Чтобы научиться быстро и успешно решать уравнения, нужно начать с самых простых правил и примеров. В первую очередь надо научиться решать уравнения, слева у которых стоит разность, сумма, частное или произведение некоторых чисел с одним неизвестным, а справа другое число. Иными словами, в этих уравнениях есть одно неизвестное слагаемое и либо уменьшаемое с вычитаемым, либо делимое с делителем и т.д. Именно об уравнениях такого типа мы с вами поговорим.
Эта статья посвящена основным правилам, позволяющим найти множители, неизвестные слагаемые и др. Все теоретические положения будем сразу пояснять на конкретных примерах.
Нахождение неизвестного слагаемого
Допустим, у нас есть некоторое количество шариков в двух вазах, например, 9. Мы знаем, что во второй вазе 4 шарика. Как найти количество во второй? Запишем эту задачу в математическом виде, обозначив число, которое нужно найти, как x. Согласно первоначальному условию, это число вместе с 4 образуют 9, значит, можно записать уравнение 4+x=9. Слева у нас получилась сумма с одним неизвестным слагаемым, справа – значение этой суммы. Как найти x? Для этого надо использовать правило:
Для нахождения неизвестного слагаемого надо вычесть известное из суммы.
В данном случае мы придаем вычитанию смысл, который является обратным смыслу сложения. Иначе говоря, есть определенная связь между действиями сложения и вычитания, которую можно в буквенном виде выразить так: если a+b=c, то c−a=b и c−b=a, и наоборот, из выражений c−a=b и c−b=a можно вывести, что a+b=c.
Зная это правило, мы можем найти одно неизвестное слагаемое, используя известное и сумму. Какое именно слагаемое мы знаем, первое или второе, в данном случае неважно. Посмотрим, как применить данное правило на практике.
Возьмем то уравнение, что у нас получилось выше: 4+x=9. Согласно правилу, нам нужно вычесть из известной суммы, равной 9, известное слагаемое, равное 4. Вычтем одно натуральное число из другого: 9-4=5. Мы получили нужное нам слагаемое, равное 5.
Обычно решения подобных уравнений записывают следующим образом:
- Первым пишется исходное уравнение.
- Далее мы записываем уравнение, которое получилось после того, как мы применили правило вычисления неизвестного слагаемого.
- После этого пишем уравнение, которое получилось после всех действий с числами.
Такая форма записи нужна для того, чтобы проиллюстрировать последовательную замену исходного уравнения равносильными и отобразить процесс нахождения корня. Решение нашего простого уравнения, приведенного выше, правильно будет записать так:
4+x=9,x=9−4,x=5.
Мы можем проверить правильность полученного ответа. Подставим то, что у нас получилось, в исходное уравнение и посмотрим, выйдет ли из него верное числовое равенство. Подставим 5 в 4+x=9 и получим: 4+5=9. Равенство 9=9 верное, значит, неизвестное слагаемое было найдено правильно. Если бы равенство оказалось неверным, то нам следовало бы вернуться к решению и перепроверить его, поскольку это знак допущенной ошибки. Как правило, чаще всего это бывает вычислительная ошибка или применение неверного правила.
Нахождение неизвестного вычитаемого или уменьшаемого
Как мы уже упоминали в первом пункте, между процессами сложения и вычитания существует определенная связь. С ее помощью можно сформулировать правило, которое поможет найти неизвестное уменьшаемое, когда мы знаем разность и вычитаемое, или же неизвестное вычитаемое через уменьшаемое или разность. Запишем эти два правила по очереди и покажем, как применять их при решении задач.
Для нахождения неизвестного уменьшаемого надо прибавить вычитаемое к разности.
Например, у нас есть уравнение x-6=10. Неизвестно уменьшаемое. Согласно правилу, нам надо прибавить к разности 10 вычитаемое 6, получим 16. То есть исходное уменьшаемое равно шестнадцати. Запишем все решение целиком:
x−6=10,x=10+6,x=16.
Проверим получившийся результат, добавив получившееся число в исходное уравнение: 16-6=10. Равенство 16-16 будет верным, значит, мы все подсчитали правильно.
Переходим к следующему правилу.
Для нахождения неизвестного вычитаемого надо вычесть разность из уменьшаемого.
Воспользуемся правилом для решения уравнения 10-x=8. Мы не знаем вычитаемого, поэтому нам надо из 10 вычесть разность, т.е. 10-8=2. Значит, искомое вычитаемое равно двум. Вот вся запись решения:
10-x=8,x=10-8,x=2.
Сделаем проверку на правильность, подставив двойку в исходное уравнение. Получим верное равенство 10-2=8 и убедимся, что найденное нами значение будет правильным.
Перед тем, как перейти к другим правилам, отметим, что существует правило переноса любых слагаемых из одной части уравнения в другую с заменой знака на противоположный. Все приведенные выше правила ему полностью соответствуют.
Нахождение неизвестного множителя
Посмотрим на два уравнения: x·2=20 и 3·x=12. В обоих нам известно значение произведения и один из множителей, необходимо найти второй. Для этого нам надо воспользоваться другим правилом.
Для нахождения неизвестного множителя нужно выполнить деление произведения на известный множитель.
Данное правило базируется на смысле, который является обратным смыслу умножения. Между умножением и делением есть следующая связь: a·b=c при a и b, не равных 0, c: a=b, c: b=c и наоборот.
Вычислим неизвестный множитель в первом уравнении, разделив известное частное 20 на известный множитель 2. Проводим деление натуральных чисел и получаем 10. Запишем последовательность равенств:
x·2=20x=20:2x=10.
Подставляем десятку в исходное равенство и получаем, что 2·10=20. Значение неизвестного множителя было выполнено правильно.
Уточним, что в случае, если один из множителей нулевой, данное правило применять нельзя. Так, уравнение x·0=11 с его помощью решить мы не можем. Эта запись не имеет смысла, поскольку для решения надо разделить 11 на 0, а деление на нуль не определено. Подробнее о подобных случаях мы рассказали в статье, посвященной линейным уравнениям.
Когда мы применяем это правило, мы, по сути, делим обе части уравнения на другой множитель, отличный от 0. Существует отдельное правило, согласно которому можно проводить такое деление, и оно не повлияет на корни уравнения, и то, о чем мы писали в этом пункте, с ним полностью согласовано.
Нахождение неизвестного делимого или делителя
Еще один случай, который нам нужно рассмотреть, – это нахождение неизвестного делимого, если мы знаем делитель и частное, а также нахождение делителя при известном частном и делимом. Сформулировать это правило мы можем с помощью уже упомянутой здесь связи между умножением и делением.
Для нахождения неизвестного делимого нужно умножить делитель на частное.
Посмотрим, как применяется данное правило.
Решим с его помощью уравнение x:3=5. Перемножаем между собой известное частное и известный делитель и получаем 15, которое и будет нужным нам делимым.
Вот краткая запись всего решения:
x:3=5,x=3·5,x=15.
Проверка показывает, что мы все подсчитали верно, ведь при делении 15 на 3 действительно получается 5. Верное числовое равенство – свидетельство правильного решения.
Указанное правило можно интерпретировать как умножение правой и левой части уравнения на одинаковое отличное от 0 число. Это преобразование никак не влияет на корни уравнения.
Переходим к следующему правилу.
Для нахождения неизвестного делителя нужно разделить делимое на частное.
Возьмем простой пример – уравнение 21:x=3. Для его решения разделим известное делимое 21 на частное 3 и получим 7. Это и будет искомый делитель. Теперь оформляем решение правильно:
21:x=3,x=21:3,x=7.
Удостоверимся в верности результата, подставив семерку в исходное уравнение. 21:7=3, так что корень уравнения был вычислен верно.
Важно отметить, что это правило применимо только для случаев, когда частное не равно нулю, ведь в противном случае нам опять же придется делить на 0. Если же частным будет нуль, возможны два варианта. Если делимое также равно нулю и уравнение выглядит как 0:x=0, то значение переменной будет любым, то есть данное уравнение имеет бесконечное число корней. А вот уравнение с частным, равным 0, с делимым, отличным от 0, решений иметь не будет, поскольку таких значений делителя не существует. Примером может быть уравнение 5:x=0, которое не имеет ни одного корня.
