Как пишется слово дифференциальная диагностика

Разбор по составу словосочетания «дифференциальная диагностика»

Вы ввели в поиск словосочетание. Ниже представлены ссылки на подробные разборы
отдельных слов, входящих в его состав.

Разбор по составу слова «дифференциальный»

Разбор по составу слова «диагностика»

Делаем Карту слов лучше вместе

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать
Карту слов. Я отлично
умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я стал чуточку лучше понимать мир эмоций.

Вопрос: империал — это что-то нейтральное, положительное или отрицательное?

Ассоциации к слову «диагностика»

Синонимы к словосочетанию «дифференциальная диагностика»

Предложения со словосочетанием «дифференциальная диагностика»

  • Указывая на устойчивость этой закономерности, О. Кернберг пишет, что интеграция идентичности и конгруэнтность с реальностью, позволяют проводить дифференциальную диагностику личности, определяя уровень её развития.
  • Осмотр больного имеет решающее значение для диагностики заболевания и проведения дифференциальной диагностики.
  • Подобное видение роли этих компонентов в развитии ребёнка оказалось эффективным и позволило снизить вероятность диагностических ошибок в ситуации дифференциальной диагностики различных вариантов отклоняющегося развития.
  • (все предложения)

Сочетаемость слова «диагностика»

  • дифференциальная диагностика
    психологическая диагностика
    ранняя диагностика
  • диагностика заболевания
    диагностика состояния
    диагностика развития
  • методы диагностики
    цель диагностики
    результаты диагностики
  • диагностика показала
  • провести диагностику
    затруднять диагностику
    сделать диагностику
  • (полная таблица сочетаемости)

Значение словосочетания «дифференциальная диагностика»

  • Дифференциа́льная диагно́стика (от лат. differentia «разность», «различие») в медицине — способ диагностики, исключающий не подходящие по каким-либо фактам или симптомам заболевания, возможные у больного, что в конечном счёте должно свести диагноз к единственно вероятной болезни. (Википедия)

    Все значения словосочетания ДИФФЕРЕНЦИАЛЬНАЯ ДИАГНОСТИКА

Отправить комментарий

Дополнительно

Differential diagnosis
MeSH D003937

[edit on Wikidata]

In healthcare, a differential diagnosis (abbreviated DDx) is a method of analysis of a patient’s history and physical examination to arrive at the correct diagnosis. It involves distinguishing a particular disease or condition from others that present with similar clinical features.[1] Differential diagnostic procedures are used by clinicians to diagnose the specific disease in a patient, or, at least, to consider any imminently life-threatening conditions. Often, each individual option of a possible disease is called a differential diagnosis (e.g., acute bronchitis could be a differential diagnosis in the evaluation of a cough, even if the final diagnosis is common cold).

More generally, a differential diagnostic procedure is a systematic diagnostic method used to identify the presence of a disease entity where multiple alternatives are possible. This method may employ algorithms, akin to the process of elimination, or at least a process of obtaining information that shrinks the «probabilities» of candidate conditions to negligible levels, by using evidence such as symptoms, patient history, and medical knowledge to adjust epistemic confidences in the mind of the diagnostician (or, for computerized or computer-assisted diagnosis, the software of the system).

Differential diagnosis can be regarded as implementing aspects of the hypothetico-deductive method, in the sense that the potential presence of candidate diseases or conditions can be viewed as hypotheses that clinicians further determine as being true or false.

A differential diagnosis is also commonly used within the field of psychiatry/psychology, where two different diagnoses can be attached to a patient who is exhibiting symptoms that could fit into either diagnosis. For example, a patient who has been diagnosed with bipolar disorder may also be given a differential diagnosis of borderline personality disorder,[citation needed] given the similarity in the symptoms of both conditions.

Strategies used in preparing a differential diagnosis list vary with the experience of the healthcare provider. While novice providers may work systemically to assess all possible explanations for a patient’s concerns, those with more experience often draw on clinical experience and pattern recognition to protect the patient from delays, risks, and cost of inefficient strategies or tests. Effective providers utilize an evidence-based approach, complementing their clinical experience with knowledge from clinical research.[2]

General components[edit]

A differential diagnosis has four general steps. The clinician will:

  1. Gather relevant information about the patient and create a symptoms list.[3]
  2. List possible causes (candidate conditions) for the symptoms.[4] The list need not be in writing.
  3. Prioritize the list by balancing the risks of a diagnosis with the probability. These are subjective, not objective parameters.
  4. Perform tests to determine the actual diagnosis. This is known by the colloquial phrase «to Rule Out». Even after the process, the diagnosis is not clear. The clinician again considers the risks and may treat them empirically, often called «Educated Best Guess.»

A mnemonic to help in considering multiple possible pathological processes is VINDICATE’M:[citation needed][clarification needed]

  • Vascular
  • Inflammatory / Infectious
  • Neoplastic
  • Degenerative / Deficiency / Drugs
  • Idiopathic / Intoxication / Iatrogenic
  • Congenital
  • Autoimmune / Allergic / Anatomic
  • Traumatic
  • Endocrine / Environmental
  • Metabolic[5]

Specific methods[edit]

There are several methods for differential diagnostic procedures and several variants among those. Furthermore, a differential diagnostic procedure can be used concomitantly or alternately with protocols, guidelines, or other diagnostic procedures (such as pattern recognition or using medical algorithms).[citation needed]

For example, in case of medical emergency, there may not be enough time to do any detailed calculations or estimations of different probabilities, in which case the ABC protocol (Airway, Breathing and Circulation) may be more appropriate. Later, when the situation is less acute, a more comprehensive differential diagnostic procedure may be adopted.

The differential diagnostic procedure may be simplified if a «pathognomonic» sign or symptom is found (in which case it is almost certain that the target condition is present) or in the absence of a sine qua non sign or symptom (in which case it is almost certain that the target condition is absent).

A diagnostician can be selective, considering first those disorders that are more likely (a probabilistic approach), more serious if left undiagnosed and untreated (a prognostic approach), or more responsive to treatment if offered (a pragmatic approach).[6] Since the subjective probability of the presence of a condition is never exactly 100% or 0%, the differential diagnostic procedure may aim at specifying these various probabilities to form indications for further action.

The following are two methods of differential diagnosis, being based on epidemiology and likelihood ratios, respectively.

