2 35U и 2 ззи, способные поддерживать цепную реакцию деления.

В атомных реакторах нарабатываются п искусственных изотопов урана с массовыми числами 227-^240, из которых самый долгоживущий — 233U (7V 2 =i,62*io 5 лет); он получается при нейтронном облучении тория. В сверхмощных нейтронных потоках термоядерного взрыва рождаются изотопы урана с массовыми числами 239^257.

Уран-232
— техногенный нуклид, а-излучатель, Т х /
2=68,9 лет, материнские изотопы 2 з 6 Ри(а), 23 2 Np(p*) и 23 2 Ра(р), дочерний нуклид 228 Th. Интенсивность спонтанного деления 0,47 дел./с кг.

Уран-232 образуется в результате следующих распадов:

Р + -распад нуклида *3 a Np (Ti/ 2 =14,7 мин):

В ядерной промышленности 2 3 2 U нарабатывается как побочный продукт при синтезе делящегося (оружейного) нуклида 2 ззи в ториевом топливном цикле. При облучении 2 3 2 Th нейтронами происходит основная реакция:

и побочная двухстадийная реакция:

Наработка 232 U из тория идёт только на быстрых нейтронах
„>6 МэВ). Если в исходном веществе находится 2 з°ТЬ, то образование 2 3 2 U дополняется реакцией: 2 з°ТЬ+и-> 2 3‘ТЬ. Эта реакция идёт на тепловых нейтронах. Генерация 2 3 2 U по ряду причин нежелательна. Её подавляют путём использования тория с минимальной концентрацией 2 з°ТЬ.

Распад 2 з 2 и происходит по следующим направлениям:

А-распад в 228 Th (вероятность юо%, энергия распада 5,414 МэВ):

энергия испускаемых а-частиц 5,263 МэВ (в 31,6% случаев) и 5,320 МэВ (в 68,2% случаев).

  • — спонтанное деление (вероятность менее мо~ 12 %);
  • — кластерный распад с образованием нуклида 28 Mg (вероятность распада менее 5*10″ 12 %):

Кластерный распад с образованием нуклида 2

Уран-232 является родоначальником длинной цепочки распада, в которую входят нуклиды — излучатели жёстких у-квантов:

^U-(3,64 дн, a,y)-> 220 Rn-> (55,6 с, а)-> 21б Ро->(0,155 с, а)-> 212 РЬ->(10,64 ч, р, y)-> 212 Bi ->(60,6 м, р, у)-> 212 Ро а, у)->208×1, 212 Ро->(3″Ю‘ 7 с, а)-> 2о8 РЬ (стаб), 2о8 Т1->(3,06 м, р, у-> 2о8 РЬ.

Накопление 2 3 2 U неизбежно при производстве 2 ззи в ториевом энергетическом цикле. Интенсивное у-излучение, возникающее при распаде 2 3 2 U сдерживает развитие ториевой энергетики. Необычным является то, что чётный изотоп 2 з 2 11 имеет высокое сечение деления под действием нейтронов (для тепловых нейтронов 75 барн), а также высокое сечение захвата нейтронов — 73 барна. 2 3 2 U применяется в методе радиоактивных индикаторов в химических исследованиях.

2 з 2 и является родоначальником длинной цепочки распада (по схеме 2 з 2 ТЬ), в которую входят нуклиды-излучатели жёстких у-квантов. Накопление 2 3 2 U неизбежно при производстве 2 ззи в ториевом энергетическом цикле. Интенсивное у-излучение, возникающее при распаде 232 U сдерживает развитие ториевой энергетики. Необычным является то, что чётный изотоп 2 3 2 U имеет высокое сечение деления под действием нейтронов (для тепловых нейтронов 75 барн), а также высокое сечение захвата нейтронов — 73 барна. 2 3 2 U часто применяется в методе радиоактивных индикаторов в химических и физических исследованиях.

Уран-233
— техногенный радионуклид, а-излучатель (энергии 4,824 (82,7%) и 4,783 МэВ (14,9%),), Tvi=
1,585105 лет, материнские нуклиды 2 37Pu(a)-? 2 33Np(p +)-> 2 ззРа(р), дочерний нуклид 22 9Th. 2 ззи получается в атомных реакторах из тория: 2 з 2 ТЬ захватывает нейтрон и превращается в 2 ззТЬ, который распадается на 2 ззРа, а затем в 2 ззи. Ядра 2 ззи (нечётный изотоп) способны как к спонтанному делению, так и к делению под действием нейтронов любых энергий, что делает его пригодным к производству как атомного оружия, так и реакторного топлива. Эффективное сечение деления 533 барн, сечение захвата — 52 барн, выход нейтронов: на один акт деления — 2,54, на один поглощенный нейтрон — 2,31. Критическая масса 2 ззи в три раза меньше критической массы 2 35U (-16 кг). Интенсивность спонтанного деления 720 дел./с кг.

Уран-233 образуется в результате следующих распадов:

— (3 + -распад нуклида 2 33Np (7^=36,2 мин):

В промышленных масштабах 2 ззи получают из 2 32Th, облучением нейтронами:

При поглощении нейтрона, ядро 2 ззи обычно делится, но изредка захватывает нейтрон, переходя в 2 34U. Хотя 2 ззи, поглотив нейтрон, обычно делится, всё же он иногда сохраняет нейтрон, переходя в 2 34U. Наработку 2 ззи проводят как в быстрых, так и в тепловых реакторах.

С оружейной точки зрения 2 ззи, сравним с 2 39Ри: его радиоактивность — 1/7 от активности 2 39Pu (Ti/ 2 =159200 л против 24100 л у Ри), критическая масса 2 ззи на 6о% выше, чем у ^Ри (16 кг против ю кг), а скорость спонтанного деления выше в 20 раз (б-ю — ’ против 310 10). Нейтронный поток от 2 ззи в з раза выше, чем у 2 39Ри. Создание ядериого заряда на основе 2 ззи требует больших усилий, чем на ^Ри. Основное препятствие — наличие в 2ззи примеси 232 U, у-излучение проектов распада которого затрудняет работы с 2 ззи и позволяет легко обнаружить готовое оружие. К тому же, короткий период полураспада у 2 3 2 U делает его активным источником а- частиц. 2 ззи с 1% 232 и имеет в з раза более сильную a-активность, чем оружейный плутоний и, соответственно, большую радиотоксичность. Эта а- активность вызывает рождение нейтронов в лёгких элементах оружейного заряда. Для минимизации этой проблемы присутствие таких элементов как Be, В, F, Li должно быть минимальным. Наличие нейтронного фона не влияет на работу» имплозионные системы, но для пушечных схемы требуется высокий уровень чистоты по лёгким элементам. Содержание 23 2 U в оружейном 2 ззи не должно превышать 5 частей на миллион (0.0005%). В топливе энергетических тепловых реакторов наличие 2 зги не вредно, а даже желательно, т.к. снижает возможность применения урана для оружейных целей. После переработки ОЯТ и повторного использования топлива содержание 232U достигает о, 1+0,2%.

Распад 2 ззи происходит по следующим направлениям:

А-распад в 22 9Th (вероятность юо%, энергия распада 4,909 МэВ):

энергия испускаемых яг-частиц 4,729 МэВ (в 1,61% случаев), 4,784 МэВ (в 13,2% случаев) и 4,824 МэВ (в 84,4% случаев).

  • — спонтанное деление (вероятность
  • — кластерный распад с образованием нуклида 28 Mg (вероятность распада менее 1,з*10 _1 з%):

Кластерный распад с образованием нуклида 24 Ne (вероятность распада 7,3-10-“%):

Цепочка распада 2 ззи относится к нептуниевому ряду.

Удельная радиоактивность 2 ззи 3,57-ю 8 Бк/г, что соответствует a-активности (и радиотоксичиости) -15% от плутония. Всего 1% 2 3 2 U увеличивает радиоактивность до 212 мКи/г.

Уран-234
(уран II, UII)
входит в состав природного урана (0,0055%), 2,445105 лет, а-излучатель (энергия а-частиц 4,777 (72%) и

4,723 (28 %) МэВ), материнские радионуклиды: 2 з 8 Ри(а), 234 Pa(P), 234 Np(p +),

дочерний изотоп в 2 з»ть.

Обычно 234 U находится в равновесии с 2 з 8 и, распадаясь и образуясь с одинаковой скоростью. Примерно половину радиоактивности природного урана составляет вклад 234U. Обычно 234U получают ионно-обменной хроматографией старых препаратов чистого 2 з 8 Ри. При а-распаде *звРи поддается 2 34U, поэтому старые препараты 2 з 8 Ри представляют собой хорошие источники 2 34U. юо г 2з8Ри содержат через год 776 мг 2 34U, через 3 года

2,2 г 2 34U. Концентрация 2 34U в высокообогащённом уране довольно высока из-за предпочтительного обогащения лёгкими изотопами. Поскольку 2 34и — сильный у-излучатель, имеются ограничения на его концентрацию в уране, предназначенном для переработки в топливо. Повышенный уровень 234и приемлем для реакторов, но переработанное ОЯТ содержит уже неприемлемые уровни этого изотопа.

Распад 234и происходит по следующим направлениям:

А-распад в 2 з°ТЬ (вероятность 100%, энергия распада 4,857 МэВ):

энергия испускаемых а-частиц 4,722 МэВ (в 28,4% случаев) и 4,775 МэВ (в 71,4% случаев).

  • — спонтанное деление (вероятность 1,73-10-9%).
  • — кластерный распад с образованием нуклида 28 Mg (вероятность распада 1,4-10″ п %, по другим данным 3,9-10-“%):
  • — кластерный распад с образованием нуклидов 2 4Ne и 26 Ne (вероятность распада 9-10″ ,2 %, по другим данным 2,з-10 _11 %):

Известен единственный изомер 2 34ти (Тх/ 2 = 33,5 мкс).

Сечение поглощения 2 34U тепловых нейтронов юо барн, а для резонансного интеграла, усреднённого по различным промежуточным нейтронам 700 барн. Поэтому в реакторах на тепловых нейтронах он конвертируется в делящийся 235U с большей скоростью, чем намного большее количество 238U (с поперечным сечением 2,7 барн) конвертируется в 2 з9Ри. В результате, ОЯТ содержит меньше 2 34U, чем свежее топливо.

Уран-235
относится к семейству 4П+3, способен давать цепную реакцию деления. Это — первый изотоп, на котором была открыта реакция вынужденного деления ядер под действием нейтронов. Поглощая нейтрон, 235U переходит в 2 зби, который делится на две части, выделяя энергию и испуская несколько нейтронов. Делящийся нейтронами любых энергий, способный к самопроизвольному делению, изотоп 2 35U входит в состав природного уфана (0,72%), а-излучатель (энергии 4,397 (57%) и 4,367 (18%) МэВ), Ti/j=7,038-ю 8 лет, материнские нуклиды 2 35Ра, 2 35Np и 2 39Ри, дочерний — 23«Th. Интенсивность спонтанного деления 2 3su 0,16 делений/с кг. При делении одного ядра 2 35U выделяется 200 МэВ энергии=з,2Ю п Дж, т.е. 18 ТДж/моль=77 ТДж/кг. Поперечное сечение деления тепловыми нейтронами составляет 545 барн, а быстрыми нейтронами — 1,22 барна, выход нейтронов: на один акт деления — 2,5, на один поглощенный нейтрон — 2,08.

Замечание. Поперечное сечение захвата медленных нейтронов с образованием изотопа 2 зи (юо барн), так что общее поперечное сечение поглощения медленных нейтронов составляет 645 барн.

  • — спонтанное деление (вероятность 7*10~9%);
  • — кластерный распад с образованием нуклидов 2 °Ne, 2 5Ne и 28 Mg (вероятности соответственно составляют 8-io _10 %, 8-кг 10 %, 8*Ю» ,0 %):

Рис. 1.

Известен единственный изомер 2 35n»u (7/ 2 =2б мин).

Удельная активность 2 35Ц 7,77-ю 4 Бк/г. Критическая масса оружейного урана (93,5% 2 35U) для шара с отражателем — 15-7-23 кг.

Деление 2 »5U используется в атомном оружии, для производства энергии и для синтеза важных актинидов. Цепная реакция поддерживается благодаря избытку нейтронов, образующихся при делении 2 35Ц.

Уран-236
встречается на Земле природе в следовых количествах (на Луне его больше), а-излучатель (?

Рис. 2. Радиоактивное семейство 4/7+2 (включая -з 8 и).

В атомном реакторе 2 ззи поглощает тепловой нейтрон, после чего он с вероятностью 82% делится, а с вероятностью 18% испускает у-квант и превращается в 2 з б и (на юо разделившихся ядер 2 35U приходится 22 образовавшихся ядер 2 3 6 U). В незначительных количествах входит в состав свежего топлива; накапливается при облучении урана нейтронами в реакторе, и потому используется как «сигнализатор» ОЯТ. 2 з б и образуется как побочный продукт при сепарации изотопов методом газовой диффузии при регенерации использованного ядерного горючего. Образующийся в энергетическом реакторе 236 U — нейтронный яд, его присутствие в ядерном топливе компенсируют высоким уровнем обогащения 2 35U.

2 з б и используется как трассер смешения океанических вод.

Уран-237,
Т&=
6,75 дн, бета- и гамма-излучатель, может быть получен по ядерным реакциям:

Детектрирование 287 и проводят по линиям с Еу=
о,об МэВ (36%), 0,114 МэВ (0,06%), 0,165 МэВ (2,0%), 0,208 МэВ (23%)

237U применяется в методе радиоактивных индикаторов в химических исследованиях. Измерение концентрации (2 4°Am) в осадках, выпадающих после испытания атомного оружия, даёт ценную информацию о типе заряда и использованной аппаратуре.

Уран-238
— относится к семейству 4П+2, делится нейтронами высоких энергий (более 1,1 МэВ), способен к самопроизвольному делению, составляет основу природного урана (99,27%), а-излучатель, 7’ ; /2=4>4б8-109 лет, непосредственно распадается на 2 34Th, образует ряд генетически связанных радионуклидов, и через 18 продуктов превращается в 20б РЬ. Чистый 2 3 8 U имеет удельную радиоактивность 1,22-104 Бк. Период полураспада очень большой — порядка ю 16 лет, так что вероятность деления по отношению к основному процессу — испусканию а-частицы — составляет всего Ю» 7 . Один килограмм урана даёт всего ю спонтанных делений в секунду, а за это же время а-частицы излучают 20 миллионов ядер. Материнские нуклиды: 2 4 2 Ри(а), *з8ра(р-) 234Th, дочерний T,/

2
=

2
:i

4
Th.

Уран-238 образуется в результате следующих распадов:

2 (V0 4) 2 ] 8Н 2 0. Из вторичных минералов распространён гидратированный уранилфосфат кальция Ca(U0 2) 2 (P0 4) 2 -8H 2 0. Часто урану в минералах сопутствуют другие полезные элементы — титан, тантал, редкие земли. Поэтому естественно стремление к комплексной переработке ураисодержащих руд.

