Как пишется несократимая дробная часть

Дроби делятся на сократимые и несократимые дроби. Рассмотрим подробнее какую дробь называются сократимой и какую дробь называют несократимой.

Сократимая дробь, определение и примеры.

Определение:
Сократимая дробь – это дробь у которой числитель и знаменатель имеют общий положительный делитель не равный нулю и единице.

Например:
Докажите, что дробь (frac{20}{35}) является сократимой.

Решение:
Распишем числитель и знаменатель на простые множители, найдем их наибольший общий делитель (НОД).
20=2⋅2⋅5
35=5⋅7

Так как у числителя и знаменателя повторяется множитель 5, это число и будет их наибольшим общим делителем.
НОД(20, 35)=5
Сократим дробь на НОД.

(frac{20}{35}=frac{4 times 5}{7 times 5}=frac{4}{7})

Из сократимой дроби (frac{20}{35}) получили несократимую дробь (frac{4}{7}).

Несократимая дробь, определение и примеры.

Какие же дроби несократимые или что значит несократимая дробь? Ответ на вопрос кроется в определении.

Определение:
Несократимая дробь – это дробь у которой числитель и знаменатель имеют только один общий делитель равный единице, то есть числитель и знаменатель являются взаимно-простыми числами.

Рассмотрим пример:
Докажите, что дробь (frac{137}{149}) является несократимой дробью.

Решение:
Число 137 является простым, так как оно делиться на 1 и на само себя.
Число 149 является простым, так как оно делиться на 1 и на само себя.
У числителя 137 и знаменателя 149 нет общих делителей, поэтому дробь (frac{137}{149}) является несократимой.

Правило несократимой дроби.

Правило:

  1. Нужно расписать на простые множители числитель и знаменатель.
  2. Нужно посмотреть есть ли у числителя и знаменателя общие множители. Если множители есть, то сократить дробь.
  3. Оставшиеся множители перемножить и записать полученную несократимую дробь.

Пример:
Запишите сократимую дробь в виде несократимой обыкновенной дроби (frac{55}{100}).

Решение:
По правилу несократимой дроби распишем числитель и знаменатель на простые множители.
55=5⋅11
100=5⋅2⋅2⋅5
Видим, что у числителя и знаменателя есть общий множитель равный 5, поэтому сокращаем дробь на 5.

(frac{55}{100}=frac{5 times 11}{5 times 20}=frac{11}{20})

Ответ: получили несократимую дробь (frac{11}{20}).

Неправильные сократимые и несократимые дроби.

Чтобы перевести неправильную сократимую дробь в неправильную несократимую дробь, мы пользуемся теми же правилами, что и для правильной сократимой дроби. Рассмотрим пример:

Запишите неправильную сократимую дробь в виде неправильной несократимой дроби (frac{32}{20}).

Решение:
Разложим числитель и знаменатель на простые множители.
32=2⋅2⋅2⋅2⋅2
20=5⋅2
Общий множитель у числителя и знаменателя равен 2. Распишем

(frac{32}{20}=frac{2 times 2 times 2 times 2 times 2}{5 times 2}=frac{16 times 2}{5 times 2}=frac{16}{5})

Ответ: получили несократимую неправильную дробь (frac{16}{5}).

Вопросы по теме:
Как узнать сократима ли дробь?
Ответ: чтобы узнать сократима ли дробь для начала нужно расписать числитель и знаменатель на простые множители, а потом посмотреть если у них общие множители, если есть, то дробь сократима, иначе – несократима. Рассмотрим пример.

Определите сократима ли дробь (frac{16}{25}).

Решение:
Распишем числитель и знаменатель на простые множители.
16=2⋅2⋅2⋅2
25=5⋅5
Видно, что у числителя и знаменателя нет общих множителей (одинаковых множителей), следовательно, дробь несократима.

Пример:
Сколько несократимых правильных дробей: а) (frac{8}{25}) б) (frac{6}{4}) в) (frac{13}{5}) г) (frac{36}{44}).

Решение:
а) У числителя и знаменателя дроби (frac{8}{25})  (8=2⋅2⋅2, 25=5⋅5) нет общих множителей, поэтому это правильная несократимая дробь. По условию это дробь нам подходит.