Последовательное применение правил
Зачастую на практике встречаются более сложные задачи, в которых правила нахождения слагаемых, уменьшаемых, вычитаемых, множителей, делимых и частных нужно применять последовательно. Приведем пример.
У нас есть уравнение вида 3·x+1=7. Вычисляем неизвестное слагаемое 3·x, отняв от 7 единицу. Получим в итоге 3·x=7−1, потом 3·x=6. Это уравнение решить очень просто: делим 6 на 3 и получаем корень исходного уравнения.
Вот краткая запись решения еще одного уравнения (2·x−7):3−5=2:
(2·x−7):3−5=2,(2·x−7):3=2+5,(2·x−7):3=7,2·x−7=7·3,2·x−7=21,2·x=21+7,2·x=28,x=28:2,x=14.
найти слагаемое
Разберём в качестве примера решение одного элементарного уравнения. Из чего оно состоит? Как правило, это сумма и два слагаемых, одно из которых известно, другое — нет. Преимущественно неизвестное слагаемое обозначается буквой «икс», прописью x.
Например, уравнение выглядит следующим образом: 3+x=8. Как его решить? Воспользуемся законами элементарной логики. У нас есть сумма двух чисел. Одно из них известно, а второе — нет. То есть для того, чтобы узнать неизвестное, необходимо из суммы вычесть известное слагаемое. Получаем результат: 8−3=5.
Конечно, взрослому человеку с рациональным и логическим мышлением это кажется простым и понятным. А как быть, если необходимо научить ребёнка нахождению слагаемого? Можно объяснить на простых и понятных примерах. Например, задать вопрос: У Димы было 3 рубля, и после того как Петя дал ему денег, у Димы стало 8 рублей. Сколько рублей ему дал Петя?
Самый простой пример — счёты на пальцах. Сначала можно показать ребёнку 3 пальца, а потом 8. После чего попросить его посчитать, сколько пальцев вы добавили. Главное — не пытаться всё объяснить сложными словами. Предложенные примеры буду более эффективными. Однако повторить правило нахождения неизвестного слагаемого не будет лишним. Оно формулируется следующим образом: чтобы найти неизвестное слагаемое, надо известное слагаемое вычесть из суммы.
После того как вы решили уравнение, рекомендуется сделать проверку, чтобы убедиться, что всё сделано правильно. Сложите получившийся результат неизвестного слагаемого с известным слагаемым. Если сумма совпадает с суммой, то решение правильное. В нашем случае проверка: 3+5=8.
Видео
Поиск вычитаемого
Нахождение вычитаемого — это такой же простой процесс, как и поиск уменьшаемого. Уравнение может иметь следующий вид: 7-x=3. Мы имеем разность — результат вычитания, и уменьшаемое число. Формулировка правила: чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.
Так, если мы вычитаем из одного числа неизвестное число и получаем определённый результат (разность), значит, для поиска неизвестного вычитаемого вычтем из известного числа разность. В нашем примере x=7−3, результат равен 4. Для проверки вычтем 4 из 7, и получим 3 — решение верное. Ещё один вариант проверки — сложить 3 и 4. Так как сумма равна 7, решение правильное.
Общие правила
Для того чтобы гораздо быстрее решать элементарные уравнения, необходимо знать некоторые правила математики и логики. Здесь даже навыки арифметики не имеют такого решающего значения, как понимание того, что именно необходимо находить.
В случае с неизвестным слагаемым оно находится очень просто. От перестановки слагаемых сумма не меняется. То есть совершенно неважно, какой вид имеет уравнение x+2=6, или 2+x=6. В любом случае компонент x будет равен 4.
Дело в том, что уравнения с одним неизвестным предусмотрены школьной программой третьего класса. А ученики могут путаться и испытывать трудности в их решении, не зная этого правила.
Первое, с чего стоит начинать развитие навыка решения — это многократное повторение. Достаточно решать 5—10 уравнений в день с одним неизвестным компонентом, и уже через несколько дней ученик будет справляться с подобными заданиями гораздо быстрее. И только потом можно переходить к более сложным заданиям.
А также для улучшения понимания необходимо решать обратные уравнения. Что это значит? Вычитание — процесс, обратный сложению. То есть при сложении 3 и 4 сумма равна 7. А при вычитании 4 из 7 разность равна 3. В первом уравнении можно искать неизвестные слагаемые. При этом решать его с теми же числами, но на поиск уменьшаемого или вычитаемого.
Решение подобных уравнений точно не навредит ученику, это лишь ускорит процесс формирования навыка. При проверке и решении обратных уравнений в голове откладывается взаимосвязь между всеми компонентами примеров, а их решение практически доводит до автоматизма. Главное — постоянно тренировать этот навык.
Правила нахождения уменьшаемого
При поиске уменьшаемого уравнение может выглядеть следующим образом: x-2=4. Мы имеем разность — результат вычитания и число, которое вычитаем. Необходимо найти уменьшаемое — самое большое число в примере. Формулировка правила: чтобы найти неизвестное уменьшаемое, необходимо к разности прибавить вычитаемое.
Так, если мы вычитаем из неизвестного числа другое число и получаем результат, известный нам, то для поиска уменьшаемого необходимо сложить разность и вычитаемое. Простейший пример: дома были конфеты. Их количество мы не знаем. После того как Дима съел 2 конфеты, их осталось 4. Вопрос: сколько их всего было изначально? Для того чтобы узнать, прибавим 2 к 4 и получим результат — было 6 конфет. Для проверки вычтем 2 из 6. Получим результат 4 — решение верное.
Нахождение неизвестного множителя
Посмотрим на два уравнения: x·2=20 и 3·x=12. В обоих нам известно значение произведения и один из множителей, необходимо найти второй. Для этого нам надо воспользоваться другим правилом.
Для нахождения неизвестного множителя нужно выполнить деление произведения на известный множитель.
Данное правило базируется на смысле, который является обратным смыслу умножения. Между умножением и делением есть следующая связь: a·b=c при a и b, не равных , c: a=b, c: b=c и наоборот.
Вычислим неизвестный множитель в первом уравнении, разделив известное частное 20 на известный множитель 2. Проводим деление натуральных чисел и получаем 10. Запишем последовательность равенств:
x·2=20x=20:2x=10.
Подставляем десятку в исходное равенство и получаем, что 2·10=20. Значение неизвестного множителя было выполнено правильно.
Уточним, что в случае, если один из множителей нулевой, данное правило применять нельзя. Так, уравнение x·=11 с его помощью решить мы не можем. Эта запись не имеет смысла, поскольку для решения надо разделить 11 на , а деление на нуль не определено. Подробнее о подобных случаях мы рассказали в статье, посвященной линейным уравнениям.
Когда мы применяем это правило, мы, по сути, делим обе части уравнения на другой множитель, отличный от . Существует отдельное правило, согласно которому можно проводить такое деление, и оно не повлияет на корни уравнения, и то, о чем мы писали в этом пункте, с ним полностью согласовано.
Примеры использования свойств сложения и вычитания
Мы узнали основные свойства сложения и вычитания — осталось попрактиковаться. Чтобы ничего не забыть, используйте эту шпаргалку:
Скачать
Пример 1
Вычислить сумму слагаемых с использованием разных свойств:
а) 4 + 6 + 5
б) 9 + 11 + 2
в) 30 + 0 + 13
Как решаем:
а) 4 + 6 + 8 = (4 + 6) + 5 = 10 + 5 = 15
б) 9 + 11 + 2 = (9 + 11) + 2 = 20 + 2 = 22
в) 30 + 0 + 13 = 30 + 13 = 43
Пример 2
Применить разные свойства при вычислении разности:
а) 25 — 0 — 2
б) 22 — 7 — 5
в) 55 — 55
Как решаем:
а) 25 — 0 — 2 = 25 — 2 = 23
б) 22 — 7 -5 = 22 — (7 + 5) = 22 — 12 = 10
в) 55 — 55 = 0
Пример 3
Найти значение выражения удобным способом:
а) 11 + 10 + 3 + 9
б) 16 — (6 + 5) + 7
в) 0 + 2 + 4 — 0
Как решаем:
а) 11 + 10 + 3 + 9 = (11 + 9) + (10 + 3) = 20 + 13 = 33
б) 16 — (6 + 5) + 7 = (16 — 6) — 5 + 7 = 10 — 5 + 7 = 5 + 7 = 12
в) 0 + 2 + 4 — 0 = 2 + 4 = 6
Теги
Способ найти 1 слагаемое
Разберём в качестве примера решение одного элементарного уравнения. Из чего оно состоит? Как правило, это сумма и два слагаемых, одно из которых известно, другое — нет. Преимущественно неизвестное слагаемое обозначается буквой «икс», прописью x.