Основные физические свойства урана: атомная масса 238,0289 а.е.м. (г/моль); радиус атома 138 пм (1 пм=ю 12 м); энергия ионизации (первый электрон 7,11 эВ; электронная конфигурация -5f36d‘7s 2 ; степени окисления 6, 5, 4, 3; Г П л=113 2 , 2 °; Т т
,1=3818°; плотность 19,05; удельная теплоёмкость 0,115 ДжДКмоль); прочность на разрыв 450 МПа, Теплота плавления 12,6 кДж/моль, теплота испарения 417 кДж/моль, удельная теплоёмкость 0,115 Дж/(моль-К); молярный объём 12,5 смз/моль; характеристическая температура Дебая © Д =200К, температура перехода в сверхпроводящее состояние о,68К.

Уран — тяжёлый, серебристо-белый глянцевитый металл. Он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами, в порошкообразном состоянии пирофорен. Уран имеет три аллотропные формы: альфа (ромбическая, a-U, параметры решётки 0=285, Ь=
587, с=49б пм, стабильна до 667,7°), бета (тетрагональная, p-U, стабильна от 667,7 до 774,8°), гамма (с кубической объёмно центрированной решёткой, y-U, существующей от 774,8° до точки плавления, frm=ii34 0), в которых уран наиболее податлив и удобен для обработки.

При комнатной температуре устойчива ромбическая a-фаза, призматическая структура состоит из волнистых атомных слоёв, параллельных плоскости abc,
в чрезвычайно асимметричной призматической решётке. В пределах слоёв, атомы тесно связаны, в то время как прочность связей между атомами смежных слоёв намного слабее (рис. 4). Такая анизотропная структура затрудняет сплавление урана с другими металлами. Только молибден и ниобий создают с ураном твёрдофазные сплавы. Всё же металлический уран может вступать во взаимодействие со многими сплавами, образуя интерметаллические соединения.

В интервале 668^775° существует (3-уран. Тетрагонального типа решётка имеет слоистую структуру со слоями, параллельными плоскости ab
в позициях 1/4С, 1/2с
и 3/4С элементарной ячейки. При температуре выше 775° образуется у-уран с объёмноцентрированной кубической решёткой. Добавление молибдена позволяет иметь у-фазу при комнатной температуре. Молибден образует обширный ряд твёрдых растворов с у-ураном и стабилизирует у-фазу при комнатной температуре. у-Уран намного мягче и более ковкий, чем хрупкие а- и (3-фазы.

Существенное влияние на физико-механические свойства урана оказывает облучение нейтронами, вызывающее увеличение размеров образца, изменение формы, а также резкое ухудшение механических свойств (ползучесть, охрупчивание) урановых блоков в процессе работы ядерного реактора. Увеличение объёма обусловлено накоплением в уране при делении примесей элементов с меньшей плотностью (перевод 1%
урана в осколочные элементы увеличивает объём на 3,4%).

Рис. 4. Некоторые кристаллические структуры урана: а — а-уран, б — р-уран.

Наиболее распространенными методами получения урана в металлическом состоянии является восстановление их фторидов щёлочными или щелочноземельными металлами или электролиз расплавов их солей. Уран может быть получен также металлотермическим восстановлением из карбидов вольфрамом или танталом.

Способность легко отдавать электроны определяет восстановительные свойства урана и его большую химическую активность. Уран может взаимодействовать почти со всеми элементами, кроме благородных газов, приобретая при этом степени окисления +2, +3, +4, +5, +6. В растворе основная валентность 6+.

Быстро окисляясь на воздухе, металлический уран покрывается радужной плёнкой оксида. Мелкий порошок урана самовоспламеняется на воздухе (при температурах 1504-175°), образуя и;} Ов. При 1000° уран соединяется с азотом, образуя жёлтый нитрид урана. Вода способна реагировать с металлом, медленно при низкой температуре и быстро при высокой. Уран бурно реагирует с кипящей водой и водяным паром с выделением водорода, который с ураном образует гидрид

Эта реакция проходит более энергично, чем горение урана в кислороде. Такая химическая активность урана заставляет защищать уран в ядерных реакторах от контакта с водой.

Уран растворяется в соляной, азотной и других кислотах, образуя соли U(IV), зато не взаимодействует со щелочами. Уран вытесняет водород из неорганических кислот и солевых растворов таких металлов как ртуть, серебро, медь, олово, платина и золото. При сильном встряхивании металлические частицы урана начинают светиться.

Особенности структуры электронных оболочек атома урана (наличие ^/-электронов) и некоторые его физико-химические свойства служат основанием для отнесения урана к ряду актинидов. Однако есть химическая аналогия урана с Сг, Мо и W. Уран отличается высокой химической активностью и реагирует со всеми элементами за исключением благородных газов. В твёрдой фазе примерами U(VI) являются триоксид уранила U0 3 и уранилхлорид U0 2 C1 2 . Тетрахлорид урана UC1 4 и диоксид урана U0 2

Примеры U(IV). Вещества, содержащие U(IV) обычно нестабильны и обращаются в шестивалентные при длительном пребывании на воздухе.

В системе уран-кислород установлены шесть оксидов: UO, U0 2 , U 4 0 9 , и 3 Ов, U0 3 . Для них характерна широкая область гомогенности. U0 2 — основной оксид, тогда как U0 3 — амфотерна. U0 3 — взаимодействует с водой с образованием ряда гидратов, из них важнейшие — диурановая кислота H 2 U 2 0 7 и урановая кислота Н 2 1Ю 4 . Со щелочами U0 3 образует соли этих кислот — уранаты. При растворении U0 3 в кислотах образуются соли двухзарядного катиона уранила U0 2 a+ .

Диоксид урана, U0 2 , стехиометрического состава имеет коричневый цвет. При увеличении содержания кислорода в оксиде цвет изменяется от темнокоричневого до чёрного. Кристаллическая структура типа CaF 2 , а

= 0,547 нм; плотность 10,96 г/см»* (самая большая плотность среди оксидов урана). Т , пл =2875 0 , Т кн „

= 3450°, Д#°298 =-1084,5 кДж/моль. Диоксид урана является полупроводником с дырочной проводимостью, сильный парамагнетик. ПДК = о,015мг/мз. Не растворим в воде. При температуре -200° присоединяет кислород, достигая состава U0 2>25 .

Оксид урана (IV) можно полущить по реакциям:

Диоксид урана проявляет только основные свойства, ему соответствует основной гидроксид U(OH) 4 , который далее превращается в гидратированный гидроксид U0 2 Н 2 0. Диоксид урана медленно растворяется в сильных кислотах-неокислителях в отсутствие кислорода воздуха с образованием ионов Ш + :

U0 2 + 2H 2 S0 4 ->U(S0 4) 2 + 2Н 2 0. (38)

Он растворим в концентрированных кислотах, причём скорость растворения можно значительно увеличить добавлением фтор-иона.

При растворении в азотной кислоте происходит образование ура- нил-иона 1Ю 2 2+ :

Триурана октаоксид U 3 0s (закись-окись урана) — порошок, окраска которого меняется от чёрной до темно-зелёной; при сильном измельчении — оливково-зелёного цвета. Крупные кристаллы чёрного цвета, оставляют на фарфоре зеленые штрихи. Известны три кристаллические модификации U 3 0h: a-U 3 C>8 — кристаллическая структура ромбическая (пр. гр. С222; 0=0,671 нм; 6=1,197 нм; с=о,8з нм; d

=0,839 нм); p-U 3 0e — кристаллическая структура ромбическая (пространственная группа Стст;

0=0,705 нм; 6=1,172 нм; 0=0,829 нм. Начало разложения юоо° (переходит в 1Ю 2), ПДК= 0,075 мг/мз.

U 3 C>8 можно получить по реакции:

Прокаливанием U0 2 , U0 2 (N0 3) 2 , U0 2 C 2 0 4 3H 2 0, U0 4 -2H 2 0 или (NH 4) 2 U 2 0 7 при 750 0 на воздухе или в атмосфере кислорода (р=150+750 мм рт. ст.) полущают стехиометрически чистый U 3 08.

При прокаливании U 3 0s при Т>юоо° идёт восстановление до 1Ю 2 , однако при остывании на воздухе происходит возврат в U 3 0s. U 3 0e растворяется только в концентрированных сильных кислотах. В соляной и серной кислотах образуется смесь U(IV) и U(VI), а в азотной кислоте — нитрат ура- нила. Разбавленная серная и соляная кислоты очень слабо реагируют с U 3 Os даже при нагревании, добавка окислителей (азотной кислоты, пиролюзита) резко увеличивает скорость растворения. Концентрированная H 2 S0 4 растворяет U 3 Os с образованием U(S0 4) 2 и U0 2 S0 4 . Азотная кислота растворяет U 3 Oe с образованием уранилнитрата.

Триоксид урана, U0 3 — кристаллическое или аморфное вещество ярко жёлтого цвета. Реагирует с водой. ПДК = 0,075 мг/м 3 .

Получается при прокаливании полиуранатов аммония, пероксида урана, оксалата уранила при 300-^-500° и шестиводного уранилнитрата. При этом образуется оранжевый порошок аморфной структуры с плотностью

6,8 г/смз. Кристаллическая форма 1Ю 3 может быть получена окислением U 3 0 8 при температурах 450°ч-750° в токе кислорода. Существуют шесть кристаллических модификаций U0 3 (а, (3, у> §> ?, п)- U0 3 гигроскопичен и во влажном воздухе превращается в гидроксид уранила. Его нагрев при 520°-^6оо° даёт соединение состава 1Ю 2>9 , дальнейшее нагревание до 6оо° позволяет получить U 3 Os.

Водород, аммиак, углерод, щелочные и щёлочноземельные металлы восстанавливают U0 3 до U0 2 . При пропускании смеси газов HF и NH 3 образуется UF 4 . В высшей валентности уран проявляет амфотерные свойства. При действии кислот U0 3 или на его гидраты образуются соли уранила (U0 2 2+), окрашенные в жёлто-зелёный цвет:

Большинство солей уранила хорошо растворимы в воде.

Со щелочами при сплавлении U0 3 образует соли урановой кислоты — уранаты МДКХ,:

Со щелочными растворами триоксид урана образует соли полиура- новых кислот — полиуранаты дгМ 2 0у1Ю 3 пН^О.

Соли урановой кислоты практически нерастворимы в воде.

Кислотные свойства U(VI) выражены более слабо, чем основные.

С фтором уран реагирует при комнатной температуре. Стабильность высших галогенидов падает от фторидов к иодидам. Фториды UF 3 , U4F17, U2F9 и UF 4 нелетучи, a UFe летучь. Важнейшими из фторидов являются UF 4 и UFe.

Фтппиппиянир окгиля т»яня ппптркярт по прякттии:

Реакция в кипящем слое осуществляется по уравнению:

Возможно использование фторирующих агентов: BrF 3 , CC1 3 F (фреон-11) или CC1 2 F 2 (фреон-12):

Фторид урана(1У) UF 4 («зелёная соль») — порошок от голубоватозеленоватого до изумрудного цвета. Г 11Л =юз6°; Г к,«,.=-1730°. ДЯ° 29 8= 1856 кДж/моль. Кристаллическая структура моноклинная (пр. гп. С2/с; 0=1,273 нм; 5=1,075 нм; 0=0,843 нм; d=
6,7 нм; р=12б°20″; плотность 6,72 г/смз. UF 4 — устойчивое, неактивное, нелетучее соединение плохо растворимое в воде. Лучший растворитель для UF 4 — дымящая хлорная кислота НС10 4 . В кислотах-окислителях растворяется с образованием соли уранила; быстро растворяется в горячем растворе Al(N0 3) 3 или А1С1 3 , а также в растворе борной кислоты, подкисленной H 2 S0 4 , НС10 4 или НС1. Комплексооб- разователи, связывающие фторид-ионы, например, Fe3 + , А1з + или борная кислота, также способствуют растворению UF 4 . С фторидами других металлов образует ряд малорастворимых двойных солей (MeUFe, Me 2 UF6, Me 3 UF 7 и др.). Промышленное значение имеет NH 4 UF 5 .

Фторид U(IV) является промежуточным продуктом при получении

как UF6, так и металлического урана.

UF 4 можно полущить по реакциям:

или путём электролитического восстановления фторида уранила.

Гексафторид урана UFe — при комнатной температуре кристаллы цвета слоновой кости с высоким коэффициентом преломления. Плотность

5,09 г/смз, плотность жидкого UFe — 3,63 г/смз. Летучее соединение. Твоаг = 5^>5°> Гил=б4,5° (под давлением). Давление насыщенных паров достигает атмосферы при 560°. Энтальпия образования АЯ° 29 8=-211б кДж/моль. Кристаллическая структура ромбическая (пр. гр. Рпта;
0=0,999 нм; fe=
0,8962 нм; с=о,5207 нм; d
5,060 нм (25 0). ПДК — 0,015 мг/мз. Из твердого состояния UF6 может возгоняться из твёрдой фазы (сублимировать) в газ, минуя жидкую фазу при широком диапазоне давлений. Теплота сублимации при 50 0 50 кДж/мг. Молекула не имеет дипольного момента, поэтому UF6 не ассоциирует. Пары UFr, — идеальный газ.

Получается при действии фтора на U его соединения:

Помимо газофазных реакций существуют и жидкофазные реакции

получения UF6 с помощью галогенфторидов, например

Существует способ получения UF6 без использования фтора — окислением UF 4:

UFe не реагирует с сухим воздухом, кислородом, азотом и С0 2 , но при контакте с водой, даже с её следами, подвергается гидролизу:

Взаимодействует он с большинством металлов, образуя их фториды, что осложняет способы его хранения. В качестве материалов сосудов для работы с UF6 пригодны: при нагревании Ni, монель и Pt, на холоду — ещё и тефлон, абсолютно сухие кварц и стекло, медь и алюминий. При температурах 25-ьюо 0 образует комплексные соединения с фторидами щелочных металлов и серебра типа 3NaFUFr>, 3KF2UF6.

Хорошо растворяется в различных органических жидкостях, в неорганических кислотах и во всех галогеифторидах. Инертен к сухим 0 2 , N 2 , С0 2 , С1 2 , Вг 2 . Для UFr, характерны реакции восстановления с большинством чистых металлов. С углеводородами и другими органическими веществами UF6 энергично реагирует, поэтому закрытые сосуды с UFe могут взрываться. UF6 в интервале 25 -гЮО° образует комплексные соли с фторидами щелочных и других металлов. Это свойство используют в технологии для избирательного извлечения UF

Гидриды урана UH 2 и UH 3 занимают промежуточное положение между солеподобными гидридами и гидридами типа твердых растворов водорода в металле.