б) У числителя и знаменателя дроби (frac{6}{4}) (6=2⋅3, 4=2⋅2, (frac{6}{4}=frac{2 times 3}{2 times 2}=frac{3}{2}) ) есть общий множитель равный 2, поэтому это дробь сократимая и еще неправильная, потому что числитель больше знаменателя. По условию задания эта дробь нам не подходит.

в) Числитель и знаменатель дроби (frac{13}{5}), 5 и 13 простые числа, поэтому общих множителей кроме 1 у них нет, дробь несократимая. Так как числитель больше знаменателя дробь неправильная, поэтому по условию задания нам она не подходит.

г) Числитель и знаменатель дроби (frac{36}{44}) (36=2⋅2⋅3⋅3, 44=2⋅2⋅11) имеют общий множитель равный 4, поэтому дробь (frac{36}{44}=frac{4 times 9}{4 times 11}=frac{9}{11}) является сократимой, правильной. Нам по условию задания не подходит.

Ответ: (frac{8}{25}) несократимая, правильная дробь.

Пример:
Сколько имеется правильных несократимых дробей со знаменателем: а) 145 б) 123 в) 133 г) 115.

Решение:
а) Распишем на простые множители знаменатель 145:
145=5⋅29
Нужно исключить все числа от 1 до 144 кратные 5 и 29.
На 5 делится: 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140.
На 29 делится: 29, 58, 87, 116.
В сумме получаем 32 числа, которые имеют общий множитель с число 145. Всего у нас чисел 144.
144-32=112
Ответ: 112 правильных несократимых дробей со знаменателем 145.

б) Распишем на простые множители знаменатель 123:
123=3⋅41
В диапазоне чисел от 1 до 122 исключаем числа кратные 3 и 41.
На число 3 делится, поэтому не могут находиться в числителе: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120.
На 41 делится: 41, 82.
В сумме получаем 40+2=42 числа, которые имеют общий множитель с число 123, поэтому мы их исключим. Всего у нас чисел 122.
122-42=80
Ответ: 80 правильных несократимых дробей со знаменателем 123.

в) Распишем на простые множители знаменатель 133:
133=7⋅19
Числа от 1 до 132 исключаем, они делятся на 7 и 19, для того чтобы получить все несократимые дроби от (frac{1}{133}) до (frac{132}{133}).
Число 7 кратно: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126. Всего 18 чисел.
Число 19 кратно:19, 38, 57, 76, 95, 114. Всего 6 чисел.
132-18-6=108
Ответ: 108 правильных несократимых дробей со знаменателем 133.

г) Распишем на простые множители знаменатель 115:
115=5⋅23
Числа от 1 до 114 исключаем.
На 5 делится: 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110. Всего 22 числа.
На 23 делится число: 23, 46, 96, 92. Всего 4 чисел.
114-22-4=88
Ответ: 88 правильных несократимых дробей со знаменателем 115.

Нестандартная задача по математике:
Когда нельзя сокращать сократимую обыкновенную дробь?

Ответ: когда сократимая обыкновенная дробь является номером углового дома или квартала.

Данная статья посвящена рассмотрению сократимых и несократимых дробей. Приведем примеры, дадим определения сократимых и несократимых дробей. Выясним, как определить, можно ли сократить конкретную дробь.

Сократимые и несократимые дроби

Все обыкновенные дроби вида ab можно разделить на сократимые и несократимые. Разделение объясняется соответственно наличием или отсутствием общих для числителя и знаменателя дроби делителей. Приведем определения.

Определение. Сократимая дробь

Обыкновенная сократимая дробь — такая дробь, для числителя и знаменателя которой существует положительный общий делитель, отличный от единицы.

Определение. Несократимая дробь

Обыкновенная несократимая дробь — такая дробь, числитель и знаменатель которой являются взаимно простыми числами, то есть имеют единственный общий положительный делитель, равный единице.

Приведем примеры сократимых и несократимых дробей.

Примеры сократимых дробей

Дробь 1545 — сократимая. Действительно, как числитель, так и знаменатель можно разделить на 5. Другими словами, числитель и знаменатель этой дроби имеют общий делитель.