Epidemiology-based method[edit]

One method of performing a differential diagnosis by epidemiology aims to estimate the probability of each candidate condition by comparing their probabilities to have occurred in the first place in the individual. It is based on probabilities related both to the presentation (such as pain) and probabilities of the various candidate conditions (such as diseases).[citation needed]

Theory[edit]

The statistical basis for differential diagnosis is Bayes’ theorem. As an analogy, when a die has landed the outcome is certain by 100%, but the probability that it Would Have Occurred in the First Place (hereafter abbreviated WHOIFP) is still 1/6. In the same way, the probability that a presentation or condition would have occurred in the first place in an individual (WHOIFPI) is not same as the probability that the presentation or condition has occurred in the individual, because the presentation has occurred by 100% certainty in the individual. Yet, the contributive probability fractions of each condition are assumed the same, relatively:

{displaystyle {begin{aligned}&{frac {Pr({text{Presentation is caused by condition in individual}})}{Pr({text{Presentation has occurred in individual}})}}={frac {Pr({text{Presentation WHOIFPI by condition}})}{Pr({text{Presentation WHOIFPI}})}}end{aligned}}}

where:

  • Pr(Presentation is caused by a condition in individual) is the probability that the presentation is caused by condition in the individual condition without further specification refers to any candidate condition
  • Pr(Presentation has occurred in individual) is the probability that the presentation has occurred in the individual, which can be perceived and thereby set at 100%
  • Pr(Presentation WHOIFPI by condition) is the probability that the presentation Would Have Occurred in the First Place in the Individual by condition
  • Pr(Presentation WHOIFPI) is the probability that the presentation Would Have Occurred in the First Place in the Individual

When an individual presents with a symptom or sign, Pr(Presentation has occurred in individual) is 100% and can therefore be replaced by 1, and can be ignored since division by 1 does not make any difference:

 Pr(text{Presentation is caused by condition in individual}) = frac {Pr(text{Presentation WHOIFPI by condition})}{Pr(text{Presentation WHOIFPI})}

The total probability of the presentation to have occurred in the individual can be approximated as the sum of the individual candidate conditions:

 begin{align} Pr(text{Presentation WHOIFPI}) & = Pr(text{Presentation WHOIFPI by condition 1}) \
& {} + Pr(text{Presentation WHOIFPI by condition 2}) \
& {} + Pr(text{Presentation WHOIFPI by condition 3}) + text{etc.} end{align}

Also, the probability of the presentation to have been caused by any candidate condition is proportional to the probability of the condition, depending on what rate it causes the presentation:

 Pr(text{Presentation WHOIFPI by condition}) = Pr(text{Condition WHOIFPI}) cdot r_{text{condition} rightarrow text{presentation}},

where:

  • Pr(Presentation WHOIFPI by condition) is the probability that the presentation Would Have Occurred in the First Place in the Individual by condition
  • Pr(Condition WHOIFPI) is the probability that the condition Would Have Occurred in the First Place in the Individual
  • rCondition → presentation is the rate at which a condition causes the presentation, that is, the fraction of people with conditions that manifests with the presentation.

The probability that a condition would have occurred in the first place in an individual is approximately equal to that of a population that is as similar to the individual as possible except for the current presentation, compensated where possible by relative risks given by known risk factor that distinguish the individual from the population:

 Pr(text{Condition WHOIFPI}) approx RR_text{condition} cdot Pr(text{Condition in population}),

where:

  • Pr(Condition WHOIFPI) is the probability that the condition Would Have Occurred in the First Place in the Individual
  • RRcondition is the relative risk for condition conferred by known risk factors in the individual that are not present in the population
  • Pr(Condition in population) is the probability that the condition occurs in a population that is as similar to the individual as possible except for the presentation

The following table demonstrates how these relations can be made for a series of candidate conditions:

Candidate condition 1 Candidate condition 2 Candidate condition 3
Pr(Condition in population) Pr(Condition 1 in population) Pr(Condition 2 in population) Pr(Condition 3 in population)
RRcondition RR 1 RR 2 RR 3
Pr(Condition WHOIFPI) Pr(Condition 1 WHOIFPI) Pr(Condition 2 WHOIFPI) P(Condition 3 WHOIFPI)
rCondition → presentation rCondition 1 → presentation rCondition 2 → presentation rCondition 3 → presentation
Pr(Presentation WHOIFPI by condition) Pr(Presentation WHOIFPI by condition 1) Pr(Presentation WHOIFPI by condition 2) Pr(Presentation WHOIFPI by condition 3)
Pr(Presentation WHOIFPI) = the sum of the probabilities in row just above
Pr(Presentation is caused by condition in individual) Pr(Presentation is caused by condition 1 in individual) Pr(Presentation is caused by condition 2 in individual) Pr(Presentation is caused by condition 3 in individual)

One additional «candidate condition» is the instance of there being no abnormality, and the presentation is only a (usually relatively unlikely) appearance of a basically normal state. Its probability in the population (P(No abnormality in population)) is complementary to the sum of probabilities of «abnormal» candidate conditions.

Example[edit]

This example case demonstrates how this method is applied but does not represent a guideline for handling similar real-world cases. Also, the example uses relatively specified numbers with sometimes several decimals, while in reality, there are often simply rough estimations, such as of likelihoods being very high, high, low or very low, but still using the general principles of the method.[citation needed]

For an individual (who becomes the «patient» in this example), a blood test of, for example, serum calcium shows a result above the standard reference range, which, by most definitions, classifies as hypercalcemia, which becomes the «presentation» in this case. A clinician (who becomes the «diagnostician» in this example), who does not currently see the patient, gets to know about his finding.

By practical reasons, the clinician considers that there is enough test indication to have a look at the patient’s medical records. For simplicity, let’s say that the only information given in the medical records is a family history of primary hyperparathyroidism (here abbreviated as PH), which may explain the finding of hypercalcemia. For this patient, let’s say that the resultant hereditary risk factor is estimated to confer a relative risk of 10 (RRPH = 10).