При взаимодействии урана с азотом образуются нитриды. В системе U-N известны четыре фазы: UN (нитрид урана), a-U 2 N 3 (сесквинитрид), р- U 2 N 3 и UN If90 . Достичь состава UN 2 (динитрид) не удаётся. Надёжными и хорошо управляемыми являются синтезы мононитрида урана UN, которые лучше осуществлять непосредственно из элементов. Нитриды урана — порошкообразные вещества, окраска которых меняется от темно-серой до серой; похожи на металл. UN обладает кубической гранецентрированной кристаллической структурой, типа NaCl (0=4,8892 А); (/=14,324, 7^=2855°, устойчив в вакууме до 1700 0 . Его получают взаимодействием U или гидрида U с N 2 или NH 3 , разложением высших нитридов U при 1300° или их восстановлением металлическим ураном. U 2 N 3 известен в двух полиморфных модификациях: кубической а и гексагональной р (0=0,3688 нм, 6=0,5839 нм), выделяет N 2 в вакууме выше 8оо°. Его получают восстановлением UN 2 водородом. Динитрид UN 2 синтезируют реакцией U с N 2 при высоком давлении N 2 . Нитриды урана легко растворимы в кислотах и в растворах щелочей, но разлаются расплавленными щелочами.

Нитрид урана получают двустадийным карботермическим восстановлением оксида урана:

Нагрев в аргоне при 7М450 0 в течение 10*20 час

Получить нитрид урана состава,
близкого к динитриду, UN 2 , можно воздействием аммиаком на UF 4 при высокой температуре и давлении.

Динитрид урана при нагреве разлагается:

Нитрид урана, обогащённый по 2 35U, обладает более высокой плотностью деления, теплопроводностью и температурой плавления, чем оксиды урана — традиционное топливо современных энергетических реакторов. Он также обладает хорошей механической и стабильностью, превышающей традиционное топливо. Поэтому это соединение рассматривается как перспективная основа для ядерное горючего реакторов на быстрых нейтронах (поколение IV ядерных реакторов).

Замечание. UN весьма полезно обогатить по ‘5N, т.к. ,4 N склонен захватывать нейтроны, генерируя по реакции (п,р) радиоактивный изотоп 14 С.

Карбид урана UC 2 (?-фаза) — светло-серое с металлическим блеском кристаллическое вещество. В системе U-C (карбиды урана) существуют UC 2 (?-фаза), UC 2 (б 2 -фаза), U 2 C 3 (е-фаза), UC (б 2 -фаза) — карбиды урана. Дикарбид урана UC 2 может быть получен по реакциям:

U + 2C^UC 2 (54в)

Карбиды урана используются как топливо атомных реакторов, они перспективны как топливо для космических ракетных двигателей.

Нитрат уранила, уранил азотнокислый, U0 2 (N0 3) 2 -6H 2 0. Роль металла в этой соли исполняет катион уранила 2+ . Кристаллы жёлтого цвета с зеленоватым отблеском, легко растворимые в воде. Водный раствор имеет кислую реакцию. Растворим в этаноле, ацетоне и эфире, нерастворим в бензоле, толуоле и хлороформе. При нагревании кристаллы плавятся и выделяют HN0 3 и Н 2 0. Кристаллогидрат легко выветриваются на воздухе. Характерная реакция — при действии NH 3 образуется жёлтый осадок урановокислого аммония.

Уран способен образовывать металл органические соединения. Примерами являются циклопен-тадиенильные производные состава U(C 5 H 5) 4 и их галогензамещенные и(С 5 Н 5) 3 Г или и(С 5 Н 5) 2 Г 2 .

В водных растворах уран наиболее устойчив в состоянии окисления U(VI) в виде иона уранила U0 2 2+ . В меньшей степени для него характерно состояние U(IV), но он может находиться даже в виде U(III). Состояние окисления U(V) может существовать как ион 1Ю 2 + , но это состояние редко наблюдается из-за склонности к диспропорционированию и гидролизу.

В нейтральных и кислых растворах U(VI) существует в виде U0 2 2+ — иона уранила, окрашенного в жёлтый цвет. К хорошо растворимым солям уранила относятся нитрат U0 2 (N0 3) 2 , сульфат U0 2 S0 4 , хлорид U0 2 C1 2 , фторид U0 2 F 2 , ацетат U0 2 (CH 3 C00) 2 . Эти соли выделяются из растворов в виде кристаллогидратов с различным числом молекул воды. Малорастворимыми солями уранила являются: оксалат U0 2 C 2 0 4 , фосфаты U0 2 HP0., и UO2P2O4, уранилфосфат аммония UO2NH4PO4, уранилванадат натрия NaU0 2 V0 4 , ферроцианид (U0 2) 2 . Для иона уранила характерна склонность к образованию комплексных соединений. Так известны комплексы с ионами фтора типа -, 4- ; нитратные комплексы ‘ и 2 *; сернокислые комплексы 2 » и 4-; карбонатные комплексы 4 » и 2 » и др. При действии щелочей на растворы солей уранила выделяются труднорастворимые осадки диуранатов типа Me 2 U 2 0 7 (моноуранаты Me 2 U0 4 не выделяются из растворов, они получаются сплавлением оксидов урана с щелочами). Известны полиуранаты Me 2 U n 0 3 n+i (например, Na 2 U60i 9).

U(VI) восстанавливается в кислых растворах до U(IV) железом, цинком, алюминием, гидросульфитом натрия, амальгамой натрия. Растворы окрашены в зелёный цвет. Щёлочи осаждают из них гидроокись и0 2 (0Н) 2 , плавиковая кислота — фторид UF 4 -2,5H 2 0, щавелевая кислота — оксалат U(C 2 0 4) 2 -6H 2 0. Склонность к комплексообразованию у иона U 4+ меньше, чем у ионов уранила.

Уран (IV) в растворе находится в виде ионов U 4+ , которые сильно гидролизованы и гидратированы:

В кислых растворах гидролиз подавляется.

Уран (VI) в растворе образует оксокатион уранил — U0 2 2+ Известны многочисленные уранил-соединения, примерами которых являются: U0 3 , U0 2 (C 2 H 3 0 2) 2 , U0 2 C0 3 -2(NH 4) 2 C0 3 U0 2 C0 3 , U0 2 C1 2 , U0 2 (0H) 2 , U0 2 (N0 3) 2 , UO0SO4, ZnU0 2 (CH 3 C00) 4 и др.

При гидролизе уранил-иона образуется ряд многоядерных комплексов:

При дальнейшем гидролизе возникает U 3 0s(0H) 2 и затем U 3 0 8 (0H) 4 2 -.

Для качественного обнаружения урана применяют методы химического, люминисцентного, радиометрического и спектрального анализов. Химические методы преимущественно основаны на образовании окрашенных соединений (например, красно-бурая окраска соединения с ферроцианидом, жёлтая — с перекисью водорода, голубая — реактивом арсеназо). Люминисцентный метод основан на способности многих соединений урана под действием УФ-лучей давать желтовато-зеленоватое свечение.

Количественное определение урана производится различными методами. Важнейшие из них: объёмные методы, состоящие в восстановлении U(VI) до U(IV) с последующим титрованием растворами окислителей; весовые методы — осаждение уранатов, пероксида, купферранатов U(IV), оксихинолята, оксалата и т.п. с последующей их прокалкой при юоо° и взвешиванием U 3 0s; полярографические методы в растворе нитрата позволяют определить 10*7-гЮ-9 г урана; многочисленные колориметрические методы (например, с Н 2 0 2 в щелочной среде, с реактивом арсеназо в присутствии ЭДТА, с дибензоилметаном, в виде роданидного комплекса и др.); люминесцентный метод, позволяющий определить при сплавлении с NaF до ю 11
г урана.

235U относится к группе А радиационной опасности, минимально значимая активность МЗА=3,7-Ю 4 Бк, 2 з 8 и — к группе Г, МЗА=3,7-ю 6 Бк (300 г).

Уран
(лат. uranium), u, радиоактивный химический элемент iii группы периодической системы Менделеева, относится к семейству актиноидов,
атомный номер 92, атомная масса 238,029; металл. Природный У. состоит из смеси трёх изотопов: 238 u – 99,2739% с периодом полураспада t 1 / 2 = 4,51 · 10 9 лет, 235 u – 0,7024% (t 1 / 2 = 7,13 · 10 8 лет) и 234 u – 0,0057% (t 1 / 2 = 2,48 · 10 5 лет). Из 11 искусственных радиоактивных изотопов с массовыми числами от 227 до 240 долгоживущий – 233 u (t 1 / 2 = 1,62 · 10 5 лет); он получается при нейтронном облучении тория. 238 u и 235 u являются родоначальниками двух радиоактивных рядов.

Историческая справка.

У. открыт в 1789 нем. химиком М. Г. Клапротом и назван им в честь планеты Уран, открытой В. Гершелем
в 1781. В металлическом состоянии У. получен в 1841 франц. химиком Э. Пелиго при восстановлении ucl 4 металлическим калием. Первоначально У. приписывали атомную массу 120, и только в 1871 Д. И. Менделеев
пришёл к выводу, что эту величину надо удвоить.

Длительное время уран представлял интерес только для узкого круга химиков и находил ограниченное применение для производства красок и стекла. С открытием явления радиоактивности
У. в 1896 и радия
в 1898 началась промышленная переработка урановых руд с целью извлечения и использования радия в научных исследованиях и медицине. С 1942, после открытия в 1939 явления деления ядер,
У. стал основным ядерным топливом.

Распространение в природе.

У. – характерный элемент для гранитного слоя и осадочной оболочки земной коры. Среднее содержание У. в земной коре (кларк) 2,5 · 10 -4 % по массе, в кислых изверженных породах 3,5 · 10 -4 %, в глинах и сланцах 3,2 · 10 -4 %, в основных породах 5 · 10 -5 %, в ультраосновных породах мантии 3 · 10 -7 %. У. энергично мигрирует в холодных и горячих, нейтральных и щелочных водах в форме простых и комплексных ионов, особенно в форме карбонатных комплексов. Важную роль в геохимии У. играют окислительно-восстановительные реакции, поскольку соединения У., как правило, хорошо растворимы в водах с окислительной средой и плохо растворимы в водах с восстановительной средой (например, сероводородных).

Известно около 100 минералов У.; промышленное значение имеют 12 из них.
В ходе геологической истории содержание У. в земной коре уменьшилось за счёт радиоактивного распада; с этим процессом связано накопление в земной коре атомов РЬ, Не. Радиоактивный распад У. играет важную роль в энергетике земной коры, являясь существенным источником глубинного тепла.

Физические свойства.

У. по цвету похож на сталь, легко поддаётся обработке. Имеет три аллотропические модификации – a , b и g с температурами фазовых превращений: a ®b 668,8±0,4°c, b® g 772,2 ± 0,4 °С; a -форма имеет ромбическую решётку a
= 2.8538 å, b
= 5,8662 å, с
= 4,9557 å), b -форма – тетрагональую решётку (при 720 °С а
= 10,759 , b
= 5,656 å), g -форма – объёмноцентрированную кубическую решётку (при 850°c а =
3,538 å). Плотность У. в a -форме (25°c) 19,05 ± 0,2 г/см
3 , t
пл 1132 ± 1°С; t
kип 3818 °С; теплопроводность (100–200°c), 28,05 вт/
(м
· К
)
, (200–400 °c) 29,72 вт/
(м
· К
) ; удельная теплоёмкость (25°c) 27,67 кдж/(кг
· К
) ; удельное электросопротивление при комнатной температуре около 3 · 10 -7 ом
· см,
при 600°c 5,5 · 10 -7 ом
· см;
обладает сверхпроводимостью при 0,68 ±
0,02К; слабый парамагнетик, удельная магнитная восприимчивость при комнатной температуре 1,72 · 10 -6 .

Механические свойства У. зависят от его чистоты, от режимов механической и термической обработки. Среднее значение модуля упругости для литого У. 20,5 · 10 -2 Мн/м
2
предел прочности при растяжении при комнатной температуре 372–470 Мн/м
2 ,
прочность повышается после закалки из b — и g -фаз; средняя твёрдость по Бринеллю 19,6–21,6 · 10 2 Мн/м
2 .


Облучение потоком нейтронов (которое имеет место в ядерном реакторе
) изменяет физико-механические свойства У.: развивается ползучесть и повышается хрупкость, наблюдается деформация изделий, что заставляет использовать У. в ядерных реакторах в виде различных урановых сплавов.

У. – радиоактивный элемент.
Ядра 235 u и 233 u делятся спонтанно, а также при захвате как медленных (тепловых), так и быстрых нейтронов с эффективным сечением деления 508 · 10 -24 см
2 (508 барн
) и 533 · 10 -24 см
2 (533 барн
) соответственно. Ядра 238 u делятся при захвате только быстрых нейтронов с энергией не менее 1 Мэв;
при захвате медленных нейтронов 238 u превращается в 239 pu ,
ядерные свойства которого близки к 235 u. Критич. масса У. (93,5% 235 u) в водных растворах составляет менее 1 кг,
для открытого шара – около 50 кг, для шара с отражателем – 15 – 23 кг;
критическая масса 233 u – примерно 1 / 3 критической массы 235 u.

Химические свойства.

Конфигурация внешней электронной оболочки атома У. 7 s
2 6 d
1 5 f
3 .
У. относится к реакционноспособным металлам, в соединениях проявляет степени окисления + 3, + 4, + 5, + 6, иногда + 2; наиболее устойчивы соединения u (iv) и u (vi). На воздухе медленно окисляется с образованием на поверхности плёнки двуокиси, которая не предохраняет металл от дальнейшего окисления. В порошкообразном состоянии У. пирофорен и горит ярким пламенем. С кислородом образует двуокись uo 2 , трёхокись uo 3 и большое число промежуточных окислов, важнейший из которых u 3 o 8 . Эти промежуточные окислы по свойствам близки к uo 2 и uo 3 . При высоких температурах uo 2 имеет широкую область гомогенности от uo 1,60 до uo 2,27 . С фтором при 500–600°c образует тетрафторидирд (зелёные игольчатые кристаллы, малорастворимые в воде и кислотах) и гексафторид uf 6 (белое кристаллическое вещество, возгоняющееся без плавления при 56,4°c); с серой – ряд соединений, из которых наибольшее значение имеет us (ядерное горючее). При взаимодействии У. с водородом при 220 °С получается гидрид uh 3 ; с азотом при температуре от 450 до 700 °С и атмосферном давлении – нитрид u 4 n 7 , при более высоком давлении азота и той же температуре можно получить un, u 2 n 3 и un 2 ; с углеродом при 750–800°c – монокарбид uc, дикарбид uc 2 , а также u 2 c 3 ; с металлами образует сплавы различных типов.
У. медленно реагирует с кипящей водой с образованием uo 2 и h 2 , с водяным паром – в интервале температур 150–250 °С; растворяется в соляной и азотной кислотах, слабо – в концентрированной плавиковой кислоте. Для u (vi) характерно образование иона уранила uo 2 2 + ; соли уранила окрашены в жёлтый цвет и хорошо растворимы в воде и минеральных кислотах; соли u (iv) окрашены в зелёный цвет и менее растворимы; ион уранила чрезвычайно способен к комплексообразованию в водных растворах как с неорганическими, так и с органическими веществами; наиболее важны для технологии карбонатные, сульфатные, фторидные, фосфатные и др. комплексы. Известно большое число уранатов (солей не выделенной в чистом виде урановой кислоты), состав которых меняется в зависимости от условий получения; все уранаты имеют низкую растворимость в воде.