Другие примеры сократимых дробей — 1212, 366, 832

Примеры несократимых дробей

Дробь 712 — несократимая, так как ее числитель и знаменатель являются взаимно простыми числами.

Другие несократимые дроби — 914, 1112, 833.

Проверка дроби на сократимость

Часто с первого взгляда на конкретную дробь сложно сказать, является она сократимой или несократимой. Конечно, исключения составляют простые случаи, когда по признакам делимости сразу можно выявить общий делитель числителя и знаменателя.

К примеру, по признаку делимости на 10 сразу можно сказать, что дробь 470540 сократима, так как числитель и знаменатель имеют общий делитель, равный 10. Так же, дробь 384428 является сократимой по признаку делимости на 2. 

Но как быть с более сложными случаями, когда признаки делимости не могут помочь? Например, когда нужно узнать, сократима ли дробь 288329342439. Для таких случаев существует общий метод проверки дроби на сократимость.

Правило проверки дроби на сократимость

Вычисляем наибольший общий делитель числителя и знаменателя дроби.

  1. Если НОД равен единице, то дробь является несократимой.
  2. Если НОД отличен от единицы, то дробь сократима.

Посмотрим на практическое применение этого правила.

Пример. Сократима ли дробь?

Выясним, сократима ли обыкновенная дробь 495539. Для этого вычислим НОД числителя и знаменателя, применяя алгоритм Евклида.

539=495·1+44495=44·11+1144=11·4

Отсюда НОД(495, 539)=11. Следовательно, числитель и знаменатель дроби не являются взаимно простыми числами, и дробь сократима. 

В математических выкладках, если при вычислениях получилась сократимая дробь, принято производить ее сокращение и записывать в виде несократимой дроби.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Автор статьи

Наталья Игоревна Восковская

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Сократимые и несократимые дроби

Все обыкновенные дроби делятся на сократимые и несократимые дроби. Такое разделение дробей зависит от наличия или отсутствия общих делителей числителя и знаменателя, отличных от единицы.

Определение 1

Сократимая обыкновенная дробь — это дробь, у которой числитель и знаменатель имеют положительный отличный от единицы общий делитель.

Пример 1

Например, обыкновенная дробь $frac{4}{20}$ является сократимой, т.к. числитель $4$ и знаменатель $20$ делятся на $4$, т.е. имеют положительный общий делитель $4$, отличный от единицы. Сократимыми также являются дроби $frac{3}{12}$, $frac{7}{7}$. Легко увидеть, что числитель $3$ и знаменатель $12$ имеют отличный от единицы положительный общий делитель $3$, а числа $7$ и $7$ имеют общий делитель $7$.

Научись программировать

Получи навыки для отличной карьеры в IT под руководством ведущих экспертов

Выбрать занятия

Определение 2

Несократимая обыкновенная дробь — это дробь, у которой числитель и знаменатель являются взаимно простыми, т.е. имеют единственный общий положительный делитель — единицу.

Пример 2

Например, дроби $frac{3}{5}$, $frac{11}{4}$, $frac{171}{5}$, $frac{18}{35}$ являются несократимыми, т.к. числитель и знаменатель каждой из них — взаимно простые числа.

Правила проверки дроби на сократимость

В самых простых случаях проверить дробь на сократимость можно с помощью признаков делимости.

Например, легко увидеть, что дробь $frac{230}{450}$ сократима, т.к. ее числитель и знаменатель имеют общий делитель $10$. Или с помощью признака делимости на $2$ можно утверждать, что дробь $frac{368}{6824}$ сократима.

В более сложных случаях с помощью признаков делимости сложно выяснить, сократима ли данная дробь. Например, сложно определить, сократима дробь $frac{240671}{357893}$. В таких случаях удобно использовать общий метод проверки дроби на сократимость.

«Сократимые дроби» 👇

Правило проверки обыкновенной дроби на сократимость

Вычислить наибольший общий делитель (НОД) числителя и знаменателя данной дроби:

  • если $НОД=1$, то дробь является несократимой;
  • если $НОДne 1$, то дробь является сократимой.

Пример 3

Проверить на сократимость обыкновенную дробь $frac{203}{861}$.

Решение.

Проверим, являются ли числитель $203$ и знаменатель $861$ взаимно простыми числами. Для этого найдем НОД числителя и знаменателя и проверим, равен ли он единице.