Например, уравнение выглядит следующим образом: 3+x=8. Как его решить? Воспользуемся законами элементарной логики. У нас есть сумма двух чисел. Одно из них известно, а второе — нет. То есть для того, чтобы узнать неизвестное, необходимо из суммы вычесть известное слагаемое. Получаем результат: 8−3=5.
Конечно, взрослому человеку с рациональным и логическим мышлением это кажется простым и понятным. А как быть, если необходимо научить ребёнка нахождению слагаемого? Можно объяснить на простых и понятных примерах. Например, задать вопрос: У Димы было 3 рубля, и после того как Петя дал ему денег, у Димы стало 8 рублей. Сколько рублей ему дал Петя?
Самый простой пример — счёты на пальцах. Сначала можно показать ребёнку 3 пальца, а потом 8. После чего попросить его посчитать, сколько пальцев вы добавили. Главное — не пытаться всё объяснить сложными словами. Предложенные примеры буду более эффективными. Однако повторить правило нахождения неизвестного слагаемого не будет лишним. Оно формулируется следующим образом: чтобы найти неизвестное слагаемое, надо известное слагаемое вычесть из суммы.
После того как вы решили уравнение, рекомендуется сделать проверку, чтобы убедиться, что всё сделано правильно. Сложите получившийся результат неизвестного слагаемого с известным слагаемым. Если сумма совпадает с суммой, то решение правильное. В нашем случае проверка: 3+5=8.
Другие методы
Правило, которое позволяет быстро найти неизвестное слагаемое, довольно простое. Однако для того, чтобы облегчить его понимание, из него можно вывести правила, связанные с вычитанием.
Так, в примерах со сложением мы имеем два слагаемых и сумму: 3+5=8. Здесь 3 и 5 — слагаемые, а 8 — сумма. А в примерах с вычитанием мы имеем:
- Уменьшаемое.
- Вычитаемое.
- Разность.
Например, 7 — 4=3. В этом случае уменьшаемое — 7, вычитаемое — 3, а разность — 4. Уменьшаемое и вычитаемое также могут быть неизвестными. И крайне важно знать, как их вычислять.
Правила нахождения уменьшаемого
При поиске уменьшаемого уравнение может выглядеть следующим образом: x-2=4. Мы имеем разность — результат вычитания и число, которое вычитаем. Необходимо найти уменьшаемое — самое большое число в примере. Формулировка правила: чтобы найти неизвестное уменьшаемое, необходимо к разности прибавить вычитаемое.
Так, если мы вычитаем из неизвестного числа другое число и получаем результат, известный нам, то для поиска уменьшаемого необходимо сложить разность и вычитаемое. Простейший пример: дома были конфеты. Их количество мы не знаем. После того как Дима съел 2 конфеты, их осталось 4. Вопрос: сколько их всего было изначально? Для того чтобы узнать, прибавим 2 к 4 и получим результат — было 6 конфет. Для проверки вычтем 2 из 6. Получим результат 4 — решение верное.
Поиск вычитаемого
Нахождение вычитаемого — это такой же простой процесс, как и поиск уменьшаемого. Уравнение может иметь следующий вид: 7-x=3. Мы имеем разность — результат вычитания, и уменьшаемое число. Формулировка правила: чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.
Так, если мы вычитаем из одного числа неизвестное число и получаем определённый результат (разность), значит, для поиска неизвестного вычитаемого вычтем из известного числа разность. В нашем примере x=7−3, результат равен 4. Для проверки вычтем 4 из 7, и получим 3 — решение верное. Ещё один вариант проверки — сложить 3 и 4. Так как сумма равна 7, решение правильное.
Общие правила
Для того чтобы гораздо быстрее решать элементарные уравнения, необходимо знать некоторые правила математики и логики. Здесь даже навыки арифметики не имеют такого решающего значения, как понимание того, что именно необходимо находить.
В случае с неизвестным слагаемым оно находится очень просто. От перестановки слагаемых сумма не меняется. То есть совершенно неважно, какой вид имеет уравнение x+2=6, или 2+x=6. В любом случае компонент x будет равен 4.
Дело в том, что уравнения с одним неизвестным предусмотрены школьной программой третьего класса. А ученики могут путаться и испытывать трудности в их решении, не зная этого правила.
Первое, с чего стоит начинать развитие навыка решения — это многократное повторение. Достаточно решать 5—10 уравнений в день с одним неизвестным компонентом, и уже через несколько дней ученик будет справляться с подобными заданиями гораздо быстрее. И только потом можно переходить к более сложным заданиям.
А также для улучшения понимания необходимо решать обратные уравнения. Что это значит? Вычитание — процесс, обратный сложению. То есть при сложении 3 и 4 сумма равна 7. А при вычитании 4 из 7 разность равна 3. В первом уравнении можно искать неизвестные слагаемые. При этом решать его с теми же числами, но на поиск уменьшаемого или вычитаемого.
Решение подобных уравнений точно не навредит ученику, это лишь ускорит процесс формирования навыка. При проверке и решении обратных уравнений в голове откладывается взаимосвязь между всеми компонентами примеров, а их решение практически доводит до автоматизма. Главное — постоянно тренировать этот навык.
Уравнения с умножением и делением
После освоения уравнений на сложение и вычитание можно будет переходить к следующему уровню сложности. Это уравнения с умножением и делением.
Компоненты уравнения с умножением:
- Два множителя.
- Произведение.
Например, 3*x=6. Здесь 3 и x — множители, а 6 — произведение. Так, умножая одно число на другое, в результате получается произведение. То есть, если одно из этих чисел неизвестно, необходимо разделить произведение на известный множитель. В этом случае действует такое же правило, как и при сложении. При перестановке мест множителей произведение не меняется.
Компоненты уравнения с делением:
- Делимое.
- Делитель.
- Частное.
Возьмём простейший пример 8: x=4. Здесь делимое 8, делитель x, а частное — 4. Для поиска неизвестного делителя необходимо разделить делимое на частное. Для упрощения понимания можно представить это уравнение в виде элементарной задачи. В классе 8 учеников, которые разделились на группы по 4 человека. Вопрос: сколько получилось групп?
Есть ещё один вариант — с поиском делимого. Например, уравнение x:2=5. Для поиска делимого необходимо частное умножить на делитель. Пример задачи: 2 мальчика заработали по 5 долларов каждый, какова общая сумма их заработка?
Между делением и умножением похожая взаимосвязь, как между сложением и вычитанием. То есть для того, чтобы лучше решать уравнения с умножением, необходимо также решать их с делением и наоборот. Этот подход в тренировке навыка решения уравнений ускоряет мыслительный процесс.
Поиск неизвестных компонентов уравнения не такой уж и сложный. Главное — начинать с простого и регулярно решать уравнения с одним неизвестным. И тогда для вас будут открыты более сложные задачи — с двумя и более неизвестными.
блин , СЛАГАЕМОЕ , ПРОШУ ПРОЩЕНИЕ , САМО НАПИСАЛО ЧЕРЕЗ О
2
Почему? Правописание, правило.
Как правильно пишется слово: «слогаемое» или «слагаемое»?
Как правильно писать слово: «слогаемое» или «слагаемое»?
Какая часть речи слово слагаемое?
Пример предложения со словом слагаемое?
7 ответов:
7
0
Слово «слагаемое» пишется через букву «а» в первом слоге — именно «слагаемое». Проверочное слово — слагать.
Слагаемое — это имя существительное. Что? — слагаемое.
<hr />
Примеры предложений со словом «слагаемое»:
Первое слагаемое в три раза больше второго;
Откуда тут взялось третье слагаемое?;
Чтобы получить сумму нужно сложить первое слагаемое со вторым.