The clinician considers that there is enough motivation to perform a differential diagnostic procedure for the finding of hypercalcemia. The main causes of hypercalcemia are primary hyperparathyroidism (PH) and cancer, so for simplicity, the list of candidate conditions that the clinician could think of can be given as:

  • Primary hyperparathyroidism (PH)
  • Cancer
  • Other diseases that the clinician could think of (which is simply termed «other conditions» for the rest of this example)
  • No disease (or no abnormality), and the finding is caused entirely by statistical variability

The probability that ‘primary hyperparathyroidism’ (PH) would have occurred in the first place in the individual (P(PH WHOIFPI)) can be calculated as follows:

Let’s say that the last blood test taken by the patient was half a year ago and was normal and that the incidence of primary hyperparathyroidism in a general population appropriately matches the individual (except for the presentation and mentioned heredity) is 1 in 4000 per year. Ignoring more detailed retrospective analyses (such as including speed of disease progress and lag time of medical diagnosis), the time-at-risk for having developed primary hyperparathyroidism can roughly be regarded as being the last half-year because a previously developed hypercalcemia would probably have been caught up by the previous blood test. This corresponds to a probability of primary hyperparathyroidism (PH) in the population of:

 Pr(text{PH in population}) = 0.5text{ years} cdot frac{1}{text{4000 per year}} = frac{1}{8000}

With the relative risk conferred from the family history, the probability that primary hyperparathyroidism (PH) would have occurred in the first place in the individual given from the currently available information becomes:

 Pr(text{PH WHOIFPI}) approx RR_{PH}cdot Pr(text{PH in population}) = 10 cdot frac {1}{8000} = frac {1}{800} = 0.00125

Primary hyperparathyroidism can be assumed to cause hypercalcemia essentially 100% of the time (rPH → hypercalcemia = 1), so this independently calculated probability of primary hyperparathyroidism (PH) can be assumed to be the same as the probability of being a cause of the presentation:

begin{align} Pr(text{Hypercalcemia WHOIFPI by PH}) & = Pr(text{PH WHOIFPI}) cdot r_{text{PH} rightarrow text{hypercalcemia}} \
& = 0.00125 cdot 1 = 0.00125 end{align}

For cancer, the same time-at-risk is assumed for simplicity, and let’s say that the incidence of cancer in the area is estimated at 1 in 250 per year, giving a population probability of cancer of:

 Pr(text{cancer in population}) = 0.5text{ years} cdot frac{1}{text{250 per year}} = frac{1}{500}

For simplicity, let’s say that any association between a family history of primary hyperparathyroidism and risk of cancer is ignored, so the relative risk for the individual to have contracted cancer in the first place is similar to that of the population (RRcancer = 1):

 Pr(text{cancer WHOIFPI}) approx RR_text{cancer} cdot Pr(text{cancer in population}) = 1 cdot frac{1}{500} = frac{1}{500} = 0.002.

However, hypercalcemia only occurs in, very approximately, 10% of cancers,[7] (rcancer → hypercalcemia = 0.1), so:

begin{align}
& Pr(text{Hypercalcemia WHOIFPI by cancer}) \
= & Pr(text{cancer WHOIFPI}) cdot r_{text{cancer} rightarrow text{hypercalcemia}} \ = & 0.002 cdot 0.1 = 0.0002. end{align}

The probabilities that hypercalcemia would have occurred in the first place by other candidate conditions can be calculated in a similar manner. However, for simplicity, let’s say that the probability that any of these would have occurred in the first place is calculated at 0.0005 in this example.

For the instance of there being no disease, the corresponding probability in the population is complementary to the sum of probabilities for other conditions:

begin{align}
Pr(text{no disease in population}) & = 1 - Pr(text{PH in population}) - Pr(text{cancer in population}) \
& {} quad - Pr(text{other conditions in population}) \
& {} = 0.997.
end{align}

The probability that the individual would be healthy in the first place can be assumed to be the same:

 Pr(text{no disease WHOIFPI}) = 0.997. ,

The rate at which the case of no abnormal condition still ends up in measurement of serum calcium of being above the standard reference range (thereby classifying as hypercalcemia) is, by the definition of standard reference range, less than 2.5%. However, this probability can be further specified by considering how much the measurement deviates from the mean in the standard reference range. Let’s say that the serum calcium measurement was 1.30 mmol/L, which, with a standard reference range established at 1.05 to 1.25 mmol/L, corresponds to a standard score of 3 and a corresponding probability of 0.14% that such degree of hypercalcemia would have occurred in the first place in the case of no abnormality:

 r_{text{no disease} rightarrow text{hypercalcemia}}  = 0.0014

Subsequently, the probability that hypercalcemia would have resulted from no disease can be calculated as:

 begin{align} & Pr(text{Hypercalcemia WHOIFPI by no disease}) \
= & Pr(text{no disease WHOIFPI}) cdot r_{text{no disease} rightarrow text{hypercalcemia}} \
= & 0.997 cdot 0.0014 approx 0.0014 end{align}

The probability that hypercalcemia would have occurred in the first place in the individual can thus be calculated as:

begin{align}
& Pr(text{hypercalcemia WHOIFPI}) \
= & Pr(text{hypercalcemia WHOIFPI by PH}) + Pr(text{hypercalcemia WHOIFPI by cancer}) \
& {} + Pr(text{hypercalcemia WHOIFPI by other conditions}) + Pr(text{hypercalcemia WHOIFPI by no disease}) \
= & 0.00125 + 0.0002 + 0.0005 + 0.0014 = 0.00335 end{align}

Subsequently, the probability that hypercalcemia is caused by primary hyperparathyroidism (PH) in the individual can be calculated as:

begin{align} & Pr(text{hypercalcemia is caused by PH in individual}) \
= & frac {Pr(text{hypercalcemia WHOIFPI by PH})}{Pr(text{hypercalcemia WHOIFPI})} \
= & frac {0.00125}{0.00335} = 0.373 = 37.3% end{align}

Similarly, the probability that hypercalcemia is caused by cancer in the individual can be calculated as:

 begin{align} & Pr(text{hypercalcemia is caused by cancer in individual}) \
= & frac {Pr(text{hypercalcemia WHOIFPI by cancer})}{Pr(text{hypercalcemia WHOIFPI})} \
= & frac {0.0002}{0.00335} = 0.060 = 6.0%, end{align}

and for other candidate conditions:

begin{align} & Pr(text{hypercalcemia is caused by other conditions in individual}) \
= & frac {Pr(text{hypercalcemia WHOIFPI by other conditions})}{Pr(text{hypercalcemia WHOIFPI})} \
= & frac {0.0005}{0.00335} = 0.149 = 14.9%, end{align}

and the probability that there actually is no disease:

begin{align} & Pr(text{hypercalcemia is present despite no disease in individual}) \
= & frac {Pr(text{hypercalcemia WHOIFPI by no disease})}{Pr(text{hypercalcemia WHOIFPI})} \
= & frac {0.0014}{0.00335} = 0.418= 41.8% end{align}