НОД вычислим по алгоритму Евклида:

$frac{861}{203}=4$(остаток $49$)

$frac{203}{49}=4$ (остаток $7$)

$frac{49}{7}=7$ (остаток $0$)

$frac{33}{25}=1$ (остаток $8$)

$frac{25}{8}=3$ (остаток $1$)

Таким образом, НОД($861, 203)=7$. Итак, числитель и знаменатель данной дроби не являются взаимно простыми числами, поэтому $frac{203}{861}$ — сократимая дробь.

Ответ: дробь $frac{203}{861}$ — сократимая.

Сокращение дробей

Чтобы сократить дробь, нужно ее числитель и знаменатель разделить на их общий положительный отличный от единицы делитель. В результате сокращения дроби получают новую дробь, равную исходной, но с меньшим числителем и знаменателем.

Например, сократим обыкновенную дробь $frac{7}{21}$ на $7$, т.к. $7div 7=1$ и $21div 7=3$. В результате сокращения получим дробь $frac{1}{3}$, для которой $frac{7}{21}=frac{7cdot 1}{7cdot 3}=frac{1}{3}$.

Приведение обыкновенных дробей к несократимому виду

Обычно дроби сокращают для получения несократимых дробей, которые равны исходным сократимым дробям. Несократимую дробь можно получить в результате сокращения исходной сократимой дроби на наибольший общий делитель ее числителя и знаменателя — наибольшее число, на которое можно сократить данную дробь.

Дробь $frac{a:НОДleft(a, bright)}{b:НОДleft(a, bright)}$ — несократимая, т.к. $a:НОДleft(a, bright)$ и $b:НОДleft(a, bright)$ — взаимно простые числа.

Таким образом, для приведения обыкновенной дроби к несократимому виду необходимо ее числитель и знаменатель разделить на их НОД.

Под фразой «сократите дробь» чаще всего подразумевают приведение исходной дроби к несократимому виду. Т.е. именно деление числителя и знаменателя на их НОД, а не деление на любой их общий делитель.

Правило сокращения дробей

  1. Найти НОД числителя и знаменателя дроби.

  2. Разделить числитель и знаменатель дроби на их НОД, в результате чего получают несократимую дробь, равную исходной.

Пример 4

Сократить дробь $frac{187}{231}$.

Решение.

Воспользуемся правилом сокращения дробей:

  1. Найдем НОД($187, 231$).

    Наиболее удобным является алгоритм Евклида:

    [231=187cdot 1+44][187=44cdot 4+11][44=11cdot 4]

    Таким образом, НОД($187, 231)=11$.

  2. Разделим числитель и знаменатель дроби $frac{187}{231}$ на $11$, в результате чего получим несократимую дробь, равную исходной дроби:

    [frac{187}{231}=frac{17cdot 11}{21cdot 11}=frac{17}{21}.]

Ответ: $frac{187}{231}=frac{17}{21}$

Иногда для сокращения дробей (в более простых случаях) применяют способ textit{разложения дроби на простые множители}, после чего убираются все общие множители из числителя и знаменателя. Этот способ вытекает из правила сокращения дробей, т.к. НОД равен произведению всех общих простых множителей числителя и знаменателя.

Пример 5

Сократить дробь $frac{720}{960}$.

Решение.

Разложим числитель и знаменатель на простые множители:

Рисунок 1.

Получим $frac{720}{960}=frac{2cdot 2cdot 2cdot 2cdot 3cdot 3cdot 5}{2cdot 2cdot 2cdot 2cdot 2cdot 2cdot 3cdot 5}$.

Избавимся от общих множителей в числителе и знаменателе (для удобства их часто зачеркивают):

[frac{720}{960}=frac{2cdot 2cdot 2cdot 2cdot 3cdot 3cdot 5}{2cdot 2cdot 2cdot 2cdot 2cdot 2cdot 3cdot 5}=frac{3}{2cdot 2}=frac{3}{4}.]

Ответ: $frac{720}{960}=frac{3}{4}$.

Также можно использовать еще один способ сокращения дроби — последовательное сокращение. Т.е. на каждом шаге проводят сокращение дроби на общий делитель числителя и знаменателя, который легко определяется, например, по признакам делимости.