1
0
слагаемое, от слова слагать, вот и все правило через корень слова
слагаемое → слагаемое – существительное, ср. р., именитльный. п., ед. ч.
└ слагаемое – существительное, ср. р., винительный п., ед. ч.
пример предложений:
Сложив первое и второе слагаемое, мы получим сумму
Слагаемые- числа, которые суммируют друг с другом
1
0
Данное слово является существительным среднего рода единственного числа.
Его правописание подчиняется правилу написания корней ЛОЖ, ЛАГ, ЛОГ: Если сомнительная гласная является безударной, то в корне слова пишем О перед Ж, а букву А перед Г.
В нашем случае сомнительная буква является безударной, но за не следует буква Г, следовательно, нужно писать букву А: слагаемое.
0
0
Никаких проверочных слов искать не нужно! Необходимо воспользоваться существующим правилом, относящимся к словам с чередующимися гласными о — а в корневой морфеме.
Заданное слово — это имя существительное, потому что обозначает предмет и отвечает на вопрос ЧТО имеем?
Это существительное имеет корень с чередующимися гласными, которые по существу не меняют лексического значения однокоренных слов.
Кстати сказать, слов с корнями лаг — лог — лож в русском языке очень много, пожалуй, больше, чем слов с другими корнями с разными чередующимися гласными.
Итак, вспомним и применим правило, чтобы безошибочно написать заданное слово.
В нашем случае правило такое: в корне перед согласной г пишется гласная а, когда она находится в безударном положении, а перед согласной ж пишется гласная о.
Поэтому пишем — слАгаемое.
Примеры-предложения.
Ученик стоял у доски и пытался найти неизвестное слагаемое по имеющимся значениям суммы и второго слагаемого.
Во дворце прочитали для молодёжи лекцию «Слагаемые семейного счастья».
0
0
Слово можно легко разобрать по составу. Первой идет приставка «с», затем следует корень, поле — ключевой суффикс «а» и второй «ем». И уже окончание «ое».
В корне происходит чередование гласное — он может быть как «лог», так и «лаг». И опираться надо как раз на суффикс «а». Если таковой имеется, то в корне пишем «лаг».
А в данном слове на суффикс и падает ударение. В результате мы получим «слагаемое».
0
0
Писать нужно через букву «А», если «О», то этот вариант ошибочный.
Другими словами правильно «слагаемое» и не иначе.
Гласные в корне могут чередоваться.
Буква которая под вопросом, находится в безударной позиции, а за ней идёт согласная «Г».
Значит пишем «слагаемое» и не иначе.
0
0
Веерным вариантом для написания, является «слагаемое», а все потому что в корне «лаг», проверяемая гласная, находится в безударной позиции перед согласной «г», а перед данной согласной, в спорных моментах и в безударной позиции, всегда должна писаться гласная «а», но никак не «о».
Читайте также
«Не требуется» — это даже и не слово, а два слова. Первое — частица, а второе — глагол.
Думается, что такое предположение не было голословным, поскольку второе слово («требуется») отвечает на вопрос «что делает?» (или «что делается?», если создавать вопрос с обычной формальностью, не вдаваясь в смысл). Да и обладает другими категориальными признаками глагола.
А первое слово («не») не может быть признано приставкой, потому что если в языке есть слово «требуется», но не может быть слова «нетребуется». Это понятно из правила, обуславливающего соответствующую раздельность глаголов с «НЕ».
_
Итак, глагол «требоваться относится к совокупности тех, которые не сливаются с «НЕ». Писать «нетребуется» нельзя.
Ещё одно простейшее доказательство того — возможность принудительного разделения «НЕ» и глагола вставленным словом. Например: «не очень требуется», «не слишком требуется», «не каждый год требуется» и так далее.
Других доказательств не потребуется.
Предложение.
- «А что, разве не требуется даже подтверждения своей почты?».
«Чёрно-белый» — это сложное имя прилагательное, являющееся высокочастотным представителем так называемой колоративной лексики (выражение цвета) с возможной коннотацией «блеклый во всех отношениях» и с модальностью «отрицание цвета».
Как известно, коннотативные значения никогда не берут верх при объяснении орфографии слов, поэтому в данном случае мы должны воспринимать это прилагательное только как цветообозначение. Такие слова пишется с дефисом. К тому же части слова «чёрно-белый» совершенно семантически равноправны.
Писать «чёрно белый» (раздельно) или «чёрнобелый» (слитно) нельзя.
Например (предложения).
- «Любая чёрно-белая фотография носит в себе оттенки старины».
- «В третьем зале музея стояли чёрно-белые телевизоры».
- «Ваня Мельничаненко почему-то воспринимал мир только в чёрно-белых тонах».
1) Утверждение: Это непреступный (находящийся в рамках закона) случай простой женской хитрости.
2) Отрицание:
Случай этот — не преступный, здесь скорее нарушение общественной морали.
Случай этот отнюдь не преступный.
Планы у подростков были не преступные, а вполне безобидные.
Надо сказать, что обе формы, слитная и раздельная, используются крайне редко, в отличие от омофона «неприступный» (с большой частотностью). Особенно это касается слитного написания, когда поисковик указывает на ошибку и предлагает найти слово «неприступный».
Сочетание «со мной» (ударение на «О«, которая после «Н«) — это ни что другое, как предлог «С» с местоимением «Я«. Но мы эмпирически понимаем, что говорить «Пойдём с я» нельзя.
- «Со» — вариант «с», иногда используемый, в частности, перед [м] плюс согласная. Например: «со многими». Это из разряда «подо», «предо», «передо», «ко», «во», «надо», «обо» и так далее.
- «Мной» («мною») — это указанное выше «Я» в творительном падеже. «С кем? — со мной (со мною)». Личное местоимение.
Предлоги нельзя в таких случаях подсоединять к личным местоимениям. Подобные примеры: «с тобой (с тобою)», «с ней (с нею»)», «с ним».
Писать «сомной» нельзя. Нужен пробел.
Предложения:
- «Со мной всё в полном порядке, Трофим, а с тобой ничего не случилось ли?».
- «Будь со мной, Игнатий, не когда тебе это необходимо, а всегда».
Слово «повеселее» находится в составе систематизированного языка, в числе подобных единиц («получше», «понастойчивее», «похуже» и так далее).
Элемент «по-«, который мы при написании таких слов порой не знаем, к приставкам его отнести или к предлогам, является всё-таки приставкой.
Оттолкнёмся от имени прилагательного «весёлый» и от наречия «весело». И у первого, и у второго слов имеются формы (одинаковые!) сравнительной степени, которые образуются так:
- «Весёлый — веселее — повеселее».
- «Весело — веселее — повеселее».
К простейшей классической форме прибавляется наша приставка, преобразуя её в разговорную. Этот приём — системный. Пишется приставка слитно. Писать «по веселее» (или «по веселей») нельзя.
Например.
- «Повеселее, повеселее, Родион, не засыпай!».
Никаких проверочных слов искать не нужно! Необходимо воспользоваться существующим правилом, относящимся к словам с чередующимися гласными о — а в корневой морфеме.
Заданное слово — это имя существительное, потому что обозначает предмет и отвечает на вопрос ЧТО имеем?
Это существительное имеет корень с чередующимися гласными, которые по существу не меняют лексического значения однокоренных слов.
Кстати сказать, слов с корнями лаг — лог — лож в русском языке очень много, пожалуй, больше, чем слов с другими корнями с разными чередующимися гласными.
Итак, вспомним и применим правило, чтобы безошибочно написать заданное слово.
В нашем случае правило такое: в корне перед согласной г пишется гласная а, когда она находится в безударном положении, а перед согласной ж пишется гласная о.
Поэтому пишем — слАгаемое.
Примеры-предложения.
Ученик стоял у доски и пытался найти неизвестное слагаемое по имеющимся значениям суммы и второго слагаемого.
Во дворце прочитали для молодёжи лекцию «Слагаемые семейного счастья».
На чтение 1 мин Просмотров 22 Опубликовано 28.10.2021
Правописание – «слагаемое» или «слогаемое» – определяется правилом «Буквы «о» и «а» в корне «-лаг-/-лож-».
Как пишется правильно: «слагаемое» или «слогаемое»?
Безошибочно написан первый вариант – «слагаемое».
Какое правило применяется?