For clarification, these calculations are given as the table in the method description:

PH Cancer Other conditions No disease
P(Condition in population) 0.000125 0.002 0.997
RRx 10 1
P(Condition WHOIFPI) 0.00125 0.002
rCondition →hypercalcemia 1 0.1 0.0014
P(hypercalcemia WHOIFPI by condition) 0.00125 0.0002 0.0005 0.0014
P(hypercalcemia WHOIFPI) = 0.00335
P(hypercalcemia is caused by condition in individual) 37.3% 6.0% 14.9% 41.8%

Thus, this method estimates that the probability that the hypercalcemia is caused by primary hyperparathyroidism, cancer, other conditions or no disease at all are 37.3%, 6.0%, 14.9%, and 41.8%, respectively, which may be used in estimating further test indications.

This case is continued in the example of the method described in the next section.

Likelihood ratio-based method[edit]

The procedure of differential diagnosis can become extremely complex when fully taking additional tests and treatments into consideration. One method that is somewhat a tradeoff between being clinically perfect and being relatively simple to calculate is one that uses likelihood ratios to derive subsequent post-test likelihoods.

Theory[edit]

The initial likelihoods for each candidate condition can be estimated by various methods, such as:

  • By epidemiology as described in the previous section.
  • By clinic-specific pattern recognition, such as statistically knowing that patients coming into a particular clinic with a particular complaint statistically has a particular likelihood of each candidate condition.

One method of estimating likelihoods even after further tests uses likelihood ratios (which is derived from sensitivities and specificities) as a multiplication factor after each test or procedure. In an ideal world, sensitivities and specificities would be established for all tests for all possible pathological conditions. In reality, however, these parameters may only be established for one of the candidate conditions. Multiplying with likelihood ratios necessitates conversion of likelihoods from probabilities to odds in favor (hereafter simply termed «odds») by:

text{odds} = frac{text{probability}}{1-text{probability}}

However, only the candidate conditions with known likelihood ratio need this conversion. After multiplication, conversion back to probability is calculated by:

 text{probability} = frac{text{odds}}{text{odds}+1}

The rest of the candidate conditions (for which there is no established likelihood ratio for the test at hand) can, for simplicity, be adjusted by subsequently multiplying all candidate conditions with a common factor to again yield a sum of 100%.

The resulting probabilities are used for estimating the indications for further medical tests, treatments or other actions. If there is an indication for an additional test, and it returns with a result, then the procedure is repeated using the likelihood ratio of the additional test. With updated probabilities for each of the candidate conditions, the indications for further tests, treatments, or other actions change as well, and so the procedure can be repeated until an endpoint where there no longer is any indication for currently performing further actions. Such an endpoint mainly occurs when one candidate condition becomes so certain that no test can be found that is powerful enough to change the relative probability profile enough to motivate any change in further actions. Tactics for reaching such an endpoint with as few tests as possible includes making tests with high specificity for conditions of already outstandingly high-profile-relative probability, because the high likelihood ratio positive for such tests is very high, bringing all less likely conditions to relatively lower probabilities. Alternatively, tests with high sensitivity for competing candidate conditions have a high likelihood ratio negative, potentially bringing the probabilities for competing candidate conditions to negligible levels. If such negligible probabilities are achieved, the clinician can rule out these conditions, and continue the differential diagnostic procedure with only the remaining candidate conditions.

Example[edit]

This example continues for the same patient as in the example for the epidemiology-based method. As with the previous example of epidemiology-based method, this example case is made to demonstrate how this method is applied but does not represent a guideline for handling similar real-world cases. Also, the example uses relatively specified numbers, while in reality, there are often just rough estimations. In this example, the probabilities for each candidate condition were established by an epidemiology-based method to be as follows:

PH Cancer Other conditions No disease
Probability 37.3% 6.0% 14.9% 41.8%

These percentages could also have been established by experience at the particular clinic by knowing that these are the percentages for final diagnosis for people presenting to the clinic with hypercalcemia and having a family history of primary hyperparathyroidism.

The condition of highest profile-relative probability (except «no disease») is primary hyperparathyroidism (PH), but cancer is still of major concern, because if it is the actual causative condition for the hypercalcemia, then the choice of whether to treat or not likely means life or death for the patient, in effect potentially putting the indication at a similar level for further tests for both of these conditions.

Here, let’s say that the clinician considers the profile-relative probabilities of being of enough concern to indicate sending the patient a call for a clinician visit, with an additional visit to the medical laboratory for an additional blood test complemented with further analyses, including parathyroid hormone for the suspicion of primary hyperparathyroidism.

For simplicity, let’s say that the clinician first receives the blood test (in formulas abbreviated as «BT») result for the parathyroid hormone analysis and that it showed a parathyroid hormone level that is elevated relative to what would be expected by the calcium level.

Such a constellation can be estimated to have a sensitivity of approximately 70% and a specificity of approximately 90% for primary hyperparathyroidism.[8] This confers a likelihood ratio positive of 7 for primary hyperparathyroidism.