У. и его соединения радиационно и химически токсичны. Предельно допустимая доза (ПДД) при профессиональном облучении 5 бэр
в год.

Получение.

У. получают из урановых руд, содержащих 0,05–0,5% u. Руды практически не обогащаются, за исключением ограниченного способа радиометрической сортировки, основанной на излучении радия, всегда сопутствующего урану. В основном руды выщелачивают растворами серной, иногда азотной кислот или растворами соды с переводом У. в кислый раствор в виде uo 2 so 4 или комплексных анионов 4- , а в содовый раствор – в виде 4- . Для извлечения и концентрирования У. из растворов и пульп, а также для очистки от примесей применяют сорбцию на ионообменных смолах и экстракцию органическими растворителями (трибутилфосфат, алкилфосфорные кислоты, амины). Далее из растворов добавлением щёлочи осаждают уранаты аммония или натрия или гидроокись u (oh) 4 . Для получения соединений высокой степени чистоты технические продукты растворяют в азотной кислоте и подвергают аффинажным операциям очистки, конечными продуктами которых являются uo 3 или u 3 o 8 ; эти окислы при 650–800°c восстанавливаются водородом или диссоциированным аммиаком до uo 2 с последующим переводом его в uf 4 обработкой газообразным фтористым водородом при 500–600°c. uf 4 может быть получен также при осаждении кристаллогидрата uf 4 · nh 2 o плавиковой кислотой из растворов с последующим обезвоживанием продукта при 450°c в токе водорода. В промышленности основным способом получения У. из uf 4 является его кальциетермическое или магниетермическое восстановление с выходом У. в виде слитков массой до 1,5 т. Слитки рафинируются в вакуумных печах.

Очень важным процессом в технологии У. является обогащение его изотопом 235 u выше естественного содержания в рудах или выделение этого изотопа в чистом виде,
поскольку именно 235 u – основное ядерное горючее; осуществляется это методами газовой термодиффузии, центробежными и др. методами, основанными на различии масс 235 u и 238 u; в процессах разделения У. используется в виде летучего гексафторида uf 6 . При получении У. высокой степени обогащения или изотопов учитываются их критические массы; наиболее удобный способ в этом случае – восстановление окислов У. кальцием; образующийся при этом шлак cao легко отделяется от У. растворением в кислотах.

Для получения порошкообразного У., двуокиси, карбидов, нитридов и др. тугоплавких соединений применяются методы порошковой металлургии.

Применение.

Металлический У. или его соединения используются в основном в качестве ядерного горючего в ядерных реакторах.
Природная или малообогащённая смесь изотопов У. применяется в стационарных реакторах атомных электростанций, продукт высокой степени обогащения – в ядерных силовых установках
или в реакторах, работающих на быстрых нейтронах. 235 u является источником ядерной энергии в ядерном оружии.
238 u служит источником вторичного ядерного горючего – плутония.

В. М. Кулифеев.

Уран в организме.

В микроколичествах (10 -5 –10 -5 %) обнаруживается в тканях растений, животных и человека. В золе растений (при содержании У. в почве около · 10 -4) его концентрация составляет 1,5 · 10 -5 %. В наибольшей степени У. накапливается некоторыми грибами и водорослями (последние активно участвуют в биогенной миграции У. по цепи вода – водные растения – рыба – человек). В организм животных и человека У. поступает с пищей и водой в желудочно-кишечный тракт, с воздухом в дыхательные пути, а также через кожные покровы и слизистые оболочки. Соединения У. всасываются в желудочно-кишечном тракте – около 1% от поступающего количества растворимых соединений и не более 0,1% труднорастворимых; в лёгких всасываются соответственно 50% и 20%. Распределяется У. в организме неравномерно. Основные депо (места отложения и накопления) – селезёнка, почки, скелет, печень и, при вдыхании труднорастворимых соединений, – лёгкие и бронхо-лёгочные лимфатические узлы. В крови У. (в виде карбонатов и комплексов с белками) длительно не циркулирует. Содержание У. в органах и тканях животных и человека не превышает 10 -7 г/г
. Так, кровь крупного рогатого скота содержит 1 · 10 -8 г/мл,
печень 8 · 10 -8 г/г,
мышцы 4 · 10 -8 г/г,
селезёнка 9 · 10 -8 г/г
. Содержание У. в органах человека составляет: в печени 6 · 10 -9 г/г
, в лёгких 6 · 10 -9 –9 · 10 -9 г/г, в селезёнке 4,7 · 10 -9 г/г
, в крови 4 · 10 -9 г/мл,
в почках 5,3 · 10 -9 (корковый слой) и 1,3 · 10 -9 г/г
(мозговой слой), в костях 1 · 10 -9 г/г
, в костном мозге 1 · 10 -9 г/г
, в волосах 1,3 · 10 -7 г/г
. У., содержащийся в костной ткани, обусловливает её постоянное облучение (период полувыведения У. из скелета около 300 сут
) .
Наименьшие концентрации У. – в головном мозге и сердце (10 -10 г/г
). Суточное поступление У. с пищей и жидкостями – 1,9 · 10 -6 г, с
воздухом – 7 · 10 -9 г
. Суточное выведение У. из организма человека составляет: с мочой 0,5 · 10 -7 –5 · 10 -7 , с калом – 1,4 · 10 -6 –1,8 · 10 -6 г, с
волосами – 2 · 10 -8 г.

По данным Международной комиссии по радиационной защите, среднее содержание У. в организме человека 9 · 10 -8 г. Эта величина для различных районов может варьировать. Полагают, что У. необходим для нормальной жизнедеятельности животных и растений, однако его физиологические функции не выяснены.

Г. П. Галибин.

Токсическое действие

У. обусловлено его химическими свойствами и зависит от растворимости: более токсичны уранил и др. растворимые соединения У. Отравления У. и его соединениями возможны на предприятиях по добыче и переработке уранового сырья и др. промышленных объектах, где он используется в технологическом процессе. При попадании в организм У. действует на все органы и ткани, являясь общеклеточным ядом. Признаки отравления обусловлены преим. поражением почек (появление белка и сахара в моче, последующая олигурия
) ,
поражаются также печень и желудочно-кишечный тракт. Различают острые и хронические отравления; последние характеризуются постепенным развитием и меньшей выраженностью симптомов. При хронической интоксикации возможны нарушения кроветворения, нервной системы и др. Полагают, что молекулярный механизм действия У. связан с его способностью подавлять активность ферментов.

Профилактика отравлений:

непрерывность технологических процессов, использование герметичной аппаратуры, предупреждение загрязнения воздушной среды, очистка сточных вод перед спуском их в водоёмы, мед. контроль за состоянием здоровья рабочих, за соблюдением гигиенических нормативов допустимого содержания У. и его соединений в окружающей среде.

В. Ф. Кириллов.

Лит.:
Учение о радиоактивности. История и современность, под ред. Б. М. Кедрова, М., 1973; Петросьянц А. М., От научного поиска к атомной промышленности, М., 1970; Емельянов В. С., Евстюхин А. И., Металлургия ядерного горючего, М., 1964; Сокурский Ю. Н., Стерлин Я. М., Федорченко В. А., Уран и его сплавы, М., 1971; Евсеева Л. С., Перельман А. И., Иванов К. Е., Геохимия урана в зоне гнпергениза, 2 изд., М., 1974; Фармакология и токсикология урановых соединений, [пер. с англ.], т. 2, М., 1951; Гуськова В. Н., Уран. Радиационно-гигиеническая характеристика, М., 1972; Андреева О. С., Гигиена труда при работе с ураном и его соединениями, М., 1960; Новиков Ю. В, Гигиенические вопросы изучения содержания урана во внешней среде и его влияния на организм, М., 1974.

В статье рассказывается о том, когда был открыт такой химический элемент, как уран, и в каких отраслях производства в наше время применяется это вещество.

Уран — химический элемент энергетической и военной промышленности

Во все времена люди пытались найти высокоэффективные источники энергии, а в идеале — создать так называемый К сожалению, невозможность его существования теоретически доказали и обосновали еще в XIX веке, но ученые все равно никогда не теряли надежды воплотить в жизнь мечту о некоего рода устройстве, которое было бы способно выдавать большое количество «чистой» энергии на протяжении очень долгого времени.

Частично это удалось воплотить в жизнь с открытием такого вещества, как уран. Химический элемент с данным названием лег в основу разработки атомных реакторов, которые в наше время обеспечивают энергией целые города, подводные лодки, полярные суда и прочее. Правда, «чистой» их энергию назвать нельзя, но в последние годы множество фирм разрабатывают для широкой продажи компактные «атомные батарейки» на основе трития — в них нет подвижных частей и они безопасны для здоровья.

Однако в этой статье мы подробно разберем историю открытия химического элемента под названием уран и реакцию деления его ядер.

Определение

Уран — химический элемент, который имеет атомный номер 92 в периодической таблице Менделеева. Атомная же масса его составляет 238,029. Обозначается он символом U. В нормальных условиях является плотным, тяжелым металлом серебристого цвета. Если говорить о его радиоактивности, то сам по себе уран — элемент, обладающий слабой радиоактивностью. Также он не имеет в своем составе полностью стабильных изотопов. А самым стабильным из существующих изотопов считается уран-338.

С тем, что собой представляет данный элемент, мы разобрались, а теперь рассмотрим историю его открытия.

История

Такое вещество, как природная окись урана, известно людям с глубокой древности, а использовали ее древние мастера для изготовления глазури, которой покрывали различную керамику для водонепроницаемости сосудов и других изделий, а также их украшения.

Важной датой в истории открытия этого химического элемента стал 1789 год. Именно тогда химик и немец по происхождению Мартин Клапрот смог получить первый металлообразный уран. А свое название новый элемент получил в честь открытой восемью годами ранее планеты.

Почти 50 лет полученный тогда уран считали чистым металлом, однако, в 1840 году химик из Франции Эжен-Мелькьор Пелиго смог доказать, что материал, полученный Клапротом, несмотря на подходящие внешние признаки, вовсе не металл, а оксид урана. Чуть позже все тот же Пелиго получил настоящий уран — очень тяжелый металл серого цвета. Именно тогда впервые и был определен атомный вес такого вещества, как уран. Химический элемент в 1874 году был помещён Дмитрием Менделеевым в его знаменитую периодическую систему элементов, причём Менделеев удвоил атомный вес вещества в два раза. И лишь спустя 12 лет опытным путем было доказано, что не ошибался в своих расчетах.

Радиоактивность

Но по-настоящему широкая заинтересованность этим элементом в научных кругах началась в 1896 году, когда Беккерель открыл тот факт, что уран испускает лучи, которые были названы в честь исследователя — лучи Беккереля. Позже одна из знаменитейших учёных в этой области — Мария Кюри, назвала это явление радиоактивностью.

Следующей важной датой в изучении урана принято считать 1899 год: именно тогда Резерфорд обнаружил, что излучение урана является неоднородным и делится на два типа — альфа- и бета-лучи. А год спустя Поль Виллар (Вийяр) открыл и третий, последний известный нам на сегодняшний день тип радиоактивного излучения — так называемые гамма-лучи.

Спустя семь лет, в 1906 году, Резерфорд на основе своей теории радиоактивности провел первые опыты, цель которых заключалась в том, чтобы определить возраст различных минералов. Эти исследования положили начало в том числе формированию теории и практики

Деление ядер урана

Но, наверное, наиважнейшее открытие, благодаря которому началась широкая добыча и обогащение урана как в мирных, так и военных целях, — это процесс деления ядер урана. Произошло это в 1938 году, открытие было осуществлено силами немецких физиков Отто Гана и Фрица Штрассмана. Позже эта теория получила научные подтверждения в работах еще нескольких немецких физиков.

Суть открытого ими механизма состояла в следующем: если облучать ядро изотопа урана-235 нейтроном, то, захватывая свободный нейтрон, оно начинает делиться. И, как мы все теперь знаем, процесс этот сопровождается выделением колоссального количества энергии. Происходит это в основном благодаря кинетической энергии самого излучения и осколков ядра. Так что теперь мы знаем, как происходит деление ядер урана.

Открытие этого механизма и его результатов и является отправной точкой для использования урана как в мирных, так и военных целях.

Если говорить о его применении в военных целях, то впервые теорию о том, что можно создать условия для такого процесса, как непрерывная реакция деления ядра урана (поскольку для подрыва ядерной бомбы необходима огромная энергия), доказали советские физики Зельдович и Харитон. Но чтобы создать такую реакцию, уран должен быть обогащен, поскольку в обычном своем состоянии нужными свойствами он не обладает.

С историей этого элемента мы ознакомились, теперь разберемся, где же он применяется.

Применение и виды изотопов урана

После открытия такого процесса, как реакция цепного деления урана, перед физиками стал вопрос, где можно его использовать?

В настоящее время существует два основных направления, где используют изотопы урана. Это мирная (или энергетическая) промышленность и военная. И первая, и вторая использует реакцию изотопа урана-235, отличается лишь выходная мощность. Проще говоря, в атомном реакторе нет необходимости создавать и поддерживать этот процесс с той же мощностью, какая необходима для осуществления взрыва ядерной бомбы.

Итак, были перечислены основные отрасли, в которых используется реакция деления урана.

Но получение изотопа урана-235 — это необычайно сложная и затратная технологическая задача, и не каждое государство может позволить себе построить обогатительные фабрики. К примеру, для получения двадцати тонн уранового топлива, в котором содержание изотопа урана 235 будет составлять от 3-5%, потребуется обогатить более 153 тонн природного, «сырого» урана.

Изотоп урана-238 в основном применяют в конструктивной схеме ядерного оружия для увеличения его мощности. Также при захвате им нейтрона с последующим процессом бета-распада этот изотоп может со временем превращаться в плутоний-239 — распространенное топливо для большинства современных атомных реакторов.

Несмотря на все недостатки таких реакторов (большая стоимость, сложность обслуживания, опасность аварии), их эксплуатация окупается очень быстро, и энергии они производят несравнимо больше, чем классические тепловые или гидроэлектростанции.

Также реакция позволила создать ядерное оружие массового поражения. Оно отличается огромной силой, относительной компактностью и тем, что способно делать непригодным для проживания людей большие площади земли. Правда, в современном атомном оружии применяется плутоний, а не уран.