Пример 6

Сократить дробь $frac{5000}{21150}$.

Решение.

Легко увидеть, что общим множителем числителя и знаменателя дроби является число $10$. После сокращения дроби $frac{5000}{21150}$ на $10$ получим $frac{500}{2115}$.

Далее сократим дробь $frac{500}{2115}$ на $5$, исходя из признака делимости на $5$. Получим $frac{100}{423}$ — несократимую дробь. Сокращение завершено.

Ответ: $frac{5000}{21150}=frac{100}{423}$

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Несократимая дробь

В математике, несократимая дробь (также приведённая дробь) — дробь, которую невозможно сократить. Иначе говоря, значение несократимой дроби не допускает более простое представление в виде дроби. В случае обыкновенных дробей «более простое» означает: с меньшим (но натуральным) знаменателем.

Содержание

  • 1 Обыкновенные дроби
    • 1.1 Примеры
  • 2 Обобщение для произвольных колец
  • 3 См. также

Обыкновенные дроби

Каждое рациональное число обладает одним и только одним представлением в виде несократимой дроби

{displaystyle {frac {p}{q}} ,}

где p — целое число, а q — натуральное. Если разрешить целые знаменатели любого знака, то возможно второе несократимое представление

{displaystyle {frac {-p}{-q}}={frac {p}{q}}}

(то есть, числитель и знаменатель несократимой дроби можно одновременно умножать на −1), но все остальные представления рационального числа в виде частного двух целых чисел будут сократимы.

Дробь является несократимой тогда и только тогда, когда числитель и знаменатель взаимно просты.

Примеры

Для целого числа n представлением в виде несократимой дроби является

{displaystyle n={frac {n}{1}} }

Для полуцелого числа n + 12 представлением в виде несократимой дроби является

{displaystyle n+{frac {1}{2}}={frac {2n+1}{2}} .}

Дробь

{displaystyle {frac {4}{15}}}

несократима, хотя и числитель (4 = 2 × 2), и знаменатель (15 = 3 × 5) являются составными числами.

Левая часть равенства

{displaystyle {frac {119}{21}}={frac {17}{3}}}

сократима, т.к. и 119, и 21 делятся на 7. Правая часть — несократимая дробь, т.к. числитель и знаменатель являются различными простыми числами.

Обобщение для произвольных колец

Свойства несократимости, изложенные для обыкновенных дробей, сохраняются для факториальных колец с заменой множества чисел {1, −1} на группу обратимых элементов кольца.

Над произвольным кольцом элемент кольца частных, вообще говоря, не обязан иметь единственное с точностью до обратимых элементов представление в виде несократимой дроби.

См. также

  • Алгоритм Евклида
  • Цепная дробь
  • Основная теорема арифметики

Определение.

Несократимая дробь — это дробь, числитель и знаменатель которой являются взаимно-простыми числами.

То есть единственным общим делителем числителя и знаменателя несократимой дроби является единица.

Примеры.

    [1)frac{5}{{12}}]

Делители числителя: 1; 5

Делители знаменателя: 1; 2; 3; 4; 6; 12.

НОД (5; 12) =1, следовательно, 5 и 12 — взаимно-простые числа. Поэтому дробь

    [frac{5}{{12}}]

является несократимой.

    [2)frac{{16}}{{21}}]

Делители числителя: 1; 2; 4; 8; 16.

Делители знаменателя: 1; 3; 7; 21.

Наибольший (и единственный) общий делитель числителя и знаменателя — единица. Значит, числитель и знаменатель — взаимно-простые числа. Поэтому данная дробь — несократимая.

Согласно основному свойству дроби, дробь не изменится, если её числитель и знаменатель разделить на одно и то же число, отличное от нуля:

    [frac{a}{b} = frac{{a:m}}{{b:m}}]

Таким образом,

    [frac{a}{b}ufrac{{a:m}}{{b:m}}]

— две различные записи одного и того же числа.

В математике принято ответ записывать в виде несократимой дроби. То есть если числитель и знаменатель дроби можно разделить на одно и то же число, необходимо это сделать, иначе ответ не считается правильным.

Вот почему столь важно уметь определять, является ли дробь несократимой.