The probability of primary hyperparathyroidism is now termed Pre-BTPH because it corresponds to before the blood test (Latin preposition prae means before). It was estimated at 37.3%, corresponding to an odds of 0.595. With the likelihood ratio positive of 7 for the blood test, the post-test odds is calculated as:

 operatorname{Odds}(text{PostBT}_{PH}) = operatorname{Odds}(text{PreBT}_{PH}) cdot LH(BT) = 0.595 cdot 7 = 4.16,

where:

  • Odds(PostBTPH) is the odds for primary hyperparathyroidism after the blood test for parathyroid hormone
  • Odds(PreBTPH is the odds in favor of primary hyperparathyroidism before the blood test for parathyroid hormone
  • LH(BT) is the likelihood ratio positive for the blood test for parathyroid hormone

An Odds(PostBTPH) of 4.16 is again converted to the corresponding probability by:

 Pr(text{PostBT}_{PH}) = frac{operatorname{Odds}(text{PostBT}_{PH})}{ operatorname{Odds}(text{PostBT}_{PH}) + 1} = frac{4.16}{4.16+1} = 0.806 = 80.6%

The sum of the probabilities for the rest of the candidate conditions should therefore be:

 Pr(text{PostBT}_{rest}) = 100% - 80.6% = 19.4%

Before the blood test for parathyroid hormone, the sum of their probabilities were:

 Pr(text{PreBT}_text{rest}) = 6.0% + 14.9% + 41.8% = 62.7%

Therefore, to conform to a sum of 100% for all candidate conditions, each of the other candidates must be multiplied by a correcting factor:

 text{Correcting factor} = frac{Pr(text{PostBT}_text{rest})}{Pr(text{PreBT}_text{rest})} = frac{19.4}{62.7} = 0.309

For example, the probability of cancer after the test is calculated as:

 Pr(text{PostBT}_text{cancer}) = Pr(text{PreBT}_text{cancer}) cdot text{Correcting factor} = 6.0% cdot 0.309 = 1.9%

The probabilities for each candidate conditions before and after the blood test are given in following table:

PH Cancer Other conditions No disease
P(PreBT) 37.3% 6.0% 14.9% 41.8%
P(PostBT) 80.6% 1.9% 4.6% 12.9%

These «new» percentages, including a profile-relative probability of 80% for primary hyperparathyroidism, underlie any indications for further tests, treatments, or other actions. In this case, let’s say that the clinician continues the plan for the patient to attend a clinician visit for a further checkup, especially focused on primary hyperparathyroidism.

A clinician visit can, theoretically, be regarded as a series of tests, including both questions in a medical history, as well as components of a physical examination, where the post-test probability of a previous test, can be used as the pre-test probability of the next. The indications for choosing the next test are dynamically influenced by the results of previous tests.

Let’s say that the patient in this example is revealed to have at least some of the symptoms and signs of depression, bone pain, joint pain or constipation of more severity than what would be expected by the hypercalcemia itself, supporting the suspicion of primary hyperparathyroidism,[9] and let’s say that the likelihood ratios for the tests, when multiplied together, roughly results in a product of 6 for primary hyperparathyroidism.

The presence of unspecific pathologic symptoms and signs in the history and examination are often concurrently indicative of cancer as well, and let’s say that the tests gave an overall likelihood ratio estimated at 1.5 for cancer. For other conditions, as well as the instance of not having any disease at all, let’s say that it’s unknown how they are affected by the tests at hand, as often happens in reality. This gives the following results for the history and physical examination (abbreviated as P&E):

PH Cancer Other conditions No disease
P(PreH&E) 80.6% 1.9% 4.6% 12.9%
Odds(PreH&E) 4.15 0.019 0.048 0.148
Likelihood ratio by H&E 6 1.5
Odds(PostH&E) 24.9 0.0285
P(PostH&E) 96.1% 2.8%
Sum of known P(PostH&E) 98.9%
Sum of the rest P(PostH&E) 1.1%
Sum of the rest P(PreH&E) 4.6% + 12.9% = 17.5%
Correcting factor 1.1% / 17.5% = 0.063
After correction 0.3% 0.8%
P(PostH&E) 96.1% 2.8% 0.3% 0.8%

These probabilities after the history and examination may make the physician confident enough to plan the patient for surgery for a parathyroidectomy to resect the affected tissue.

At this point, the probability of «other conditions» is so low that the physician cannot think of any test for them that could make a difference that would be substantial enough to form an indication for such a test, and the physician thereby practically regards «other conditions» as ruled out, in this case not primarily by any specific test for such other conditions that were negative, but rather by the absence of positive tests so far.

For «cancer», the cutoff at which to confidently regard it as ruled out maybe more stringent because of severe consequences of missing it, so the physician may consider that at least a histopathologic examination of the resected tissue is indicated.

This case is continued in the example of Combinations in the corresponding section below.

Coverage of candidate conditions[edit]

The validity of both the initial estimation of probabilities by epidemiology and further workup by likelihood ratios are dependent on the inclusion of candidate conditions that are responsible for a large part as possible of the probability of having developed the condition, and it is clinically important to include those where relatively fast initiation of therapy is most likely to result in the greatest benefit. If an important candidate condition is missed, no method of differential diagnosis will supply the correct conclusion. The need to find more candidate conditions for inclusion increases with the increasing severity of the presentation itself. For example, if the only presentation is a deviating laboratory parameter and all common harmful underlying conditions have been ruled out, then it may be acceptable to stop finding more candidate conditions, but this would much more likely be unacceptable if the presentation would have been severe pain.

Combinations[edit]

If two conditions get high post-test probabilities, especially if the sum of the probabilities for conditions with known likelihood ratios becomes higher than 100%, then the actual condition is a combination of the two. In such cases, that combined condition can be added to the list of candidate conditions, and the calculations should start over from the beginning.

To continue the example used above, let’s say that the history and physical examination were indicative of cancer as well, with a likelihood ratio of 3, giving an Odds(PostH&E) of 0.057, corresponding to a P(PostH&E) of 5.4%. This would correspond to a «Sum of known P(PostH&E)» of 101.5%. This is an indication for considering a combination of primary hyperparathyroidism and cancer, such as, in this case, a parathyroid hormone-producing parathyroid carcinoma. A recalculation may therefore be needed, with the first two conditions being separated into «primary hyperparathyroidism without cancer», «cancer without primary hyperparathyroidism» as well as «combined primary hyperparathyroidism and cancer», and likelihood ratios being applied to each condition separately. In this case, however, tissue has already been resected, wherein a histopathologic examination can be performed that includes the possibility of parathyroid carcinoma in the examination (which may entail appropriate sample staining).
Let’s say that the histopathologic examination confirms primary hyperparathyroidism, but also showed a malignant pattern. By an initial method by epidemiology, the incidence of parathyroid carcinoma is estimated at 1 in 6 million people per year,[10] giving a very low probability before taking any tests into consideration. In comparison, the probability that non-malignant primary hyperparathyroidism would have occurred at the same time as an unrelated non-carcinoma cancer that presents with malignant cells in the parathyroid gland is calculated by multiplying the probabilities of the two. The resultant probability is, however, much smaller than the 1 in 6 million. Therefore, the probability of parathyroid carcinoma may still be close to 100% after histopathologic examination despite the low probability of occurring in the first place.