Обедненный уран

Существует и такая разновидность урана, как обедненный. Он отличается очень низким уровнем радиоактивности, а значит, не опасен для людей. Применяется он опять-таки в военной сфере, к примеру, его добавляют в броню американского танка «Абрамс» для придания ей дополнительной крепости. Помимо этого, практически во всех высокотехнологичных армиях можно встретить различные Помимо высокой массы, обладают они еще одним очень интересным свойством — после разрушения снаряда его осколки и металлическая пыль самовоспламеняются. И кстати, впервые такой снаряд применили во время Второй мировой войны. Как мы видим, уран — элемент, которому нашли применение в самых разных областях человеческой деятельности.

Заключение

По прогнозам ученых, примерно в 2030 году полностью истощатся все крупные месторождения урана, после чего начнется разработка труднодоступных его слоев и будет расти цена. Кстати, сама абсолютно безвредна для людей — некоторые шахтеры работают на его добыче целыми поколениями. Теперь мы разобрались в истории открытия этого химического элемента и в том, как применяют реакцию деления его ядер.

Кстати, известен интересный факт — соединения урана долгое время применялись в качестве красок для фарфора и стекла (так называемое вплоть до 1950-х годов.

U
92

Уран

t o кип. (o С)
4200 Степ.окис.
от +2 до +6
238,0289
t o плав.(o С)
1134 Плотность
19040
5f 3 6d 1 7s 2
ОЭО
1,22 в зем. коре
0,0003 %

Трудно сказать, какое имя дал бы немецкий ученый Мартин Клапрот открытому в 1789 году элементу, если бы за несколько лет до этого не произошло событие, взволновавшее все круги общества: в 1781 году английский астроном Вильям Гершель, наблюдая с помощью самодельного телескопа звездное небо, обнаружил светящееся облачко, которое он поначалу принял за комету, но в дальнейшем убедился, что видит новую, неизвестную дотоле седьмую планету солнечной системы. В честь древнегреческого бога неба Гершель назвал ее Ураном. Находившийся под впечатлением этого события, Клапрот дал новорожденному элементу имя новой планеты.

Спустя примерно полвека, в 1841 году, французский химик Эжен Пелиго сумел впервые получить металлический уран. Промышленный мир остался равнодушным к тяжелому, сравнительно мягкому металлу, каким оказался уран. Его механические и химические свойства не привлекли ни металлургов, ни машиностроителей. Лишь стеклодувы Богемии да саксонские мастера фарфоровых и фаянсовых дел охотно применяли окись этого металла, чтобы придать бокалам красивый желто-зеленый цвет или украсить блюда затейливым бархатно-черным узором.

О «художественных способностях» урановых соединений знали еще древние римляне. При раскопках, проведенных близ Неаполя, удалось найти стеклянную мозаичную фреску удивительной красоты. Археологи были поражены: за два тысячелетия стекла почти не потускнели. Когда образцы стекол подвергли химическому анализу, оказалось, что в них присутствует окись урана, которой мозаика и была обязана своим долголетием. Но, если окислы и соли урана занимались «общественно полезным трудом», то сам металл в чистом виде почти никого не интересовал.

Даже ученые, и те были лишь весьма поверхностно знакомы с этим элементом. Сведения о нем были скудны, а порой совершенно неправильны. Так, считалось, что его атомный вес равен приблизительно 120. Когда Д. И. Менделеев создавал свою Периодическую систему, эта величина путала ему все карты: уран по своим свойствам никак не хотел вписываться в ту клетку таблицы, которая была «забронирована» за элементом с этим атомным весом. И тогда ученый, вопреки мнению многих своих коллег, решил принять новое значение атомного веса урана — 240 и перенес элемент в конец таблицы. Жизнь подтвердила правоту великого химика:

атомный вес урана 238,03.

Но гений Д. И. Менделеева проявился не только в этом. Еще в 1872 году когда большинство ученых считало уран на фоне многих ценных элементов своего рода «балластом», создатель Периодической системы сумел предвидеть его поистине блестящее будущее: «Между всеми известными химическими элементами уран выделяется тем, что обладает наивысшим атомным весом… Наивысшая, из известных, концентрация массы весомого вещества,… существующая в уране,… должна влечь за собою выдающиеся особенности… Убежденный в том, что исследование урана, начиная с его природных источников, поведет еще ко многим новым открытиям, я смело рекомендую тем, кто ищет предметов для новых исследований, особо тщательно заниматься урановыми соединениями».

Предсказание великого ученого сбылось менее чем через четверть века: в 1896 году французский физик Анри Беккерель, проводя эксперименты с солями урана, совершил открытие, которое по праву относится к величайшим научным открытиям, когда-либо сделанным человеком. Вот как это произошло. Беккерель давно интересовался явлением фосфоресценции (т. е. свечения), присущей некоторым веществам. Однажды ученый решил воспользоваться для своих опытов одной из солей урана, которую химики называют двойным сульфатом уранила и калия. На обернутую черной бумагой фотопластинку он поместил вырезанную из металла узорчатую фигуру, покрытую слоем урановой соли, и выставил ее на яркий солнечный свет, чтобы фосфоресценция была как можно более интенсивной. Через четыре часа Беккерель проявил пластинку и увидел на ней отчетливый силуэт металлической фигуры. Еще и еще раз повторил он свои опыты — результат был тот же. И вот 24 февраля 1896 года на заседаний французской Академии наук ученый доложил, что у такого фосфоресцирующего вещества, как двойной сульфат уранила и калия, выставленного на свет, наблюдается невидимое излучение, которое проходит через черную непрозрачную бумагу и восстанавливает соли серебра на фотопластинке.

Спустя два дня Беккерель решил продолжить эксперименты, но как на грех погода была пасмурной, а без солнца какая же фосфоресценция? Досадуя на непогоду, ученый спрятал уже приготовленные, но так и не подвергшиеся освещению диапозитивы вместе с образцами солей урана в ящик своего стола, где они пролежали несколько дней. Наконец, в ночь на 1 марта ветер очистил парижское небо от туч и солнечные лучи с утра засверкали над городом. Беккерель, с нетерпением ожидавший этого, поспешил в свою лабораторию и извлек из ящика стола диапозитивы, чтобы выставить их на солнце. Но, будучи очень педантичным экспериментатором, он в последний момент все же решил проявить диапозитивы, хотя логика, казалось бы, подсказывала, что за прошедшие дни с ним ничего не могло произойти: ведь они лежали в темном ящике, а без света не фосфоресцирует ни одно вещество. В этот миг ученый не подозревал, что через несколько часов обычным фотографическим пластинкам ценой в несколько франков, суждено стать бесценным сокровищем, а день 1 марта 1896 года навсегда войдет в историю мировой науки.

То, что Беккерель увидел на проявленных пластинках, буквально поразило его: черные силуэты образцов резко и четко обозначились на светочувствительном слое. Значит, фосфоресценция здесь ни при чем. Но тогда, что же это за лучи испускает соль урана? Ученый снова и снова проделывает аналогичные опыты с другими соединениями урана, в том числе и с теми, которые не обладали способностью фосфоресцировать или годами лежали в темном месте, и каждый раз на пластинках появлялось изображение.

У Беккереля возникает пока еще не вполне ясная мысль, что уран представляет собой «первый пример металла, обнаруживающего свойство, подобное невидимой фосфоресценции».

В это же время французскому химику Анри Муассану удалось разработать способ получения чистого металлического урана. Беккерель попросил у Муассана немного уранового порошка и установил, что излучение чистого урана значительно интенсивнее, чем его соединений, причем это свойство урана оставалось неизменным при самых различных условиях опытов, в частности при сильном нагревании и при охлаждении до низких температур.

С публикацией новых данных Беккерель не спешил: он ждал, когда Муассан сообщит о своих весьма интересных исследованиях. К этому обязывала научная этика. И вот 23 ноября 1896 года на заседании Академии наук Муассан сделал доклад о работах по получению чистого урана, а Беккерель рассказал о новом свойстве, присущем этому элементу, которое заключалось в самопроизвольном делении ядер его атомов. Это свойство было названо радиоактивностью.

Открытие Беккереля ознаменовало собой начало новой эры в физике — эры превращения элементов. Отрыне атом уже не мог считаться единым и неделимым—перед наукой открывался путь в глубины этого «кирпичика» материального мира.

Естественно, что теперь уран приковал к себе внимание ученых. Вместе с тем их интересовал и такой вопрос: только ли урану присуща радиоактивность? Быть может, в природе существуют и другие элементы, обладающие этим свойством?

Ответ на этот вопрос смогли дать выдающиеся физики супруги Пьер Кюри и Мария Складовская-Кюри. С помощью прибора, сконструированного мужем, Мария Кюри исследовала огромное количество металлов, минералов, солей. Работа велась в неимоверно тяжелых условиях. Лабораторией служил заброшенный деревянный сарай, который супруги подыскали в одном из парижских дворов. «Это был барак из досок, с асфальтовым полом и стеклянной крышей, плохо защищавшей от дождя, без всяких приспособлений, — вспоминала впоследствии М. Кюри. — В нем были только старые деревянные столы, чугунная печь, не дававшая достаточно тепла, и классная доска, которой так любил пользоваться Пьер. Там не было вытяжных шкафов для опытов с вредными газами, поэтому приходилось делать эти операции на дворе, когда позволяла погода, или же в помещении при открытых окнах». В дневнике П. Кюри есть запись о том, что порой работы проводились при температуре всего шесть градусов выше нуля.

Много проблем возникало и с получением нужных материалов. Урановая руда, например, была очень дорогой, и купить на свои скромные средства достаточное количество ее супруги Кюри не могли. Они решили обратиться к австрийскому правительству с просьбой продать им по невысокой цене отходы этой руды, из которой в Австрии извлекали уран, используемый в виде солей для окрашивания стекла и фарфора. Ученых поддержала венская Академия наук, и несколько тонн отходов было доставлено в их парижскую лабораторию.

Мария Кюри работала с необыкновенным упорством. Изучение разнообразных материалов подтверждало правоту Беккереля, считавшего, что радиоактивность чистого урана больше любых его соединений. Об этом говорили результаты сотен опытов. Но Мария Кюри подвергала исследованиям все новые и новые вещества. И вдруг… Неожиданность! Два урановых минерала — хальколит и смоляная руда Богемии — гораздо активнее действовали на прибор, чем уран. Вывод напрашивался сам собой: в них содержится какой-то неизвестный элемент, характеризующийся еще более высокой способностью к радиоактивному распаду. В честь Польши— родины М. Кюри—супруги назвали его полонием.

Снова за работу, снова титанический труд — и еще победа: открыт элемент, в сотни раз превосходящий по радиоактивности уран. Этот элемент ученые назвали радием, что по-латыни означает «луч».

Открытие радия в какой-то мере отвлекло научную общественность от урана. В течение примерно сорока лет он не очень волновал умы ученых, да и инженерная мысль редко баловала его своим вниманием. В одном из томов технической энциклопедии, изданном в 1934 году, утверждалось: «Элементарный уран практического применения не имеет». Солидное издание не грешило против истины, но спустя всего несколько лет жизнь внесла существенные коррективы в представления о возможностях урана.

В начале 1939 года появились два научных сообщения. Первое, направленное во французскую Академию наук Фредериком Жолио-Кюри, было озаглавлено «Экспериментальное доказательство взрывного расщепления ядер урана и тория под действием нейтронов». Второе сообщение— его авторами были немецкие физики Отто Фриш и Лиза Мейтнер — опубликовал английский журнал «Природа»; оно называлось: «Распад урана под действием нейтронов: новый вид ядерной реакции». И там, и там речь шла о новом, доселе неизвестном явлении, происходящем с ядром самого тяжелого элемента — урана.

Еще за несколько лет до этого ураном всерьез заинтересовались «мальчуганы» — именно так дружелюбно называли группу молодых талантливых физиков, работавших под руководством Энрико Ферми в Римском университете. Увлечением этих ученых была нейтронная физика, таившая в себе много нового, неизведанного.

Было обнаружено, что при облучении нейтронами, как правило, ядра одного элемента превращаются в ядра другого, занимающего следующую клетку в Периодической системе. А если облучить нейтронами последний, 92-й элемент—уран? Тогда должен образоваться элемент, стоящий уже на 93-м месте—элемент, который не смогла создать даже природа!

Идея понравилась «мальчуганам». Еще бы, разве не заманчиво узнать, что собой представляет искусственный элемент, как он выглядит, как ведет себя? Итак — уран облучен. Но что произошло? В уране появился не один радиоактивный элемент, как ожидалось, а по меньшей мере десяток. Налицо была какая-то загадка в поведении урана. Энрико Ферми направляет сообщение об этом в один из научных журналов. Возможно, считает он, образовался 93-й элемент, но точных доказательств этого нет. Но, с другой стороны, есть доказательства, что в облученном уране присутствуют какие-то другие элементы. Но какие?

Попытку дать ответ на этот вопрос предприняла дочь Марии Кюри— Ирен Жолио-Кюри. Она повторила опыты Ферми и тщательно исследовала химический состав урана после облучения его нейтронами. Результат был более чем неожиданным: в уране появился элемент лантан, располагающийся примерно в середине таблицы Менделеева, т. е. очень далеко от урана.

Когда те же эксперименты проделали немецкие ученые Отто Ган и Фридрих Штрассман, они нашли в уране не только лантан, но и барий. Загадка за загадкой!

Ган и Штрассман сообщили о проведенных опытах своему другу известному физику Лизе Мейтнер. Теперь уже урановую проблему пытаются решить сразу несколько крупнейших ученых. И вот, сначала Фредерик Жолио-Кюри, а спустя некоторое время Лиза Мейтнер приходят к одному и тому же выводу: при попадании нейтрона ядро урана как бы разваливается на части. Этим и объясняется неожиданное появление лантана и бария — элементов с атомным весом, примерно вдвое меньшим, чем у урана.

Американского физика Луиса Альвареса, впоследствии лауреата Нобелевской премии, это известие застало в одно январское утро 1939 года в кресле парикмахера. Он спокойно просматривал газету, как вдруг ему бросился в глаза скромный заголовок: «Атом урана разделен на две половины».

Через мгновение к изумлению парикмахера и посетителей, ожидавших очереди, странный клиент выбежал из парикмахерской, наполовину подстриженный, с салфеткой, туго завязанной вокруг шеи и развевающейся на ветру. Не обращая внимания на удивленных прохожих, физик мчался в лабораторию Калифорнийского университета, где он работал, чтобы сообщить о потрясающей новости своим коллегам. Те поначалу были ошарашены весьма оригинальным видом размахивающего газетой Альвареса, но, когда услышали о сенсационном открытии, тотчас же забыли о его необычной прическе.