Как определить, является ли дробь несократимой?

1) Можно разложить числитель и знаменатель на простые множители и найти наибольший общий делитель. Если он равен 1, дробь несократима.

Например,

    [frac{{544}}{{945}}]

— несократимая дробь, поскольку наибольший общий делитель числителя и знаменателя равен единице и 544 и 945 — взаимно-простые числа.

nesokratimaya-drob

2) Если числитель и знаменатель — простые числа, то они являются взаимно-простыми, а дробь, соответственно, — несократимой.

Например, дробь

    [frac{{491}}{{769}}]

несократима, так как 491 и 769 — простые числа (проверили по таблице простых чисел).

3) Можно проверять делимость числителя и знаменателя, используя признаки делимости.

Если ни один из делителей одного числа не является делителем другого, то общий делитель числителя и знаменателя — единица, то есть они являются взаимно-простыми числами, а дробь — несократимой.

Например,

    [frac{{105}}{{374}}]

Числитель 105 делится на 5, 105:5=21. 21 делится на 3 и на 7. Следовательно, делители 105: 1; 3; 5; 7; 105.

Искать все делители знаменателя 374 не обязательно. Достаточно проверить, а не делится ли он на один из делителей числителя:

374 на 3 не делится (сумма 3+7+4=14),

на 5 не делится (запись заканчивается не на 0 и не на 5),

на 7 не делится (можно проверить непосредственным делением),

на 105 не делится.

Значит 1 — единственный общий делитель 105 и 374, они являются взаимно-простыми числами, а дробь — несократимой.

Содержание

  1. Сократимые и несократимые дроби
  2. Проверка дроби на сократимость
  3. Что ты хочешь узнать?
  4. Ответ
  5. Ответ
  6. Сократимая дробь, определение и примеры.
  7. Несократимая дробь, определение и примеры.
  8. Правило несократимой дроби.
  9. Неправильные сократимые и несократимые дроби.

Данная статья посвящена рассмотрению сократимых и несократимых дробей. Приведем примеры, дадим определения сократимых и несократимых дробей. Выясним, как определить, можно ли сократить конкретную дробь.

Сократимые и несократимые дроби

Все обыкновенные дроби вида a b можно разделить на сократимые и несократимые. Разделение объясняется соответственно наличием или отсутствием общих для числителя и знаменателя дроби делителей. Приведем определения.

Определение. Сократимая дробь

Обыкновенная сократимая дробь — такая дробь, для числителя и знаменателя которой существует положительный общий делитель, отличный от единицы.

Обыкновенная несократимая дробь — такая дробь, числитель и знаменатель которой являются взаимно простыми числами, то есть имеют единственный общий положительный делитель, равный единице.

Приведем примеры сократимых и несократимых дробей.

Примеры сократимых дробей

Дробь 15 45 — сократимая. Действительно, как числитель, так и знаменатель можно разделить на 5. Другими словами, числитель и знаменатель этой дроби имеют общий делитель.

Другие примеры сократимых дробей — 12 12 , 3 66 , 8 32

Дробь 7 12 — несократимая, так как ее числитель и знаменатель являются взаимно простыми числами.

Другие несократимые дроби — 9 14 , 11 12 , 8 33 .

Проверка дроби на сократимость

Часто с первого взгляда на конкретную дробь сложно сказать, является она сократимой или несократимой. Конечно, исключения составляют простые случаи, когда по признакам делимости сразу можно выявить общий делитель числителя и знаменателя.

К примеру, по признаку делимости на 10 сразу можно сказать, что дробь 470 540 сократима, так как числитель и знаменатель имеют общий делитель, равный 10 . Так же, дробь 384 428 является сократимой по признаку делимости на 2.

Но как быть с более сложными случаями, когда признаки делимости не могут помочь? Например, когда нужно узнать, сократима ли дробь 288329 342439 . Для таких случаев существует общий метод проверки дроби на сократимость.

Правило проверки дроби на сократимость

Вычисляем наибольший общий делитель числителя и знаменателя дроби.

  1. Если НОД равен единице, то дробь является несократимой.
  2. Если НОД отличен от единицы, то дробь сократима.

Посмотрим на практическое применение этого правила.

Пример. Сократима ли дробь?