Machine differential diagnosis[edit]

Machine differential diagnosis is the use of computer software to partly or fully make a differential diagnosis. It may be regarded as an application of artificial intelligence. Alternatively, it may be seen as «Augmented Intelligence» if it meets the FDA criteria, namely that (1) it reveals the underlying data, (2) reveals the underlying logic, and (3) leaves the clinician in charge to shape and make the decision. Machine Learning AI is generally seen as a device by the FDA, whereas Augmented Intelligence applications are not.

Many studies demonstrate improvement of quality of care and reduction of medical errors by using such decision support systems. Some of these systems are designed for a specific medical problem such as schizophrenia,[11] Lyme disease[12] or ventilator-associated pneumonia.[13] Others are designed to cover all major clinical and diagnostic findings to assist physicians with faster and more accurate diagnosis.

However, these tools all still require advanced medical skills to rate symptoms and choose additional tests to deduce the probabilities of different diagnoses. Machine differential diagnosis is also currently unable to diagnose multiple concurrent disorders.[14] Thus, non-professionals should still see a health care provider for a proper diagnosis.

History[edit]

The method of differential diagnosis was first suggested for use in the diagnosis of mental disorders by Emil Kraepelin. It is more systematic than the old-fashioned method of diagnosis by gestalt (impression).[citation needed]

Alternative medical meanings[edit]

‘Differential diagnosis’ is also used more loosely, to refer simply to a list of the most common causes of a given symptom, to a list of disorders similar to a given disorder, or to such lists when they are annotated with advice on how to narrow the list down (French’s Index of Differential Diagnosis is an example). Thus, a differential diagnosis in this sense is medical information specially organized to aid in diagnosis.

Usage apart from in medicine[edit]

Methods similar to those of differential diagnostic processes in medicine are also used by biological taxonomists to identify and classify organisms, living and extinct. For example, after finding an unknown species, there can first be a listing of all potential species, followed by ruling out of one by one until, optimally, only one potential choice remains.
Similar procedures may be used by plant and maintenance engineers and automotive mechanics and used to be used in diagnosing faulty electronic circuitry.

In art[edit]

The American television medical drama House, featuring Hugh Laurie as the main protagonist Dr. Gregory House who leads a team of diagnosticians at the fictional Princeton–Plainsboro Teaching Hospital in New Jersey, revolves around using differential diagnostics procedures in a bid to come up with the right diagnosis.

Throughout the series, the doctors have diagnosed such diseases as lupus, mastocytosis, Plummer’s disease, rabies, Kawasaki’s syndrome, smallpox, Rickettsialpox, and dozens of others.

See also[edit]

  • Comorbidity
  • Diagnosis of exclusion
  • Dual diagnosis
  • Gender-bias in medical diagnosis
  • List of medical symptoms

References[edit]

  1. ^ «differential diagnosis». Merriam-Webster (Medical dictionary). Retrieved 30 December 2014.
  2. ^ Wilson, MC (2012). The Patient History: Evidence-Based Approach To Differential Diagnosis. New York, NY: McGraw Hill. ISBN 9780071804202.
  3. ^ Siegenthaler, Walter (2011). Differential diagnosis in internal medicine : from symptom to diagnosis. Thieme. p. 6. ISBN 978-1604062199.
  4. ^ Lim, Eric KS; Oster, Andrew JK; Rafferty, Andrew T (2014). Churchill’s pocketbook of differential diagnosis (Fourth ed.). Elsevier Health Sciences. ISBN 978-0702054044.
  5. ^ Cf. VINDICATE – Mnemonic for differential diagnosis Archived 20 December 2012 at the Wayback Machine at PG Blazer.com.
  6. ^ Richardson, WS. (March 1999). «Users’ Guides to the Medical Literature: XV. How to use an article about disease probability for differential diagnosis». JAMA. 281 (13): 1214–1219. doi:10.1001/jama.281.13.1214. PMID 10199432. S2CID 2389981. [1]
  7. ^ Seccareccia, D. (March 2010). «Cancer-related hypercalcemia». Can Fam Physician. 56 (3): 244–6, e90–2. PMC 2837688. PMID 20228307. [2] [3]
  8. ^ Lepage, R.; d’Amour, P.; Boucher, A.; Hamel, L.; Demontigny, C.; Labelle, F. (1988). «Clinical performance of a parathyrin immunoassay with dynamically determined reference values». Clinical Chemistry. 34 (12): 2439–2443. doi:10.1093/clinchem/34.12.2439. PMID 3058363.
  9. ^ Bargren, A. E.; Repplinger, D.; Chen, H.; Sippel, R. S. (2011). «Can Biochemical Abnormalities Predict Symptomatology in Patients with Primary Hyperparathyroidism?». Journal of the American College of Surgeons. 213 (3): 410–414. doi:10.1016/j.jamcollsurg.2011.06.401. PMID 21723154.
  10. ^ Parathyroid Cancer Treatment at National Cancer Institute. Last Modified: 03/11/2009
  11. ^ Razzouk, D.; Mari, J. J.; Shirakawa, I.; Wainer, J.; Sigulem, D. (January 2006). «Decision support system for the diagnosis of schizophrenia disorders». Brazilian Journal of Medical and Biological Research. 39 (1): 119–28. doi:10.1590/s0100-879×2006000100014. PMID 16400472.
  12. ^ Hejlesen OK, Olesen KG, Dessau R, Beltoft I, Trangeled M (2005). «Decision support for diagnosis of lyme disease». Studies in Health Technology and Informatics. 116: 205–10. PMID 16160260.
  13. ^ «Evaluation of a Computer Assisted Decision Support System (DSS) for Diagnosis and Treatment of Ventilator Associated Pneumonia (VAP) in Intensive Care Unit (ICU)». nih.gov. Archived from the original on 10 February 2009. Retrieved 3 October 2008.
  14. ^ Wadhwa, R.R.; Park, D.Y.; Natowicz, M.R. (2018). «The accuracy of computer‐based diagnostic tools for the identification of concurrent genetic disorders». American Journal of Medical Genetics Part A. 176 (12): 2704–2709. doi:10.1002/ajmg.a.40651. PMID 30475443. S2CID 53758271.
Differential diagnosis
MeSH D003937

[edit on Wikidata]

In healthcare, a differential diagnosis (abbreviated DDx) is a method of analysis of a patient’s history and physical examination to arrive at the correct diagnosis. It involves distinguishing a particular disease or condition from others that present with similar clinical features.[1] Differential diagnostic procedures are used by clinicians to diagnose the specific disease in a patient, or, at least, to consider any imminently life-threatening conditions. Often, each individual option of a possible disease is called a differential diagnosis (e.g., acute bronchitis could be a differential diagnosis in the evaluation of a cough, even if the final diagnosis is common cold).