«Слагаемое» – нариц. неодуш. существительное 2-го скл. ср. рода, употребляемое в значении – «то, что складывается с другим».
Лексема исконно русского происхождения, от старославянского «вылагати».
В слове нередко допускается ошибка: вместо гласной «а» в первом слоге пишут гласную «о», что противоречит орфографии существительного. Чтобы не допускать подобной ошибки в корне слова, нужно знать, что в корнях с чередованием гласных перед «г», согласно названной выше орфограмме, пишется гласная «а», перед «ж» – «о». В слове, которое нас интересует, после гласной следует «г», поэтому пишем в корне существительного гласную букву «а» – слагаемое.
Примеры предложений
Первое из двух слагаемых меньше второго на двенадцать единиц.
Слагаемые нашего сегодняшнего успеха – это настроение и желание работать, а еще, конечно же, отличное здоровье и семейное благополучие.
Как неправильно писать
Нельзя писать следующим образом – слогаемое.
Ответ:
Правильное написание слова — слагаемое
Ударение и произношение — слаг`аемое
Значение слова -составная часть вместе с другими образующая целое
Пример:
Слагаемые успеха.
Выберите, на какой слог падает ударение в слове — ГОФРИРОВАННЫЕ?
или
Слово состоит из букв:
С,
Л,
А,
Г,
А,
Е,
М,
О,
Е,
Похожие слова:
славящий
славящийся
слага
слагавший
слагавшийся
слагаемый
слагает
слагается
слагал
слагала
Рифма к слову слагаемое
предполагаемое, неосязаемое, испытываемое, выражаемое, ожидаемое, неощущаемое, заглушаемое, непроницаемое, ощущаемое, неисчерпаемое, получаемое, признаваемое, занимаемое, рассказываемое, скрываемое, поизрекаемое, застилаемое, наблюдаемое, понимаемое, почитаемое, желаемое, подаваемое, подразумеваемое, называемое, требуемое, неотъемлемое, непреодолимое, видимое, самое, неопределимое, повторяемое, незнакомое, непостижимое, непоколебимое, мое, искомое, неизменяемое, независимое, угрюмое, необходимое, непогрешимое, седьмое, знакомое, недостижимое, непоправимое, любимое, неопровержимое, неведомое, учтивое, розовое, некрасивое, двое, несчастливое, надвое, красивое, насмешливое, правдивое, моложавое, каковое, завистливое, торговое, недоверчивое, яровое, несправедливое, брильянтовое, свое, счастливое, грубое, дымковое, багровое, первое, одинаковое, боевое, нетерпеливое, слабое, особое, вое, шутливое, голубое, ласковое, коричневое, шаловливое, лиловое, дешевое, бедовое, здоровое, правое, живое, мостовое, басовое, задумчивое, вдвое, готовое, двухчасовое, скучливое, левое, трутневое, новое
Толкование слова. Правильное произношение слова. Значение слова.
Нахождение неизвестного слагаемого
- Задачи на неизвестное слагаемое
Чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое.
Пример:
3 | + | ? | = | 7 |
Первое слагаемое |
Второе слагаемое |
Сумма |
---|
Для нахождения второго слагаемого, вычтем из суммы первое слагаемое:
7 | — | 3 | = | 4 |
Сумма | Первое слагаемое |
Второе слагаемое |
---|
Чтобы узнать правильно ли было найдено второе слагаемое, надо сложить первое слагаемое со вторым. Если получится данная сумма, то действие было выполнено верно:
3 + 4 = 7.
Задачи на неизвестное слагаемое
Задача 1. На столе лежит 9 карандашей: зелёные и 4 синих. Сколько зелёных карандашей лежит на столе?
Решение:
9 — 4 = 5.
Ответ: 5 зелёных карандашей лежит на столе.
Задача 2. За два дня Маша прочитала 15 страниц. За первый день она прочитала 9 страниц. Сколько страниц она прочитала за второй день?
Решение:
15 — 9 = 6.
Ответ: 6 страниц.
Задача 3. В парке рабочие сажали деревья — берёзы и дубы. Они посадили 4 ряда берёз, по 3 дерева в каждом ряду. Всего в парке посадили 25 деревьев. Сколько дубов посадили рабочие?
Решение: Первым действием надо посчитать, сколько берёз посадили рабочие. Для этого нужно 3 берёзы умножить на 4, потому что по 3 берёзы посажены в каждом из 4 рядов:
1) 3 · 4 = 12 (берёз).
Вторым действием нужно из общего количества деревьев вычесть количество берёз:
2) 25 — 12 = 13 (дубов).
В результате вычитания мы узнали, сколько дубов посадили рабочие в парке.
Ответ: 13 дубов.
Правило нахождения неизвестного слагаемого используется для проверки сложения вычитанием.
Мы научим решать уравнения быстро и быть уверенными в правильном и успешном результате. Для начала, выучим простые правила и рассмотрим примеры. Самый лёгкий тип уравнений — это у которых слева размещена разность, произведение, частное или сумма чисел и одно неизвестное, а справа — известное число. Если проще, нам надо найти в уравнении одно неизвестное. Неизвестное делимое с делителем, слагаемое или уменьшаемое с вычитаемым. Такие типы уравнений мы рассмотрим далее в статье.
Распишем основные правила для поиска неизвестных слагаемых, множителей, делимых и так далее. Для закрепления теории, мы подобрали конкретные примеры под каждое правило и каждую ситуацию, с которой вы можете столкнуться при решении уравнений такого типа.
Как найти неизвестное слагаемое, правило
Представим, что на столе стоит две вазы. В этих вазах в общей сложности лежит 7 яблок. В одной вазе лежит 2 яблока. Как узнать сколько яблок лежит во второй вазе и есть ли они там вообще? Посмотрим, как выглядит эта задача в математическом виде, отметив неизвестное число яблок во второй вазе как x. Согласно условиям выше, это неизвестное вместе с числом 2 образовывают 7. Значит, наше уравнение будет выглядеть как: 2 + x = 7. Справа имеем значение суммы, а слева — сумма чисел с одним неизвестным слагаемым. Для решения уравнения надо найти число x. В таких случаях используют правило:
Правило 1
Чтобы найти неизвестное слагаемое в уравнении, надо из суммы вычесть известное.
В ситуации, где происходит математическое нахождение неизвестного слагаемого, вычитание является обратный действием по смыслу, относительно сложения. Другими словами, между действиями вычитания и сложения есть математическая связь, и правило нахождения неизвестного слагаемого благодаря этой связи можно отобразить в буквенном виде: если в условии a + b = c, то c − b = a и c − a = b. А если вы видите обратные примеры, такие как c − a = b и c − b = a, то можете быть уверенны в том что a + b = c. Благодаря определению и математической связи, мы можем узнать неизвестное слагаемое, имея только его сумму с известным слагаемым. От перестановки слагаемых, значение не меняется, поэтому неважно какое надо найти слагаемое — первое или второе. Давайте используем это правило на практике, для лучшего понимания теории.
Пример 1
Давайте решим уравнение, которое мы составили выше: 2 + x = 7. С учётом правила, мы должны из суммы обоих слагаемых, 7, вычесть известное, 2. В решении это будет выглядеть так: 7 − 2 = 5.
В решении математических задач и примеров очень важно знать и использовать правильный алгоритм записи таких уравнений:
- Запишем исходное уравнение, на базе математической задачи.
- Применяем подходящее правило и записываем следующее уравнение на его основании.
- Записываем финальное уравнение, где указываем значение ранее неизвестного.
Запись решения по этой последовательности, отображает последовательные замены изначального уравнения равносильными ему по значениям. В итоге мы сможем увидеть в решении весь процесс нахождения неизвестного. Правильная форма записи нашего уравнения будет в виде такого решения:
2 + x = 7,
x = 7 – 2,
x = 5.
Четвертой строкой в решении примера может стать проверка решения, которая даст уверенность в правильности найденного ответа. Подставим найденное значение в исходное уравнение. Берем число 5 и подставляем в пример 2 + x = 7. У нас получится:
2 + 5 = 7.
Так как мы получили правильное исходное уравнение, значит мы решили пример верно. Если бы у нас получило неверное равенство в проверочном примере, например, 2 + 8 = 7, мы бы вернулись к первому пункту алгоритма решения примера. Неверное равенство при проверке указывает на допущенную ошибку в расчётах или неверно подобранном или использованном правиле.