Выясним, сократима ли обыкновенная дробь 495 539 . Для этого вычислим НОД числителя и знаменателя, применяя алгоритм Евклида.

539 = 495 · 1 + 44 495 = 44 · 11 + 11 44 = 11 · 4

Отсюда Н О Д ( 495 , 539 ) = 11 . Следовательно, числитель и знаменатель дроби не являются взаимно простыми числами, и дробь сократима.

В математических выкладках, если при вычислениях получилась сократимая дробь, принято производить ее сокращение и записывать в виде несократимой дроби.

Что ты хочешь узнать?

Ответ

В математике, несократимая дробь (также приведённая дробь) — дробь, которую невозможно сократить.

  • Комментарии
  • Отметить нарушение

Ответ

В математике, несократимая дробь — дробь, которую невозможно сократить. Иначе говоря, значение несократимой дроби не допускает более простое представление в виде дроби.

Несократимая дробь — это дробь, числитель и знаменатель которой являются взаимно-простыми числами.

НЕСОКРАТИМАЯ ДРОБЬ — дробь, числитель и знаменатель которой не имеют общих делителей

Дроби делятся на сократимые и несократимые дроби. Рассмотрим подробнее какую дробь называются сократимой и какую дробь называют несократимой.

Сократимая дробь, определение и примеры.

Определение:
Сократимая дробь – это дробь у которой числитель и знаменатель имеют общий положительный делитель не равный нулю и единице.

Например:
Докажите, что дробь (frac<20><35>) является сократимой.

Решение:
Распишем числитель и знаменатель на простые множители, найдем их наибольший общий делитель (НОД).
20=2⋅2⋅5
35=5⋅7

Так как у числителя и знаменателя повторяется множитель 5, это число и будет их наибольшим общим делителем.
НОД(20, 35)=5
Сократим дробь на НОД.

Из сократимой дроби (frac<20><35>) получили несократимую дробь (frac<4><7>).

Несократимая дробь, определение и примеры.

Какие же дроби несократимые или что значит несократимая дробь? Ответ на вопрос кроется в определении.

Определение:
Несократимая дробь – это дробь у которой числитель и знаменатель имеют только один общий делитель равный единице, то есть числитель и знаменатель являются взаимно-простыми числами.

Рассмотрим пример:
Докажите, что дробь (frac<137><149>) является несократимой дробью.

Решение:
Число 137 является простым, так как оно делиться на 1 и на само себя.
Число 149 является простым, так как оно делиться на 1 и на само себя.
У числителя 137 и знаменателя 149 нет общих делителей, поэтому дробь (frac<137><149>) является несократимой.

Правило несократимой дроби.

  1. Нужно расписать на простые множители числитель и знаменатель.
  2. Нужно посмотреть есть ли у числителя и знаменателя общие множители. Если множители есть, то сократить дробь.
  3. Оставшиеся множители перемножить и записать полученную несократимую дробь.

Пример:
Запишите сократимую дробь в виде несократимой обыкновенной дроби (frac<55><100>).

Решение:
По правилу несократимой дроби распишем числитель и знаменатель на простые множители.
55=5⋅11
100=5⋅2⋅2⋅5
Видим, что у числителя и знаменателя есть общий множитель равный 5, поэтому сокращаем дробь на 5.

Ответ: получили несократимую дробь (frac<11><20>).

Неправильные сократимые и несократимые дроби.

Чтобы перевести неправильную сократимую дробь в неправильную несократимую дробь, мы пользуемся теми же правилами, что и для правильной сократимой дроби. Рассмотрим пример:

Запишите неправильную сократимую дробь в виде неправильной несократимой дроби (frac<32><20>).

Решение:
Разложим числитель и знаменатель на простые множители.
32=2⋅2⋅2⋅2⋅2
20=5⋅2
Общий множитель у числителя и знаменателя равен 2. Распишем

Ответ: получили несократимую неправильную дробь (frac<16><5>).

Вопросы по теме:
Как узнать сократима ли дробь?
Ответ: чтобы узнать сократима ли дробь для начала нужно расписать числитель и знаменатель на простые множители, а потом посмотреть если у них общие множители, если есть, то дробь сократима, иначе – несократима. Рассмотрим пример.