Да, это была подлинная сенсация в науке. Но Жолио-Кюри установил и другой важнейший факт: распад уранового ядра носит характер взрыва, при котором образующиеся осколки разлетаются в стороны с огромной скоростью. Пока удавалось расколоть лишь отдельные ядра, энергия осколков только нагревала кусок урана. Если же число делений будет велико, то при этом выделится огромное количество энергии.

Но где раздобыть такое количество нейтронов, чтобы одновременно бомбардировать ими большое число ядер урана? Ведь известные ученым источники нейтронов давали их во много миллиардов раз меньше, чем требовалось. На помощь пришла сама природа. Жолио-Кюри обнаружил, что при делении ядра урана из него вылетает несколько нейтронов. Попав в ядра соседних атомов, они должны привести к новому распаду— начнется так называемая цепная реакция. А поскольку эти процессы длятся миллионные доли секунды, сразу выделится колоссальная энергия— неизбежен взрыв. Казалось бы, все ясно. Но ведь куски урана уже не раз облучали нейтронами, а они при этом не взрывались, т. е. цепная реакция не возникала. Видимо, нужны еще какие-то условия. Какие же? На этот вопрос Фредерик Жолио-Кюри ответить пока не мог.

И все же ответ был найден. Нашли его в том же 1939 году молодые советские ученые Я. Б. Зельдович и Ю. Б. Харитон. В своих работах они установили, что есть два пути развития цепной ядерной реакции. Первый— нужно увеличить размеры куска урана, так как при облучении маленького куска многие выделившиеся вновь нейтроны могут вылететь из него, не встретив на своем пути ни одного ядра. С ростом массы урана вероятность попадания нейтрона в цель, естественно, возрастает.

Есть и другой путь: обогащение урана изотопом 235. Дело в том, что природный уран имеет два основных изотопа, атомный вес которых равен 238 и 235. В ядре первого из них, на долю которого приходится в 140 раз больше атомов, имеется на три нейтрона больше. «Бедный» нейтронами уран-235 жадно их поглощает — гораздо сильней, чем его «зажиточный» брат, который даже не делится на части, а превращается в другой элемент. Это свойство изотопа ученые в дальнейшем использовали для получения искусственных трансурановых элементов. Для цепной же реакции равнодушие урана-238 к нейтронам оказывается губительным: процесс чахнет, не успев набрать силу. Зато чем больше в уране «жадных» до нейтронов атомов изотопа 235, тем энергичнее пойдет реакция.

Но, чтобы начался процесс, нужен еще и первый нейтрон—та «спичка», которая должна вызвать атомный «пожар». Конечно, для этой цели можно воспользоваться обычными нейтронными источниками, которые ученые и ранее применяли в своих исследованиях, — не очень удобно, но можно. А нет ли более подходящей «спички»?

Есть. Ее нашли другие советские ученые К. А. Петржак и Г. Н. Флеров. Исследуя в 1939—1940 годах поведение урана, они пришли к выводу, что ядра этого элемента способны распадаться самопроизвольно. Это подтвердили результаты опытов, проведенных ими в одной из ленинградских лабораторий. Но, может быть, уран распадался не сам, а, например, под действием космических лучей: ведь Земля непрерывно находится под их обстрелом. Значит, опыты нужно повторить глубоко под землей, куда не проникают эти космические гости. Посоветовавшись с крупнейшим советским ученым-атомником И. В. Курчатовым, молодые исследователи решили провести эксперименты на какой-нибудь станции Московского метрополитена. В Наркомате путей сообщения это не встретило препятствий, и вскоре в кабинет начальника станции метро «Динамо», находившейся на глубине 50 метров, на плечах научных работников была доставлена аппаратура, которая весила около трех тонн.

Как всегда, мимо проходили голубые поезда, тысячи пассажиров спускались и поднимались по эскалатору, и никто из них не предполагал, что где-то совсем рядом ведутся опыты, значение которых трудно переоценить. И вот, наконец, получены результаты, аналогичные тем, которые наблюдались в Ленинграде. Сомнения не было: ядрам урана присущ самопроизвольный распад. Чтобы заметить его, нужно было проявить незаурядное экспериментаторское мастерство: за 1 час из каждых

60 000 000 000 000 атомов урана распадается лишь один. Поистине — капля в море!

К. А. Петржак и Г. Н. Флеров вписали заключительную страницу в ту часть биографии урана, которая предшествовавала проведению первой в мире цепной реакции. Ее осуществил 2 декабря 1942 года Энрико Ферми.

В конце 30-х годов Ферми, как и многие другие крупные ученые, спасаясь от гитлеровской чумы, вынужден был эмигрировать в Америку. Здесь он намеревался продолжить свои важнейшие эксперименты. Но для этого требовалось немало денег. Нужно было убедить американское правительство в том, что опыты Ферми позволят получить мощное атомное оружие, которое можно будет использовать для борьбы с фашизмом. Эту миссию взял на себя ученый с мировым именем Альберт Эйнштейн. Он пишет письмо президенту США Франклину Рузвельту, которое начинается словами: «Сэр! Последняя работа Э. Ферми и Л. Сцилларда, с которой я ознакомился в рукописи, позволяет надеяться, что элемент уран в ближайшем будущем может быть превращен в новый важный источник энергии…». В письме ученый призывал правительство начать финансирование работ по исследованию урана. Учитывая огромный авторитет Эйнштейна и серьезность международной обстановки, Рузвельт дал свое согласие.

В конце 1941 года жители Чикаго могли заметить царившее на территории одного из стадионов необычное оживление, которое не имело к спорту ни малейшего отношения. К воротам его то и дело подъезжали машины с грузом. Многочисленная охрана не разрешала посторонним даже приближаться к ограде стадиона. Здесь, на теннисных кортах, расположенных под западной трибуной, Энрико Ферми готовил свой опаснейший эксперимент — осуществление контролируемой цепной реакции деления ядер урана. Работы по сооружению первого в мире ядерного реактора велись днем и ночью в течение года.

Наступило утро 2 декабря 1942 года. Всю ночь ученые не смыкали глаз, снова и снова проверяя расчеты. Шутка ли сказать: стадион находится в самом центре многомиллионного города, и хотя расчеты убеждали в том, что реакция в атомном котле будет замедленной, т. е. не будет носить взрывного характера, рисковать жизнью сотен тысяч людей никто не имел права. День уже давно начался, пора было завтракать, но об этом все забыли—не терпелось как можно скорее приступить к штурму атома. Однако Ферми не торопится: надо дать уставшим людям отдохнуть, нужна разрядка, чтобы затем снова все тщательно взвесить и обдумать. Осторожность и еще раз осторожность. И вот, когда все ждали команду начать эксперимент, Ферми произнес свою знаменитую фразу, вошедшую в историю покорения атома,—всего два слова: «Идемте-ка завтракать!».

Завтрак позади, все вновь на своих местах — опыт начинается. Взгляды ученых прикованы к приборам. Томительны минуты ожидания. И, наконец, счетчики нейтронов защелкали, как пулеметы. Они словно захлебывались от огромного количества нейтронов, не успевая их считать! Цепная реакция началась! Это произошло в 15 часов 25 минут по чикагскому времени. Атомному огню позволили гореть 28 минут, а затем по команде Ферми цепная реакция была прекращена.

Один из участников эксперимента подошел к телефону и заранее условленной шифрованной фразой сообщил начальству: «Итальянский мореплаватель добрался до Нового Света!» Это означало, что выдающийся итальянский ученый Энрико Ферми освободил энергию атомного ядра и доказал, что человек может контролировать и использовать ее по своей воле.

Но воля воле рознь. В те годы, когда происходили описываемые события, цепная реакция рассматривалась прежде всего как этап на пути к созданию атомной бомбы. Именно в этом направлении и были продолжены в Америке работы ученых-атомников.

Обстановка в научных кругах, связанных с этими работами, была крайне напряженной. Но и здесь не обходилось без курьезов.

Осенью 1943 года решено было попытаться вывезти из оккупированной немцами Дании в Америку крупнейшего физика Нильса Бора, чтобы использовать его громадные знания и талант. Темной ночью на рыбацком суденышке, тайно охраняемом английскими подводными лодками, ученый под видом рыбака был доставлен в Швецию, откуда его на самолете должны были переправить в Англию, а уж затем в США.

Весь багаж Бора состоял из одной бутылки. Эту обычную зеленую бутылку из-под датского пива, в которой он тайком от немцев хранил бесценную тяжелую воду, физик берег как зеницу ока: по мнению многих ученых-атомников, именно тяжелая вода могла служить замедлителем нейтронов для ядерной реакции.

Бор очень тяжело перенес утомительный полет и, как только пришел в себя, первым делом проверил, цела ли бутылка с тяжелой водой. И тут, к своему великому огорчению, ученый обнаружил, что стал жертвой собственной рассеянности: в его руках была бутылка с самым настоящим датским пивом, а сосуд с тяжелой водой остался дома в холодильнике.

Когда на гигантских заводах Ок-Риджа, расположенных в штате Теннесси, был получен первый небольшой кусочек урана-235, предназначенный для атомной бомбы, его отправили со специальным курьером в скрытый среди каньонов штата Нью-Мексико Лос-Аламос, где создавалось это смертоносное оружие. Курьеру, которому предстояло самому вести машину, не сказали, что находится в переданной ему коробочке, но он не раз слышал жуткие истории о таинственных «лучах смерти», рождаемых в Ок-Ридже. Чем дальше он ехал, тем большее волнение охватывало его. В конце концов он решил, при первом же подозрительном признаке в поведении коробочки, спрятанной позади его, бегать от машины что есть мочи.

Проезжая по длинному мосту, шофер внезапно услышал сзади громкий выстрел. Словно катапультированный, он выскочил из автомобиля и побежал так быстро, как еще никогда не бегал в своей жизни. Но вот, пробежав изрядное расстояние, он остановился в изнеможении, убедился, что цел и невредим, и даже отважился оглянуться. А тем временем за его машиной уже вырос длинный хвост нетерпеливо сигналивших автомобилей. Пришлось возвращаться и продолжать путь.

Но едва он сел за руль, как снова раздался громкий выстрел, и инстинкт самосохранения опять буквально выбросил беднягу из машины и заставил мчаться ррочь от злополучной коробочки. Лишь после того, как разгневанный полисмен догнал его на мотоцикле и увидел правительственные документы, испуганный шофер узнал, что выстрелы доносились с соседнего полигона, где в это время испытывали новые артиллерийские снаряды.

Работы в Лос-Аламосе велись в обстановке строжайшей тайны. Все крупные ученые находились здесь под вымышленными именами. Так, Нильс Бор, например, был известен в Лос-Аламосе как Николае Бейкер, Энрико Ферми был Генри Фармером, Юджин Вигнер — Юджином Вагнером.

Однажды, когда Ферми и Вигнер выезжали с территории одного секретного завода, их остановил часовой. Ферми предъявил свое удостоверение на имя Фармера, а Вигнер не смог найти своих документов. У часового был список тех, кому разрешалось входить на завод и выходить из него. «Ваша фамилия?»—спросил он. Рассеянный профессор сначала по привычке пробормотал «Вигнер», но тут же спохватился и поправился: «Вагнер». Это вызвало подозрение у часового. Вагнер был в списке, а Вигнер — нет. Он повернулся к Ферми, которого уже хорошо знал в лицо, и спросил: «Этого человека зовут Вагнер?». «Его зовут Вагнер. Это так же верно, как и то, что я Фармер», — спрятав улыбку, торжественно заверил часового Ферми, и тот пропустил ученых.

Примерно в середине 1945 года работы по созданию атомной бомбы, на которые было израсходовано два миллиарда долларов, завершились, и 6 августа над японским городом Хиросимой возник гигантский огненный гриб, унесший десятки тысяч жизней. Эта дата стала черным днем в истории цивилизации. Величайшее достижение науки породило величайшую трагедию человечества.

Перед учеными, перед всем миром встал вопрос: что же дальше? Продолжать совершенствовать ядерное оружие, создавать еще более ужасные средства уничтожения людей?

Нет! Отныне колоссальная энергия, заключенная в ядрах атомов, должна служить человеку. Первый шаг на этом пути сделали советские ученые под руководством академика И. В. Курчатова. 27 июня 1954 года московское радио передало сообщение исключительной важности: «В настоящее время в Советском Союзе усилиями советских ученых и инженеров успешно завершены работы по проектированию и строительству первой промышленной электростанции на атомной энергии полезной мощностью 5000 киловатт».Впервые по проводам шел ток, который нес энергию, рожденную в недрах атома урана.

«Это историческое событие,—писала в те дни газета «Дейли Уор-кер»,—имеет неизмеримо большее международное значение, чем сброс первой атомной бомбы на Хиросиму…».

Пуск первой атомной электростанции положил начало развитию новой отрасли техники — ядерной энергетики. Уран стал мирным горючим XX века.

Прошло еще пять лет, и со стапелей советских судоверфей сошел первый в мире атомный ледокол «Ленин». Чтобы заставить работать его двигатели во всю мощь (44 тысячи лошадиных сил!), нужно «сжечь» всего несколько десятков граммов урана. Небольшой кусок этого ядерного топлива способен заменить тысячи тонн мазута или каменного угля, которые вынуждены в буквальном смысле тащить за собой обычные теплоходы, совершающие, например/рейс Лондон—Нью-Йорк. А атомоход «Ленин» с запасом уранового топлива несколько десятков килограммов может в течение трех лет сокрушать льды Арктики, не заходя в порт на «заправку».

В 1974 году «приступил к исполнению своих обязанностей» еще более мощный атомный ледокол—«Арктика».

С каждым годом доля ядерного горючего в мировом балансе энергоресурсов становится все ощутимее. В наше время каждая четвёртая лампочка в России светит из-за АЭС. Преимущества этого вида топлива несомненны. Но не стоит забывать об опасности радиации. Милионы людей пострадали. Среди них больше 100 000 побигли из-за ужасной аварии на Чернобольской АЭС в 1986 году. Да и сейчас территория около ЧАЭС заражена и не пригодна для житья. Пройдёт ещё не менее ста лет, прежде чем человек сможет вернуться и жить там. Но и без аварий не так всё гладко. Ведь использование уранового топлива сопряжено со многими трудностями, из которых едва ли не важнейшая — уничтожение образующихся радиоактивных отходов. Спускать их в специальных контейнерах на дно морей и океанов? Зарывать их глубоко в землю? Вряд ли такие способы позволят полностью решить проблему: ведь в конечном счете смертоносные вещества при этом остаются на нашей планете. А не попытаться ли отправить их куда-нибудь подальше—на другие небесные тела? Именно такую идею выдвинул один из ученых США. Он предложил грузить отходы атомных электростанций на «грузовые» космические корабли, следующие по маршруту Земля—Солнце. Разумеется, сегодня подобные «посылки» дороговато обошлись бы отправителям, но, по мнению некоторых оптимистически настроенных специалистов, уже через 10 лет эти транспортные операции станут вполне оправданными.