More generally, a differential diagnostic procedure is a systematic diagnostic method used to identify the presence of a disease entity where multiple alternatives are possible. This method may employ algorithms, akin to the process of elimination, or at least a process of obtaining information that shrinks the «probabilities» of candidate conditions to negligible levels, by using evidence such as symptoms, patient history, and medical knowledge to adjust epistemic confidences in the mind of the diagnostician (or, for computerized or computer-assisted diagnosis, the software of the system).

Differential diagnosis can be regarded as implementing aspects of the hypothetico-deductive method, in the sense that the potential presence of candidate diseases or conditions can be viewed as hypotheses that clinicians further determine as being true or false.

A differential diagnosis is also commonly used within the field of psychiatry/psychology, where two different diagnoses can be attached to a patient who is exhibiting symptoms that could fit into either diagnosis. For example, a patient who has been diagnosed with bipolar disorder may also be given a differential diagnosis of borderline personality disorder,[citation needed] given the similarity in the symptoms of both conditions.

Strategies used in preparing a differential diagnosis list vary with the experience of the healthcare provider. While novice providers may work systemically to assess all possible explanations for a patient’s concerns, those with more experience often draw on clinical experience and pattern recognition to protect the patient from delays, risks, and cost of inefficient strategies or tests. Effective providers utilize an evidence-based approach, complementing their clinical experience with knowledge from clinical research.[2]

General components[edit]

A differential diagnosis has four general steps. The clinician will:

  1. Gather relevant information about the patient and create a symptoms list.[3]
  2. List possible causes (candidate conditions) for the symptoms.[4] The list need not be in writing.
  3. Prioritize the list by balancing the risks of a diagnosis with the probability. These are subjective, not objective parameters.
  4. Perform tests to determine the actual diagnosis. This is known by the colloquial phrase «to Rule Out». Even after the process, the diagnosis is not clear. The clinician again considers the risks and may treat them empirically, often called «Educated Best Guess.»

A mnemonic to help in considering multiple possible pathological processes is VINDICATE’M:[citation needed][clarification needed]

  • Vascular
  • Inflammatory / Infectious
  • Neoplastic
  • Degenerative / Deficiency / Drugs
  • Idiopathic / Intoxication / Iatrogenic
  • Congenital
  • Autoimmune / Allergic / Anatomic
  • Traumatic
  • Endocrine / Environmental
  • Metabolic[5]

Specific methods[edit]

There are several methods for differential diagnostic procedures and several variants among those. Furthermore, a differential diagnostic procedure can be used concomitantly or alternately with protocols, guidelines, or other diagnostic procedures (such as pattern recognition or using medical algorithms).[citation needed]

For example, in case of medical emergency, there may not be enough time to do any detailed calculations or estimations of different probabilities, in which case the ABC protocol (Airway, Breathing and Circulation) may be more appropriate. Later, when the situation is less acute, a more comprehensive differential diagnostic procedure may be adopted.

The differential diagnostic procedure may be simplified if a «pathognomonic» sign or symptom is found (in which case it is almost certain that the target condition is present) or in the absence of a sine qua non sign or symptom (in which case it is almost certain that the target condition is absent).

A diagnostician can be selective, considering first those disorders that are more likely (a probabilistic approach), more serious if left undiagnosed and untreated (a prognostic approach), or more responsive to treatment if offered (a pragmatic approach).[6] Since the subjective probability of the presence of a condition is never exactly 100% or 0%, the differential diagnostic procedure may aim at specifying these various probabilities to form indications for further action.

The following are two methods of differential diagnosis, being based on epidemiology and likelihood ratios, respectively.

Epidemiology-based method[edit]

One method of performing a differential diagnosis by epidemiology aims to estimate the probability of each candidate condition by comparing their probabilities to have occurred in the first place in the individual. It is based on probabilities related both to the presentation (such as pain) and probabilities of the various candidate conditions (such as diseases).[citation needed]

Theory[edit]

The statistical basis for differential diagnosis is Bayes’ theorem. As an analogy, when a die has landed the outcome is certain by 100%, but the probability that it Would Have Occurred in the First Place (hereafter abbreviated WHOIFP) is still 1/6. In the same way, the probability that a presentation or condition would have occurred in the first place in an individual (WHOIFPI) is not same as the probability that the presentation or condition has occurred in the individual, because the presentation has occurred by 100% certainty in the individual. Yet, the contributive probability fractions of each condition are assumed the same, relatively:

{displaystyle {begin{aligned}&{frac {Pr({text{Presentation is caused by condition in individual}})}{Pr({text{Presentation has occurred in individual}})}}={frac {Pr({text{Presentation WHOIFPI by condition}})}{Pr({text{Presentation WHOIFPI}})}}end{aligned}}}

where:

  • Pr(Presentation is caused by a condition in individual) is the probability that the presentation is caused by condition in the individual condition without further specification refers to any candidate condition
  • Pr(Presentation has occurred in individual) is the probability that the presentation has occurred in the individual, which can be perceived and thereby set at 100%
  • Pr(Presentation WHOIFPI by condition) is the probability that the presentation Would Have Occurred in the First Place in the Individual by condition
  • Pr(Presentation WHOIFPI) is the probability that the presentation Would Have Occurred in the First Place in the Individual

When an individual presents with a symptom or sign, Pr(Presentation has occurred in individual) is 100% and can therefore be replaced by 1, and can be ignored since division by 1 does not make any difference:

 Pr(text{Presentation is caused by condition in individual}) = frac {Pr(text{Presentation WHOIFPI by condition})}{Pr(text{Presentation WHOIFPI})}