Определите сократима ли дробь (frac<16><25>).

Решение:
Распишем числитель и знаменатель на простые множители.
16=2⋅2⋅2⋅2
25=5⋅5
Видно, что у числителя и знаменателя нет общих множителей (одинаковых множителей), следовательно, дробь несократима.

Пример:
Сколько несократимых правильных дробей: а) (frac<8><25>) б) (frac<6><4>) в) (frac<13><5>) г) (frac<36><44>).

Решение:
а) У числителя и знаменателя дроби (frac<8><25>) (8=2⋅2⋅2, 25=5⋅5) нет общих множителей, поэтому это правильная несократимая дробь. По условию это дробь нам подходит.

б) У числителя и знаменателя дроби (frac<6><4>) (6=2⋅3, 4=2⋅2, (frac<6><4>=frac<2 imes 3><2 imes 2>=frac<3><2>) ) есть общий множитель равный 2, поэтому это дробь сократимая и еще неправильная, потому что числитель больше знаменателя. По условию задания эта дробь нам не подходит.

в) Числитель и знаменатель дроби (frac<13><5>), 5 и 13 простые числа, поэтому общих множителей кроме 1 у них нет, дробь несократимая. Так как числитель больше знаменателя дробь неправильная, поэтому по условию задания нам она не подходит.

г) Числитель и знаменатель дроби (frac<36><44>) (36=2⋅2⋅3⋅3, 44=2⋅2⋅11) имеют общий множитель равный 4, поэтому дробь (frac<36><44>=frac<4 imes 9><4 imes 11>=frac<9><11>) является сократимой, правильной. Нам по условию задания не подходит.

Ответ: (frac<8><25>) несократимая, правильная дробь.

Пример:
Сколько имеется правильных несократимых дробей со знаменателем: а) 145 б) 123 в) 133 г) 115.

Решение:
а) Распишем на простые множители знаменатель 145:
145=5⋅29
Нужно исключить все числа от 1 до 144 кратные 5 и 29.
На 5 делится: 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140.
На 29 делится: 29, 58, 87, 116.
В сумме получаем 32 числа, которые имеют общий множитель с число 145. Всего у нас чисел 144.
144-32=112
Ответ: 112 правильных несократимых дробей со знаменателем 145.

б) Распишем на простые множители знаменатель 123:
123=3⋅41
В диапазоне чисел от 1 до 122 исключаем числа кратные 3 и 41.
На число 3 делится, поэтому не могут находиться в числителе: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120.
На 41 делится: 41, 82.
В сумме получаем 40+2=42 числа, которые имеют общий множитель с число 123, поэтому мы их исключим. Всего у нас чисел 122.
122-42=80
Ответ: 80 правильных несократимых дробей со знаменателем 123.

в) Распишем на простые множители знаменатель 133:
133=7⋅19
Числа от 1 до 132 исключаем, они делятся на 7 и 19, для того чтобы получить все несократимые дроби от (frac<1><133>) до (frac<132><133>).
Число 7 кратно: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126. Всего 18 чисел.
Число 19 кратно:19, 38, 57, 76, 95, 114. Всего 6 чисел.
132-18-6=108
Ответ: 108 правильных несократимых дробей со знаменателем 133.

г) Распишем на простые множители знаменатель 115:
115=5⋅23
Числа от 1 до 114 исключаем.
На 5 делится: 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110. Всего 22 числа.
На 23 делится число: 23, 46, 96, 92. Всего 4 чисел.
114-22-4=88
Ответ: 88 правильных несократимых дробей со знаменателем 115.

Нестандартная задача по математике:
Когда нельзя сокращать сократимую обыкновенную дробь?

Ответ: когда сократимая обыкновенная дробь является номером углового дома или квартала.

  • Распечатать

Оцените статью:

  1. 5
  2. 4
  3. 3
  4. 2
  5. 1

(0 голосов, среднее: 0 из 5)

Поделитесь с друзьями!

Понравилась статья? Поделить с друзьями:
  • Как пишется несогласованный вместе или раздельно
  • Как пишется несогласованные работы
  • Как пишется несогласованность слитно или раздельно
  • Как пишется несогласованно слитно или раздельно
  • Как пишется несогласование слитно или раздельно