В наше время уже не обязательно обладать богатой фантазией, чтобы предсказать великое будущее урана. Уран завтра—это космические ракеты, устремленные в глубь Вселенной, и гигантские подводные города, обеспеченные энергией на десятки лет, это создание искусственных островов и обводнение пустынь, это проникновение к самым недрам Земли и преобразование климата нашей планеты.

Сказочные перспективы открывает перед человеком уран — пожалуй, наиболее удивительный металл природы!

Справочник содержит названия веществ и описания химических формул (в т.ч. структурные формулы и скелетные формулы).


Введите часть названия или формулу для поиска:

Языки:

По умолчанию |

Все возможные |

Из списка

|
Применить к найденному

Аммоний

Брутто-формула:
H4N^+

CAS# 14798-03-9

Категории:
Катион
, Неорганическое вещество

PubChem CID: 223
| ChemSpider ID: 218
| CHEBI:28938

Названия

Русский:

Аммоний [Wiki]
ион аммония
катион аммония

English:

Ammonium [Wiki]
Ammonium cation
Ammonium ion

Варианты формулы:

NH4^+

H/N^+<_(A80,w+)H><`|H>_(A15,d+)H

H/N`^+<_q4H><_p4H>/H

Вещества, имеющие отношение…

Соль:
Сульфат аммония; Хлорид аммония; Нитрат аммония; Карбонат аммония; Гидрокарбонат аммония; Молибдат аммония; Дихромат аммония; Мурексид; Нитрит аммония; Фторид аммония; Гидрофосфат аммония; Фосфат аммония; Дигидроортофосфат аммония; Карбамат аммония; Гидросульфит аммония; Сульфит аммония; ортованадат аммония; Малат аммония; Бромид аммония; Иодид аммония; Перхлорат аммония; Хлорат аммония; Иодат аммония; Формиат аммония; Ацетат аммония; Гексафторофосфат(V) аммония; Азид аммония; Цианат аммония; Адипат аммония; Гексафторогафниат(IV) аммония; Тетрафенилборат аммония; Пероксодисульфат аммония; Перренат аммония; Гексахлороренит аммония; Фторсульфонат аммония; Стеарат аммония; Арсенат аммония; Гексахлоротехнетат(IV) аммония

Химический состав

Реакции, в которых участвует Аммоний

  • NH3 + H2O <=> NH4^+ + OH^-

From Wikipedia, the free encyclopedia

This article is about the molecular ion. For the ancient city, see Siwa Oasis.

Not to be confused with the neutrally charged compound Ammonia.

Ammonium

2-D skeletal version of the ammonium ion

Ball-and-stick model of the ammonium cation

Space-filling model of the ammonium cation

Names
IUPAC name

Ammonium ion

Systematic IUPAC name

Azanium[1]

Identifiers

CAS Number

  • 14798-03-9 check

3D model (JSmol)

  • Interactive image
ChEBI
  • CHEBI:28938
ChemSpider
  • 218
MeSH D000644

PubChem CID

  • 16741146
UNII
  • 54S68520I4 check

CompTox Dashboard (EPA)

  • DTXSID5043974 Edit this at Wikidata

InChI

  • InChI=1S/H3N/h1H3/p+1

    Key: QGZKDVFQNNGYKY-UHFFFAOYSA-O

  • InChI=1/H3N/h1H3/p+1

    Key: QGZKDVFQNNGYKY-IKLDFBCSAZ

SMILES

  • [NH4+]

Properties

Chemical formula

[NH4]+
Molar mass 18.039 g·mol−1
Acidity (pKa) 9.25
Conjugate base Ammonia
Structure

Molecular shape

Tetrahedral

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Infobox references

The ammonium cation is a positively-charged polyatomic ion with the chemical formula NH+4 or [NH4]+. It is formed by the protonation of ammonia (NH3). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary ammonium cations ([NR4]+), where one or more hydrogen atoms are replaced by organic groups (indicated by R).

Acid–base properties[edit]

The ammonium ion is generated when ammonia, a weak base, reacts with Brønsted acids (proton donors):

{displaystyle {ce {H+ + NH3 -> [NH4]+}}}

The ammonium ion is mildly acidic, reacting with Brønsted bases to return to the uncharged ammonia molecule:

{displaystyle {ce {[NH4]+ + B- -> HB + NH3}}}

Thus, the treatment of concentrated solutions of ammonium salts with a strong base gives ammonia. When ammonia is dissolved in water, a tiny amount of it converts to ammonium ions:

{displaystyle {ce {H2O + NH3 <=> OH- + [NH4]+}}}

The degree to which ammonia forms the ammonium ion depends on the pH of the solution. If the pH is low, the equilibrium shifts to the right: more ammonia molecules are converted into ammonium ions. If the pH is high (the concentration of hydrogen ions is low and hydroxide ions is high), the equilibrium shifts to the left: the hydroxide ion abstracts a proton from the ammonium ion, generating ammonia.

Formation of ammonium compounds can also occur in the vapor phase; for example, when ammonia vapor comes in contact with hydrogen chloride vapor, a white cloud of ammonium chloride forms, which eventually settles out as a solid in a thin white layer on surfaces.

Salts[edit]

Ammonium cation is found in a variety of salts such as ammonium carbonate, ammonium chloride, and ammonium nitrate. Most simple ammonium salts are very soluble in water. An exception is ammonium hexachloroplatinate, the formation of which was once used as a test for ammonium. The ammonium salts of nitrate and especially perchlorate are highly explosive, in these cases, ammonium is the reducing agent.

In an unusual process, ammonium ions form an amalgam. Such species are prepared by the addition of sodium amalgam to a solution of ammonium chloride.[2] This amalgam eventually decomposes to release ammonia and hydrogen.[3]

To find whether the ammonium ion is present in the salt, first, the salt is heated in presence of alkali hydroxide releasing a gas with a characteristic smell which of course is ammonia.

{displaystyle {ce {[NH4]+ + OH- ->[heat] NH3 + H2O}}}

To further confirm ammonia it passed through a glass rod dipped in an HCl solution (hydrochloric acid) creating white dense fumes of ammonium chloride.

{displaystyle {ce {NH3_{(g)}{}+ HCl_{(aq)}-> [NH4]Cl_{(s)}}}}

Ammonia when passed through CuSO4 (copper(II) sulfate) solution turns from blue to deep blue color forming Schweizer’s reagent.

{displaystyle {ce {CuSO4_{(aq)}{}+ 4 NH3_{(aq)}{}+ 4 H2O -> [Cu(NH3)4(H2O)2](OH)2_{(aq)}{}+ H2SO4_{(aq)}}}}

Ammonia or ammonium ion when added to Nessler’s reagent gives a brown color precipitate known as the iodide of Million’s base in basic medium.

Ammonium ion when added to chloroplatinic acid gives a yellow precipitate.

{displaystyle {ce {H2[PtCl6]_{(aq)}{}+ [NH4]+_{(aq)}-> [NH4]2[PtCl6]_{(s)}{}+ 2 H+}}}

Ammonium ion when added to sodium cobaltinitrite gives a yellow precipitate.

{displaystyle {ce {Na3[Co(NO2)6]_{(aq)}{}+ 3 [NH4]+_{(aq)}-> [NH4]3[Co(NO2)6]_{(s)}{}+ 3 Na+_{(aq)}}}}

Ammonium ion gives a white precipitate when added to potassium bitartrate.

{displaystyle {ce {KC4H5O6_{(aq)}{}+ [NH4]+_{(aq)}-> [NH4]C4H5O6_{(s)}{}+ K+_{(aq)}}}}

Structure and bonding[edit]

The lone electron pair on the nitrogen atom (N) in ammonia, represented as a line above the N, forms the bond with a proton (H+). After that, all four N–H bonds are equivalent, being polar covalent bonds. The ion has a tetrahedral structure and is isoelectronic with methane and the borohydride anion. In terms of size, the ammonium cation (rionic = 175 pm)[citation needed] resembles the caesium cation (rionic = 183 pm).[citation needed]

Organic ions[edit]

The hydrogen atoms in the ammonium ion can be substituted with an alkyl group or some other organic group to form a substituted ammonium ion (IUPAC nomenclature: aminium ion). Depending on the number of organic groups, the ammonium cation is called a primary, secondary, tertiary, or quaternary. Except the quaternary ammonium cations, the organic ammonium cations are weak acids.

An example of a reaction forming an ammonium ion is that between dimethylamine, (CH3)2NH, and an acid to give the dimethylammonium cation, [(CH3)2NH2]+:

Dimethylammonium-formation-2D.png

Quaternary ammonium cations have four organic groups attached to the nitrogen atom, they lack a hydrogen atom bonded to the nitrogen atom. These cations, such as the tetra-n-butylammonium cation, are sometimes used to replace sodium or potassium ions to increase the solubility of the associated anion in organic solvents. Primary, secondary, and tertiary ammonium salts serve the same function but are less lipophilic. They are also used as phase-transfer catalysts and surfactants.

An unusual class of organic ammonium salts is derivatives of amine radical cations, [R3N•]+ such as tris(4-bromophenyl)ammoniumyl hexachloroantimonate.

Biology[edit]

Ammonium ions are a waste product of the metabolism of animals. In fish and aquatic invertebrates, it is excreted directly into the water. In mammals, sharks, and amphibians, it is converted in the urea cycle to urea, because urea is less toxic and can be stored more efficiently. In birds, reptiles, and terrestrial snails, metabolic ammonium is converted into uric acid, which is solid and can therefore be excreted with minimal water loss.[4]

Ammonium is an important source of nitrogen for many plant species, especially those growing on hypoxic soils. However, it is also toxic to most crop species and is rarely applied as a sole nitrogen source.[5]

Metal[edit]

The ammonium ion has very similar properties to the heavier alkali metals cations and is often considered a close equivalent.[6][7][8] Ammonium is expected to behave as a metal ([NH4]+ ions in a sea of electrons) at very high pressures, such as inside giant gas planets such as Uranus and Neptune.[7][8]

Under normal conditions, ammonium does not exist as a pure metal but does as an amalgam (alloy with mercury).[9]

See also[edit]

  • Ammonium transporter
  • f-ratio
  • Hydronium (H3O+)
  • Iminium
  • Nitrification
  • Onium compounds
  • The Magnificent Possession (Isaac Asimov short story)
  • Ammonium radical(?) (NH4)

References[edit]

  1. ^ International Union of Pure and Applied Chemistry (2005). Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005). Cambridge (UK): RSC–IUPAC. ISBN 0-85404-438-8. pp. 71,105,314. Electronic version.
  2. ^ «Pseudo-binary compounds». Archived from the original on 2020-07-27. Retrieved 2007-10-12.
  3. ^ «Ammonium Salts». VIAS Encyclopedia.
  4. ^ Campbell, Neil A.; Jane B. Reece (2002). «44». Biology (6th ed.). San Francisco: Pearson Education, Inc. pp. 937–938. ISBN 978-0-8053-6624-2.
  5. ^ Britto, DT; Kronzucker, HJ (2002). «NH4+ toxicity in higher plants: a critical review» (PDF). Journal of Plant Physiology. 159 (6): 567–584. doi:10.1078/0176-1617-0774.
  6. ^ Holleman, Arnold Frederik; Wiberg, Egon (2001), Wiberg, Nils (ed.), Inorganic Chemistry, translated by Eagleson, Mary; Brewer, William, San Diego/Berlin: Academic Press/De Gruyter, ISBN 0-12-352651-5
  7. ^ a b Stevenson, D. J. (November 20, 1975). «Does metallic ammonium exist?». Nature. 258 (5532): 222–223. Bibcode:1975Natur.258..222S. doi:10.1038/258222a0. S2CID 4199721.
  8. ^ a b Bernal, M. J. M.; Massey, H. S. W. (February 3, 1954). «Metallic Ammonium». Monthly Notices of the Royal Astronomical Society. 114 (2): 172–179. Bibcode:1954MNRAS.114..172B. doi:10.1093/mantras/114.2.172.
  9. ^ Reedy, J.H. (October 1, 1929). «Lecture demonstration of ammonium amalgam». Journal of Chemical Education. 6 (10): 1767. Bibcode:1929JChEd…6.1767R. doi:10.1021/ed006p1767.

From Wikipedia, the free encyclopedia

This article is about the molecular ion. For the ancient city, see Siwa Oasis.

Not to be confused with the neutrally charged compound Ammonia.

Ammonium

2-D skeletal version of the ammonium ion

Ball-and-stick model of the ammonium cation

Space-filling model of the ammonium cation

Names
IUPAC name

Ammonium ion

Systematic IUPAC name

Azanium[1]

Identifiers

CAS Number

  • 14798-03-9 check

3D model (JSmol)

  • Interactive image
ChEBI
  • CHEBI:28938
ChemSpider
  • 218
MeSH D000644

PubChem CID

  • 16741146
UNII
  • 54S68520I4 check

CompTox Dashboard (EPA)

  • DTXSID5043974 Edit this at Wikidata

InChI

  • InChI=1S/H3N/h1H3/p+1

    Key: QGZKDVFQNNGYKY-UHFFFAOYSA-O

  • InChI=1/H3N/h1H3/p+1

    Key: QGZKDVFQNNGYKY-IKLDFBCSAZ

SMILES

  • [NH4+]

Properties

Chemical formula

[NH4]+
Molar mass 18.039 g·mol−1
Acidity (pKa) 9.25
Conjugate base Ammonia
Structure

Molecular shape

Tetrahedral

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Infobox references

The ammonium cation is a positively-charged polyatomic ion with the chemical formula NH+4 or [NH4]+. It is formed by the protonation of ammonia (NH3). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary ammonium cations ([NR4]+), where one or more hydrogen atoms are replaced by organic groups (indicated by R).

Acid–base properties[edit]

The ammonium ion is generated when ammonia, a weak base, reacts with Brønsted acids (proton donors):

{displaystyle {ce {H+ + NH3 -> [NH4]+}}}

The ammonium ion is mildly acidic, reacting with Brønsted bases to return to the uncharged ammonia molecule:

{displaystyle {ce {[NH4]+ + B- -> HB + NH3}}}

Thus, the treatment of concentrated solutions of ammonium salts with a strong base gives ammonia. When ammonia is dissolved in water, a tiny amount of it converts to ammonium ions:

{displaystyle {ce {H2O + NH3 <=> OH- + [NH4]+}}}

The degree to which ammonia forms the ammonium ion depends on the pH of the solution. If the pH is low, the equilibrium shifts to the right: more ammonia molecules are converted into ammonium ions. If the pH is high (the concentration of hydrogen ions is low and hydroxide ions is high), the equilibrium shifts to the left: the hydroxide ion abstracts a proton from the ammonium ion, generating ammonia.

Formation of ammonium compounds can also occur in the vapor phase; for example, when ammonia vapor comes in contact with hydrogen chloride vapor, a white cloud of ammonium chloride forms, which eventually settles out as a solid in a thin white layer on surfaces.