Находим неизвестное уменьшаемое или вычитаемое
Итак, в математических примерах в процессе вычитания и сложения существует нерушимая связь. Эта связь сформулировала правила, благодаря которым можно быстро найти неизвестное — уменьшаемое, если нам известны разность и вычитаемое, или вычитаемое, если мы знаем разность и уменьшаемое. Для каждого случая есть правило, которое мы сейчас рассмотрим вместе с решением примера.
Правила 2 — 3 + примеры
Если прибавить к разности вычитаемое, получим неизвестное уменьшаемое.
Возьмем для примера уравнение x – 1 = 4. В качестве неизвестного сейчас выступает уменьшаемое. Исходя из правила выше, мы к разности 4 добавляем вычитаемое 1. В сумме получаем 5. Значит, изначальное неизвестное уменьшаемое равно 5. Запишем решение по правильному алгоритму:
x – 1 = 4,
x = 4 + 1,
x = 5.
Не лишним будет проверить правильность решения примера путём подстановки найденного числа 5 в исходный пример:
5 – 1 = 4.
Мы получили верное уравнение, значит решение правильное. Можно переходить к изучению следующего правила.
Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.
Используем это правило для нахождения неизвестного вычитаемого в примере 5 – x = 2. Для решения этого уравнения мы определили, что неизвестное является вычитаемым, а значит, в этом случае будем использовать Определение 3. Вычтем из числа 5 известную разность 2 и получим 5 – 2 = 3. Вот так выглядит полная правильная запись решения:
5 – x = 2,
x = 5 – 2,
x = 3.
Давайте убедимся, что мы правильно решили уравнение. Для этого подставим найденное число в исходный пример.
5 – 3 = 2.
Полученное уравнение верное, значит мы правильно нашли неизвестное вычитаемое. Теперь, когда вы выучили базовые правила нахождения неизвестных, мы поделимся с вами более простым способ решения примеров. Для нахождения неизвестного, нам нужно перенести неизвестное по одну сторону знака равности в уравнении, чаще левую, а известные — по другую, например, правую. При этом, когда переносите известное или неизвестное через знак равности, меняете его знак на противоположный. Если на одной из сторон ничего не остаётся, значит там будет стоять число 0. Мы покажем, как это работает на практике.
Есть пример 5 – x = 2, перенесём известные по правую сторону от знака уравнения:
– x = 2 – 5
При решении, получим уравнение:
– x = – 3
Так как в уравнениях всегда ищется неизвестное с положительным знаком, сменим знаки на противоположные в обеих частях уравнения, как бы перенося известное и неизвестное через знак равности, получим:
x = 3
Как видим, найденное значение неизвестного вычитаемого совпадает с тем значением, которое мы нашли при использовании Определения 3. Правило переноса чисел через знак равности со сменой их знака на противоположный работает для всех уравнений без исключения. Можем использовать это правило вместо всех вышеперечисленных.
Находим неизвестный множитель
Рассмотрим два уравнения: 3 ⋅ x = 9 и x ⋅ 2 = 6. И в первом, и во втором примере нужно найти один из неизвестных множителей. Второй множитель и производное — известны. Давайте запомним правило для решения подобных примеров.
Правило 4 + пример
Чтобы найти неизвестный множитель, нужно разделить производное на другой, известный множитель. Смысл этого правила базируется на обратном смысле к операции умножения. Между операциями деления и умножения также есть связь, которая выражается в следующем: если a ⋅ b = c и при этом ни a, ни b не равны 0, то c : a = b и, наоборот, c : b = a.
Найдём неизвестный множитель из уравнения 3 ⋅ x = 9 путём деления известного частного 9 на известный множитель 3. Запишем решение по алгоритму:
3 ⋅ x = 9,
x = 9 : 3,
x = 3.
Выполним подстановку, чтобы проверить правильность результата:
3 ⋅ 3 = 9
Уравнение правильное, это значит, мы верно установили значение неизвестного множителя. Обратите внимание, правило невозможно использовать в случае, если известный множитель равен 0. К примеру, если вам попадётся уравнение x ⋅ 0 = 8, вы не сможете его решить с помощью этого правила. Само уравнение x ⋅ 0 = 8 бессмысленно, так как для его решения нужно было бы разделить 8 на 0, а делить на 0 нельзя.
Подобные ситуации детально рассмотрены в статье о линейных уравнениях. В случае использования Определения 4, по факту мы делим обе части примера на известный множитель, за исключением 0. Согласно более сложному правилу, мы можем делить обе части уравнения на любой множитель, отличный от 0 и это не повлияет на правильность уравнения и на значение его корня. Оба правила согласованы между собой и отражают математическую связь между обеими частями уравнения.
Нет времени решать самому?
Наши эксперты помогут!
Находим неизвестный делитель или делимое
Последний случай, с которым вы можете столкнуться в решении простых математических примеров — как найти неизвестное делимое при известном частном и делителе, и наоборот, как найти делитель, если из уравнения известно значение только делимого и частного. Используя знакомую связь между делением и умножением, сформируем правило для решения подобных примеров.
Правило 5 + пример
Если мы ищем неизвестное делимое, то умножаем частное на делитель. Давайте рассмотрим, как использовать правило при решении практических примеров.
Возьмем для решение уравнение типа x : 2 = 4. Перемножаем делитель 2 и частное 4 между собой, получаем ответ 8. Вот мы и нашли неизвестное делимое. Последовательная запись решения будет выглядеть в виде:
x : 2 = 4,
x = 4 · 2,
x = 8.
Также запишем проверочный пример, подставив найденное делимое 8 в исходное уравнение:
8 : 2 = 4.
Правильность проверочного уравнения указывает на правильность найденного ответа.
Определение 5 можно связать с умножением обеих частей уравнения на один и тот же множитель, отличный от 0. Такие изменения в примере никаким образом не повлияют на корни обеих частей уравнения или итоговое значение его неизвестного. Давайте ознакомимся со следующим правилом.
Правило 6 + пример
Чтобы найти неизвестный делитель, нужно делимое разделить на известное частное. Разберем простой пример ниже.
Возьмём уравнение 10 : x = 5. Разделим делимое 10 на известное частное 5. Получим ответ 2, что и будет значением неизвестного делителя в этом уравнении. В любом случае, уравнение нельзя решать в уме, а нужно обеспечить запись процесса решения по алгоритму:
10 : x = 5,
x = 10 : 5,
x = 2.
Завершаем решение примера проверкой результата:
10 : 2 = 5.
Мы получили верное уравнение, значит нашли корень правильно. Обратите внимание, если частное равно 0, мы не может применять это Определение, так как придётся делить делимое на 0. И в таком случае найти делимое невозможно. Но число 0 может выступать в роли частного в уравнении 0 : x = 0. В этом случае, неизвестное x может быть любым положительным или отрицательным числом, то есть равняться бесконечному количеству вариантов значения.
На практике вы будете встречать более сложные примеры и задачи на нахождение неизвестного слагаемого, вычитаемого или множителя/делимого, в которых будете последовательно применять вышеперечисленные правила.
Нахождение неизвестного слагаемого, множителя: правила, примеры, решения
Чтобы научиться быстро и успешно решать уравнения, нужно начать с самых простых правил и примеров. В первую очередь надо научиться решать уравнения, слева у которых стоит разность, сумма, частное или произведение некоторых чисел с одним неизвестным, а справа другое число. Иными словами, в этих уравнениях есть одно неизвестное слагаемое и либо уменьшаемое с вычитаемым, либо делимое с делителем и т.д. Именно об уравнениях такого типа мы с вами поговорим.
Эта статья посвящена основным правилам, позволяющим найти множители, неизвестные слагаемые и др. Все теоретические положения будем сразу пояснять на конкретных примерах.
Нахождение неизвестного слагаемого
Допустим, у нас есть некоторое количество шариков в двух вазах, например, 9 . Мы знаем, что во второй вазе 4 шарика. Как найти количество во второй? Запишем эту задачу в математическом виде, обозначив число, которое нужно найти, как x. Согласно первоначальному условию, это число вместе с 4 образуют 9 , значит, можно записать уравнение 4 + x = 9 . Слева у нас получилась сумма с одним неизвестным слагаемым, справа – значение этой суммы. Как найти x ? Для этого надо использовать правило:
Для нахождения неизвестного слагаемого надо вычесть известное из суммы.