Salts[edit]

Ammonium cation is found in a variety of salts such as ammonium carbonate, ammonium chloride, and ammonium nitrate. Most simple ammonium salts are very soluble in water. An exception is ammonium hexachloroplatinate, the formation of which was once used as a test for ammonium. The ammonium salts of nitrate and especially perchlorate are highly explosive, in these cases, ammonium is the reducing agent.

In an unusual process, ammonium ions form an amalgam. Such species are prepared by the addition of sodium amalgam to a solution of ammonium chloride.[2] This amalgam eventually decomposes to release ammonia and hydrogen.[3]

To find whether the ammonium ion is present in the salt, first, the salt is heated in presence of alkali hydroxide releasing a gas with a characteristic smell which of course is ammonia.

{displaystyle {ce {[NH4]+ + OH- ->[heat] NH3 + H2O}}}

To further confirm ammonia it passed through a glass rod dipped in an HCl solution (hydrochloric acid) creating white dense fumes of ammonium chloride.

{displaystyle {ce {NH3_{(g)}{}+ HCl_{(aq)}-> [NH4]Cl_{(s)}}}}

Ammonia when passed through CuSO4 (copper(II) sulfate) solution turns from blue to deep blue color forming Schweizer’s reagent.

{displaystyle {ce {CuSO4_{(aq)}{}+ 4 NH3_{(aq)}{}+ 4 H2O -> [Cu(NH3)4(H2O)2](OH)2_{(aq)}{}+ H2SO4_{(aq)}}}}

Ammonia or ammonium ion when added to Nessler’s reagent gives a brown color precipitate known as the iodide of Million’s base in basic medium.

Ammonium ion when added to chloroplatinic acid gives a yellow precipitate.

{displaystyle {ce {H2[PtCl6]_{(aq)}{}+ [NH4]+_{(aq)}-> [NH4]2[PtCl6]_{(s)}{}+ 2 H+}}}

Ammonium ion when added to sodium cobaltinitrite gives a yellow precipitate.

{displaystyle {ce {Na3[Co(NO2)6]_{(aq)}{}+ 3 [NH4]+_{(aq)}-> [NH4]3[Co(NO2)6]_{(s)}{}+ 3 Na+_{(aq)}}}}

Ammonium ion gives a white precipitate when added to potassium bitartrate.

{displaystyle {ce {KC4H5O6_{(aq)}{}+ [NH4]+_{(aq)}-> [NH4]C4H5O6_{(s)}{}+ K+_{(aq)}}}}

Structure and bonding[edit]

The lone electron pair on the nitrogen atom (N) in ammonia, represented as a line above the N, forms the bond with a proton (H+). After that, all four N–H bonds are equivalent, being polar covalent bonds. The ion has a tetrahedral structure and is isoelectronic with methane and the borohydride anion. In terms of size, the ammonium cation (rionic = 175 pm)[citation needed] resembles the caesium cation (rionic = 183 pm).[citation needed]

Organic ions[edit]

The hydrogen atoms in the ammonium ion can be substituted with an alkyl group or some other organic group to form a substituted ammonium ion (IUPAC nomenclature: aminium ion). Depending on the number of organic groups, the ammonium cation is called a primary, secondary, tertiary, or quaternary. Except the quaternary ammonium cations, the organic ammonium cations are weak acids.

An example of a reaction forming an ammonium ion is that between dimethylamine, (CH3)2NH, and an acid to give the dimethylammonium cation, [(CH3)2NH2]+:

Dimethylammonium-formation-2D.png

Quaternary ammonium cations have four organic groups attached to the nitrogen atom, they lack a hydrogen atom bonded to the nitrogen atom. These cations, such as the tetra-n-butylammonium cation, are sometimes used to replace sodium or potassium ions to increase the solubility of the associated anion in organic solvents. Primary, secondary, and tertiary ammonium salts serve the same function but are less lipophilic. They are also used as phase-transfer catalysts and surfactants.

An unusual class of organic ammonium salts is derivatives of amine radical cations, [R3N•]+ such as tris(4-bromophenyl)ammoniumyl hexachloroantimonate.

Biology[edit]

Ammonium ions are a waste product of the metabolism of animals. In fish and aquatic invertebrates, it is excreted directly into the water. In mammals, sharks, and amphibians, it is converted in the urea cycle to urea, because urea is less toxic and can be stored more efficiently. In birds, reptiles, and terrestrial snails, metabolic ammonium is converted into uric acid, which is solid and can therefore be excreted with minimal water loss.[4]

Ammonium is an important source of nitrogen for many plant species, especially those growing on hypoxic soils. However, it is also toxic to most crop species and is rarely applied as a sole nitrogen source.[5]

Metal[edit]

The ammonium ion has very similar properties to the heavier alkali metals cations and is often considered a close equivalent.[6][7][8] Ammonium is expected to behave as a metal ([NH4]+ ions in a sea of electrons) at very high pressures, such as inside giant gas planets such as Uranus and Neptune.[7][8]

Under normal conditions, ammonium does not exist as a pure metal but does as an amalgam (alloy with mercury).[9]

See also[edit]

  • Ammonium transporter
  • f-ratio
  • Hydronium (H3O+)
  • Iminium
  • Nitrification
  • Onium compounds
  • The Magnificent Possession (Isaac Asimov short story)
  • Ammonium radical(?) (NH4)

References[edit]

  1. ^ International Union of Pure and Applied Chemistry (2005). Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005). Cambridge (UK): RSC–IUPAC. ISBN 0-85404-438-8. pp. 71,105,314. Electronic version.
  2. ^ «Pseudo-binary compounds». Archived from the original on 2020-07-27. Retrieved 2007-10-12.
  3. ^ «Ammonium Salts». VIAS Encyclopedia.
  4. ^ Campbell, Neil A.; Jane B. Reece (2002). «44». Biology (6th ed.). San Francisco: Pearson Education, Inc. pp. 937–938. ISBN 978-0-8053-6624-2.
  5. ^ Britto, DT; Kronzucker, HJ (2002). «NH4+ toxicity in higher plants: a critical review» (PDF). Journal of Plant Physiology. 159 (6): 567–584. doi:10.1078/0176-1617-0774.
  6. ^ Holleman, Arnold Frederik; Wiberg, Egon (2001), Wiberg, Nils (ed.), Inorganic Chemistry, translated by Eagleson, Mary; Brewer, William, San Diego/Berlin: Academic Press/De Gruyter, ISBN 0-12-352651-5
  7. ^ a b Stevenson, D. J. (November 20, 1975). «Does metallic ammonium exist?». Nature. 258 (5532): 222–223. Bibcode:1975Natur.258..222S. doi:10.1038/258222a0. S2CID 4199721.
  8. ^ a b Bernal, M. J. M.; Massey, H. S. W. (February 3, 1954). «Metallic Ammonium». Monthly Notices of the Royal Astronomical Society. 114 (2): 172–179. Bibcode:1954MNRAS.114..172B. doi:10.1093/mantras/114.2.172.
  9. ^ Reedy, J.H. (October 1, 1929). «Lecture demonstration of ammonium amalgam». Journal of Chemical Education. 6 (10): 1767. Bibcode:1929JChEd…6.1767R. doi:10.1021/ed006p1767.

АММОНИЙ (в химии)

АММОНИЙ (в химии)
АММОНИЙ (в химии)

АММО́НИЙ, NH4+, однозарядный катион. Входит в состав нитрата аммония NH4NO3, сульфата аммония (NH4)2SO4 и др. солей аммония.

Энциклопедический словарь.
2009.

Смотреть что такое «АММОНИЙ (в химии)» в других словарях:

  • АММОНИЙ — АММОНИЙ, NH4, хим. радикал, не получающийся в свободном состоянии. Впервые Ампер (1817 г.) и затем Берцелиус указали, что соединение аммиака с водой следует рассматривать как водную окись металлоподоб ного соединения, как «сложный… …   Большая медицинская энциклопедия

  • Аммоний — У этого термина существуют и другие значения, см. Аммоний (значения). Модель катиона аммония …   Википедия

  • ниобий — я; м. [лат. Niobium] Химический элемент (Nb), твёрдый тугоплавкий и ковкий металл серовато белого цвета (используется при производстве химически стойких и жаростойких сталей). ◁ Ниобийный; ниобиевый, ая, ое. * * * ниобий (лат. Niobium),… …   Энциклопедический словарь

  • таллий — я; м. [от греч. thallos молодая зелёная ветвь, побег] Химический элемент (Тl), серебристо белый с сероватым оттенком металл, мягкий и легкоплавкий (применяется как компонент сплавов, для амальгам). ◁ Таллиевый, ая, ое. * * * таллий (лат.… …   Энциклопедический словарь

  • ИОНОФОРЫ — ИОНОФОРЫ, органические вещества, осуществляющие перенос ионов щелочных и щелочноземельных металлов или аммония (см. АММОНИЙ (в химии)) через билогические (или модельные) мембраны. Широко используются в биохимических исследованиях для регуляции… …   Энциклопедический словарь

  • Аналитическая химия — Содержание …   Википедия

  • Микрохимия — К М. в широком смысле должны были бы быть отнесены вообще все методы химического анализа над веществами в минимальных количествах; но обыкновенно к микрохимическим исследованиям причисляют только те, которые связаны с употреблением микроскопа,… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Изомерия — (хим.). В 1824 г. Либихом и Гей Люссаком был установлен состав гремучекислого серебра (см.), при чем, на основании полученных данных, они признали безводную [Согласно господствовавшему в химии в начале нынешнего столетия взгляду, кислотами… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Изомерия — (хим.). В 1824 г. Либихом и Гей Люссаком был установленсостав гремуче кислого серебра, причем, на основании полученных данных,они признали безводную гремучую кислоту за соединение циана с кислородомC4N2O2 (C=6, 0=8, N=14). В том же году Веллер… …   Энциклопедия Брокгауза и Ефрона

  • Сульфат бария — Сульфат бария …   Википедия

Содержание

  1. Диссоциация солей аммония
  2. Свойства солей аммония
  3. Реакция обнаружения аммония
  4. «Свободный аммоний»
  5. Замещённые соединения аммония
  6. Органические
  7. Неорганические

Аммоний — полиатомный катион с химической формулой NH4+. Аммоний с анионами образует соли аммония, аммониевые соединения, последние входят в большой класс ониевых соединений. Ион аммония NH4+ является правильным тетраэдром с азотом в центре и атомами водорода в вершинах тетраэдра. Размер иона — 1, 43 Å.

Существует также короткоживущий свободный радикал аммония с формулой NH4 .

Диссоциация солей аммония

При диссоциации солей аммония в водных растворах образуется катион аммония, например:

mathsf{NH_4Cl rightleftarrows NH_4^+ + Cl^-}

Свойства солей аммония

Большинство солей аммония — бесцветные кристаллические вещества, хорошо растворимые в воде и легко разлагающиеся при нагревании с выделением газов.

  • Прочность солей аммония сильно различается. Чем сильнее кислота HX, тем более устойчива соль аммония. Так, соль сильной соляной кислоты хлорид аммония NH4Cl вполне стабилен при комнатной температуре, а соль слабой угольной кислоты карбонат аммония (NH4)2CO3 в этих условиях заметно разлагается.

Аммониевые соли летучих кислот при нагревании разлагаются, выделяя газообразные продукты, которые при охлаждении вновь образуют соль:

mathsf{NH_4Cl rightleftarrows NH_3 + HCl}

Если соль образована нелетучей кислотой, то нагревание протекает с разложением аммонийной соли:

mathsf{NH_4H_2PO_4 rightarrow NH_3 + H_3PO_4}
  • Если анион соли аммония содержит атом-окислитель, то при её нагревании происходит реакция внутримолекулярного окисления-восстановления, например:
mathsf{(NH_4)_2Cr_2O_7 rightarrow Cr_2O_3 + N_2 + 4H_2O}
{mathsf  {NH_{4}NO_{3}rightarrow N_{2}O+2H_{2}O}}
  • Восстановительные свойства аммония используются во взрывчатых веществах, например аммоналах.

Реакция обнаружения аммония

Реакция для обнаружения аммония — выделение аммиака при действии едких щелочей на соли аммония:

mathsf{NH_4Cl + NaOH rightarrow NaCl + NH_3 + H_2O}

Широко используется для спектрофотометрического количественного анализа также реакция с реактивом Несслера.

«Свободный аммоний»

При взаимодействии раствора хлорида аммония с амальгамой натрия образуется «амальгама аммония» — тестообразная масса, выделяющая водород и аммиак.

При действии NH4I на синий раствор металлического натрия в жидком аммиаке наблюдается обесцвечивание, которое может быть интерпретировано как образование «свободного аммония»:

mathsf{Na + NH_4I rightarrow NaI + NH_4}

Заметное разложение этого раствора с выделением водорода идет при температурах выше −40 °C, образовавшаяся бесцветная жидкость легко присоединяет иод (предположительно — по схеме:

mathsf{2NH_4 + I_2 rightarrow 2NH_4I}

однако существование свободного радикала NH4 в этом случае сомнительно, в 1960-х годах предполагалось, что в этом растворе присутствуют сольватированные аммиаком атомы водорода H•NH3.

Замещённые соединения аммония

Органические

Атомы водорода в аммонии могут быть замещены на органические радикалы. Существуют соединения одно-, двух-, трёх- и даже четырёхзамещённого аммония. Гидроксиды четырёхзамещённого аммония (например, гидроксид тетраметиламмония) могут быть выделены в свободном состоянии и являются намного более сильными щелочами, чем сам аммоний и его производные меньшей степени замещения.

Неорганические

Тетрафтораммоний [NF4]+ представляет собой аммоний, все четыре атома водорода в котором замещены фтором. Тетрафтораммоний является одним из немногих соединений, в которых азот имеет степень окисления +5, является сильнейшим окислителем и устойчив только в соединении с комплексными фтористыми анионами, например, тетрафторборатом [BF4].

irishka200006

+18

Решено

8 лет назад

Химия

5 — 9 классы

в какой группе в таблице менделеева находится аммоний?

Смотреть ответ

2

Ответ

4
(4 оценки)

7

Хулиганка19

Хулиганка19
8 лет назад

Светило науки — 720 ответов — 12503 помощи

)))
Аммоний это ион выглядит он следующим образом NH4⁺ . Поэтому в таблицу  Дмитрия Иваныча он входит исключительно в виде атомов азота — N  и водорода — H)))

(4 оценки)

Ответ

3
(3 оценки)

3

lizs
8 лет назад

Светило науки — 17 ответов — 43 помощи

Аммоний — это ион NH4

(3 оценки)

https://vashotvet.com/task/8712605

Понравилась статья? Поделить с друзьями:
  • Как пишется химиотерапия правильно слово
  • Как пишется химиотерапевт
  • Как пишется химик технолог
  • Как пишется хилл на английском
  • Как пишется хилер