В данном случае мы придаем вычитанию смысл, который является обратным смыслу сложения. Иначе говоря, есть определенная связь между действиями сложения и вычитания, которую можно в буквенном виде выразить так: если a + b = c , то c − a = b и c − b = a , и наоборот, из выражений c − a = b и c − b = a можно вывести, что a + b = c .
Зная это правило, мы можем найти одно неизвестное слагаемое, используя известное и сумму. Какое именно слагаемое мы знаем, первое или второе, в данном случае неважно. Посмотрим, как применить данное правило на практике.
Возьмем то уравнение, что у нас получилось выше: 4 + x = 9 . Согласно правилу, нам нужно вычесть из известной суммы, равной 9 , известное слагаемое, равное 4 . Вычтем одно натуральное число из другого: 9 — 4 = 5 . Мы получили нужное нам слагаемое, равное 5 .
Обычно решения подобных уравнений записывают следующим образом:
- Первым пишется исходное уравнение.
- Далее мы записываем уравнение, которое получилось после того, как мы применили правило вычисления неизвестного слагаемого.
- После этого пишем уравнение, которое получилось после всех действий с числами.
Такая форма записи нужна для того, чтобы проиллюстрировать последовательную замену исходного уравнения равносильными и отобразить процесс нахождения корня. Решение нашего простого уравнения, приведенного выше, правильно будет записать так:
4 + x = 9 , x = 9 − 4 , x = 5 .
Мы можем проверить правильность полученного ответа. Подставим то, что у нас получилось, в исходное уравнение и посмотрим, выйдет ли из него верное числовое равенство. Подставим 5 в 4 + x = 9 и получим: 4 + 5 = 9 . Равенство 9 = 9 верное, значит, неизвестное слагаемое было найдено правильно. Если бы равенство оказалось неверным, то нам следовало бы вернуться к решению и перепроверить его, поскольку это знак допущенной ошибки. Как правило, чаще всего это бывает вычислительная ошибка или применение неверного правила.
Нахождение неизвестного вычитаемого или уменьшаемого
Как мы уже упоминали в первом пункте, между процессами сложения и вычитания существует определенная связь. С ее помощью можно сформулировать правило, которое поможет найти неизвестное уменьшаемое, когда мы знаем разность и вычитаемое, или же неизвестное вычитаемое через уменьшаемое или разность. Запишем эти два правила по очереди и покажем, как применять их при решении задач.
Для нахождения неизвестного уменьшаемого надо прибавить вычитаемое к разности.
Например, у нас есть уравнение x — 6 = 10 . Неизвестно уменьшаемое. Согласно правилу, нам надо прибавить к разности 10 вычитаемое 6 , получим 16 . То есть исходное уменьшаемое равно шестнадцати. Запишем все решение целиком:
x − 6 = 10 , x = 10 + 6 , x = 16 .
Проверим получившийся результат, добавив получившееся число в исходное уравнение: 16 — 6 = 10 . Равенство 16 — 16 будет верным, значит, мы все подсчитали правильно.
Переходим к следующему правилу.
Для нахождения неизвестного вычитаемого надо вычесть разность из уменьшаемого.
Воспользуемся правилом для решения уравнения 10 — x = 8 . Мы не знаем вычитаемого, поэтому нам надо из 10 вычесть разность, т.е. 10 — 8 = 2 . Значит, искомое вычитаемое равно двум. Вот вся запись решения:
10 — x = 8 , x = 10 — 8 , x = 2 .
Сделаем проверку на правильность, подставив двойку в исходное уравнение. Получим верное равенство 10 — 2 = 8 и убедимся, что найденное нами значение будет правильным.
Перед тем, как перейти к другим правилам, отметим, что существует правило переноса любых слагаемых из одной части уравнения в другую с заменой знака на противоположный. Все приведенные выше правила ему полностью соответствуют.
Нахождение неизвестного множителя
Посмотрим на два уравнения: x · 2 = 20 и 3 · x = 12 . В обоих нам известно значение произведения и один из множителей, необходимо найти второй. Для этого нам надо воспользоваться другим правилом.
Для нахождения неизвестного множителя нужно выполнить деление произведения на известный множитель.
Данное правило базируется на смысле, который является обратным смыслу умножения. Между умножением и делением есть следующая связь: a · b = c при a и b , не равных 0 , c : a = b , c : b = c и наоборот.
Вычислим неизвестный множитель в первом уравнении, разделив известное частное 20 на известный множитель 2 . Проводим деление натуральных чисел и получаем 10 . Запишем последовательность равенств:
x · 2 = 20 x = 20 : 2 x = 10 .
Подставляем десятку в исходное равенство и получаем, что 2 · 10 = 20 . Значение неизвестного множителя было выполнено правильно.
Уточним, что в случае, если один из множителей нулевой, данное правило применять нельзя. Так, уравнение x · 0 = 11 с его помощью решить мы не можем. Эта запись не имеет смысла, поскольку для решения надо разделить 11 на 0 , а деление на нуль не определено. Подробнее о подобных случаях мы рассказали в статье, посвященной линейным уравнениям.
Когда мы применяем это правило, мы, по сути, делим обе части уравнения на другой множитель, отличный от 0 . Существует отдельное правило, согласно которому можно проводить такое деление, и оно не повлияет на корни уравнения, и то, о чем мы писали в этом пункте, с ним полностью согласовано.
Нахождение неизвестного делимого или делителя
Еще один случай, который нам нужно рассмотреть, – это нахождение неизвестного делимого, если мы знаем делитель и частное, а также нахождение делителя при известном частном и делимом. Сформулировать это правило мы можем с помощью уже упомянутой здесь связи между умножением и делением.
Для нахождения неизвестного делимого нужно умножить делитель на частное.
Посмотрим, как применяется данное правило.
Решим с его помощью уравнение x : 3 = 5 . Перемножаем между собой известное частное и известный делитель и получаем 15 , которое и будет нужным нам делимым.
Вот краткая запись всего решения:
x : 3 = 5 , x = 3 · 5 , x = 15 .
Проверка показывает, что мы все подсчитали верно, ведь при делении 15 на 3 действительно получается 5 . Верное числовое равенство – свидетельство правильного решения.
Указанное правило можно интерпретировать как умножение правой и левой части уравнения на одинаковое отличное от 0 число. Это преобразование никак не влияет на корни уравнения.
Переходим к следующему правилу.
Для нахождения неизвестного делителя нужно разделить делимое на частное.
Возьмем простой пример – уравнение 21 : x = 3 . Для его решения разделим известное делимое 21 на частное 3 и получим 7 . Это и будет искомый делитель. Теперь оформляем решение правильно:
21 : x = 3 , x = 21 : 3 , x = 7 .
Удостоверимся в верности результата, подставив семерку в исходное уравнение. 21 : 7 = 3 , так что корень уравнения был вычислен верно.
Важно отметить, что это правило применимо только для случаев, когда частное не равно нулю, ведь в противном случае нам опять же придется делить на 0 . Если же частным будет нуль, возможны два варианта. Если делимое также равно нулю и уравнение выглядит как 0 : x = 0 , то значение переменной будет любым, то есть данное уравнение имеет бесконечное число корней. А вот уравнение с частным, равным 0 , с делимым, отличным от 0 , решений иметь не будет, поскольку таких значений делителя не существует. Примером может быть уравнение 5 : x = 0 , которое не имеет ни одного корня.
Последовательное применение правил
Зачастую на практике встречаются более сложные задачи, в которых правила нахождения слагаемых, уменьшаемых, вычитаемых, множителей, делимых и частных нужно применять последовательно. Приведем пример.
У нас есть уравнение вида 3 · x + 1 = 7 . Вычисляем неизвестное слагаемое 3 · x , отняв от 7 единицу. Получим в итоге 3 · x = 7 − 1 , потом 3 · x = 6 . Это уравнение решить очень просто: делим 6 на 3 и получаем корень исходного уравнения.
Вот краткая запись решения еще одного уравнения ( 2 · x − 7 ) : 3 − 5 = 2 :
( 2 · x − 7 ) : 3 − 5 = 2 , ( 2 · x − 7 ) : 3 = 2 + 5 , ( 2 · x − 7 ) : 3 = 7 , 2 · x − 7 = 7 · 3 , 2 · x − 7 = 21 , 2 · x = 21 + 7 , 2 · x = 28 , x = 28 : 2 , x = 14 .
Когда можно делить уравнение
ПРЕОБРАЗОВАНИЯ РАВЕНСТВ.
___________
РЕШЕНИЕ И СОСТАВЛЕНИЕ УРАВНЕНИЙ 1-Й СТЕПЕНИ
§ 4. Дополнительные замечания о решении уравнений.
Выше было сказано, что обе части уравнения можно умножать или делить на одно и то же количество. Говоря это, мы понимаем возможность этих действий в том смысле, что, производя их над данным уравнением, мы получаем новое уравнение, совместное с данным. Заметим теперь, что это указание верно только в том случае, когда множитель или делитель есть или явное количество, или хотя и неявное, но не содержит в себе той самой неизвестной буквы, которая входит в уравнение. Если дано выражение, содержащее то же неизвестное, как и в уравнении, то, вообще говоря, нельзя ни помножать уравнение на это выражение, ни делить на него. Поясним это на примерах:
Возьмем уравнение х = 2, которое очевидно имеет один только корень 2. Если мы умножим обе части его на х, то новое уравнение х 2 =2х не будет уже совместно с данным, потому что кроме прежнего корня 2, оно будет иметь еще корень 0, что обнаруживается и прямо из самаго уравнения, а также при решении полученного уравнения, если заменить его уравнением х 2 —2х=0 и написать последное в виде х(х—2)=0. Подобно этому, умножая данное уравнение х = 2 на выражение х—1, получаем новое уравнение
х 2 —2х=2х —2, совместное с уравнением (х—1)(х—2)=0 и имеющее два корня, прежний 2 и новый 1. Вообще при умножении уравнения на выражение, содержащее неизвестное, в это уравнение вводятся посторонние корни, а именно те, которые обращают множитель в нуль.
ІІонятно, наоборот, что если мы имеем, напр., уравнение х 2 =3х , корни которого суть 0 и 3 и сократим его на х, то полученное от этого сокращеиия уравнение не будет совместно с данным, потому что оно имеет только один корень 3. Подобно этому, имея уравнение (х—2) 2 =2х—4, корни которого суть 2 и 4, и сократив обе части на х—2, мы теряем корень 2 и получаем уравнение х—2 = 2, имеющее только один корень 4. Вообще при со-кращении обеих частей уравнения на их общий множитель, содержащий неизвестное, теряются корни уравнения и именно те, которые обращают делитель в нуль.
В курсе алгебры доказывается, что уравнение можно умножать на множитель, содержащий неизвестное, только в том случае, когда этот множитель входит в знаменатель дроби, получившейся от соединения всех дробей, входящих в уравнение, в одну дробь, и после окончательного сокращения этой последней.Так, если уравнение имеет вид А+ В /С=0, где А есть совокупность всех целых членов, а В /С есть несократимая дробь, то, умножая на С, получим уравнение АС+В=0, совместное с данным. В противном случае, если дробь В /С сократима, то необходимо сократить ее раньше уничтожения ее знаменателя, чтобы не внести в уравнение постороннего ему корня.
Обратно, только тогда можно разделить обе части уравнения на выражение, содержащее неизвестное, когда от этого получатся такие дроби, которые, будучи соединены все в одной части уравнения, дают в результате дробь, не сокращающуюся ни на какой множитель, содержащий неизвестное. В противном случае нужно при сокращении уравнения на делитель, заметить тот корень, который теряется при этом сокращении, и считать его в числе корней данного уравнения.
В нижеследующих задачах звездочкой обозначены те уравнения, при решении которых нужно принимать во внимаиие сделанные выше указания. Остальные задачи можно решать по обыкновенным правилам.
Когда можно делить на Х?
Ты может разделить по переменной. Но только если вы знаете, что переменная не равна нулю. Итак, если установка переменной на ноль делает обе части уравнения равными нулю, у нас есть решение, что эта переменная равна 0, или уравнение с разделенной переменной выполняется. Например, решить x(x-1) = 0.
Точно так же, как вы решаете X разделить на X?
Что можно разделить и на что?
Похожие страницы:Блог
Какие есть 3 вида налогов?
Как найти среднюю точку между двумя точками?
Как вы делаете кадровые прогнозы?
Как найти начальную скорость, зная только время?
Что можно разделить на 7? Делим на 7
- Возьмите последнюю цифру в числе.
- Удвойте и вычтите последнюю цифру вашего числа из остальных цифр.
- Повторите процесс для больших чисел.
- Пример: возьмем 357. Удвойте 7, чтобы получить 14. Вычтите 14 из 35, чтобы получить 21, что делится на 7, и теперь мы можем сказать, что 357 делится на 7.
Во-вторых, можно ли 4 разделить на 2? Используя калькулятор, если вы наберете 4 разделить на 2, вы получите 2.
Как написать разделить на?
Обычный письменный символ деления: (÷). В электронных таблицах и других компьютерных приложениях используется символ «/» (косая черта).
тогда как научить делить на 7?
Как вы делите на 7? Правило делимости 7 гласит, что для того, чтобы число делилось на 7, последнюю цифру данного числа следует умножить на 2, а затем вычесть из оставшейся части числа, оставив последнюю цифру. Если разница равна 0 или кратна 7, то она делится на 7.
Можно ли разделить 11 на что-нибудь?
Все целые числа должны иметь по крайней мере два числа, на которые они делятся. Это будет фактическое рассматриваемое число (в данном случае 11) и число 1. Итак, ответ — да. Число 11 делится на 2 числа(а).
Что получится разделить 7 на 2? Используя калькулятор, если вы наберете 7, разделенные на 2, вы получите 3.5. Вы также можете выразить 7/2 как смешанную дробь: 3 1/2. Если вы посмотрите на смешанную дробь 3 1/2, вы увидите, что числитель такой же, как остаток (1), знаменатель — это наш исходный делитель (2), а целое число — это наш окончательный ответ (3) .
Что 4 делится пополам?
Другими словами – четыре разделить на одну половину = 8.
Что значит разделить на? разделен на. ОПРЕДЕЛЕНИЯ1. (разделить что-то на что-то) сделать математический расчет, чтобы узнать, во сколько раз поместится меньшее число в большее число.
Как шаг за шагом делить?
Как называется 1, разделенная на число?
Любой номер разделить на 1 равно самому себе. Это правило просто говорит нам, что если у нас есть число, разделенное на 1, наш ответ будет равен этому числу независимо от того, что это за число.
Как называется число, на которое вы делите? Делимое число (в данном случае 15) называется дивиденд, а число, на которое оно делится (в данном случае 3), называется делителем. Результатом деления является частное.
Как я обучаю свою 9-летнюю дивизию?
Как вы делите начальную школу?
Как выглядит разделить на? Знак деления похож тире или двойное тире с точкой вверху и точкой внизу (÷). Это эквивалентно словам «разделить на». Этот символ встречается в основном в арифметических текстах на уровне начальной школы.
Делится ли 88 на 4 да или нет?
Вы можете быстро проверить, делится ли 88 на 4 взглянув на две последние цифры числа 88. В этом случае последние две цифры равны 2. Мы видим, что 88 делится на 88, а это означает, что 4 также делится на 88.
Как узнать, делится ли число на 4? Число делится на 4, если его последние две цифры делятся на 4. Например, 780, 52 и 80,744 4 делятся на 7,850, но 4 4 не делится на XNUMX. Чтобы проверить, делится ли число на XNUMX, просто разделите две последние цифры числа на 4.
Что можно разделить, чтобы получить 13?
13 имеет только два фактора, 1 и 13. Следовательно, это простое число.
Можно ли разделить 13? Когда мы перечисляем их таким образом, легко увидеть, что числа, на которые делится 13, равны 1 и 13. Что это? Возможно, вам будет интересно узнать, что все перечисленные выше числа-делители также известны как множители 13. … По сути, все эти числа могут быть равны 13 без остатка.