The total probability of the presentation to have occurred in the individual can be approximated as the sum of the individual candidate conditions:

 begin{align} Pr(text{Presentation WHOIFPI}) & = Pr(text{Presentation WHOIFPI by condition 1}) \
& {} + Pr(text{Presentation WHOIFPI by condition 2}) \
& {} + Pr(text{Presentation WHOIFPI by condition 3}) + text{etc.} end{align}

Also, the probability of the presentation to have been caused by any candidate condition is proportional to the probability of the condition, depending on what rate it causes the presentation:

 Pr(text{Presentation WHOIFPI by condition}) = Pr(text{Condition WHOIFPI}) cdot r_{text{condition} rightarrow text{presentation}},

where:

  • Pr(Presentation WHOIFPI by condition) is the probability that the presentation Would Have Occurred in the First Place in the Individual by condition
  • Pr(Condition WHOIFPI) is the probability that the condition Would Have Occurred in the First Place in the Individual
  • rCondition → presentation is the rate at which a condition causes the presentation, that is, the fraction of people with conditions that manifests with the presentation.

The probability that a condition would have occurred in the first place in an individual is approximately equal to that of a population that is as similar to the individual as possible except for the current presentation, compensated where possible by relative risks given by known risk factor that distinguish the individual from the population:

 Pr(text{Condition WHOIFPI}) approx RR_text{condition} cdot Pr(text{Condition in population}),

where:

  • Pr(Condition WHOIFPI) is the probability that the condition Would Have Occurred in the First Place in the Individual
  • RRcondition is the relative risk for condition conferred by known risk factors in the individual that are not present in the population
  • Pr(Condition in population) is the probability that the condition occurs in a population that is as similar to the individual as possible except for the presentation

The following table demonstrates how these relations can be made for a series of candidate conditions:

Candidate condition 1 Candidate condition 2 Candidate condition 3
Pr(Condition in population) Pr(Condition 1 in population) Pr(Condition 2 in population) Pr(Condition 3 in population)
RRcondition RR 1 RR 2 RR 3
Pr(Condition WHOIFPI) Pr(Condition 1 WHOIFPI) Pr(Condition 2 WHOIFPI) P(Condition 3 WHOIFPI)
rCondition → presentation rCondition 1 → presentation rCondition 2 → presentation rCondition 3 → presentation
Pr(Presentation WHOIFPI by condition) Pr(Presentation WHOIFPI by condition 1) Pr(Presentation WHOIFPI by condition 2) Pr(Presentation WHOIFPI by condition 3)
Pr(Presentation WHOIFPI) = the sum of the probabilities in row just above
Pr(Presentation is caused by condition in individual) Pr(Presentation is caused by condition 1 in individual) Pr(Presentation is caused by condition 2 in individual) Pr(Presentation is caused by condition 3 in individual)

One additional «candidate condition» is the instance of there being no abnormality, and the presentation is only a (usually relatively unlikely) appearance of a basically normal state. Its probability in the population (P(No abnormality in population)) is complementary to the sum of probabilities of «abnormal» candidate conditions.

Example[edit]

This example case demonstrates how this method is applied but does not represent a guideline for handling similar real-world cases. Also, the example uses relatively specified numbers with sometimes several decimals, while in reality, there are often simply rough estimations, such as of likelihoods being very high, high, low or very low, but still using the general principles of the method.[citation needed]

For an individual (who becomes the «patient» in this example), a blood test of, for example, serum calcium shows a result above the standard reference range, which, by most definitions, classifies as hypercalcemia, which becomes the «presentation» in this case. A clinician (who becomes the «diagnostician» in this example), who does not currently see the patient, gets to know about his finding.

By practical reasons, the clinician considers that there is enough test indication to have a look at the patient’s medical records. For simplicity, let’s say that the only information given in the medical records is a family history of primary hyperparathyroidism (here abbreviated as PH), which may explain the finding of hypercalcemia. For this patient, let’s say that the resultant hereditary risk factor is estimated to confer a relative risk of 10 (RRPH = 10).

The clinician considers that there is enough motivation to perform a differential diagnostic procedure for the finding of hypercalcemia. The main causes of hypercalcemia are primary hyperparathyroidism (PH) and cancer, so for simplicity, the list of candidate conditions that the clinician could think of can be given as:

  • Primary hyperparathyroidism (PH)
  • Cancer
  • Other diseases that the clinician could think of (which is simply termed «other conditions» for the rest of this example)
  • No disease (or no abnormality), and the finding is caused entirely by statistical variability

The probability that ‘primary hyperparathyroidism’ (PH) would have occurred in the first place in the individual (P(PH WHOIFPI)) can be calculated as follows:

Let’s say that the last blood test taken by the patient was half a year ago and was normal and that the incidence of primary hyperparathyroidism in a general population appropriately matches the individual (except for the presentation and mentioned heredity) is 1 in 4000 per year. Ignoring more detailed retrospective analyses (such as including speed of disease progress and lag time of medical diagnosis), the time-at-risk for having developed primary hyperparathyroidism can roughly be regarded as being the last half-year because a previously developed hypercalcemia would probably have been caught up by the previous blood test. This corresponds to a probability of primary hyperparathyroidism (PH) in the population of:

 Pr(text{PH in population}) = 0.5text{ years} cdot frac{1}{text{4000 per year}} = frac{1}{8000}

With the relative risk conferred from the family history, the probability that primary hyperparathyroidism (PH) would have occurred in the first place in the individual given from the currently available information becomes:

 Pr(text{PH WHOIFPI}) approx RR_{PH}cdot Pr(text{PH in population}) = 10 cdot frac {1}{8000} = frac {1}{800} = 0.00125

Primary hyperparathyroidism can be assumed to cause hypercalcemia essentially 100% of the time (rPH → hypercalcemia = 1), so this independently calculated probability of primary hyperparathyroidism (PH) can be assumed to be the same as the probability of being a cause of the presentation:

begin{align} Pr(text{Hypercalcemia WHOIFPI by PH}) & = Pr(text{PH WHOIFPI}) cdot r_{text{PH} rightarrow text{hypercalcemia}} \
& = 0.00125 cdot 1 = 0.00125 end{align}

For cancer, the same time-at-risk is assumed for simplicity, and let’s say that the incidence of cancer in the area is estimated at 1 in 250 per year, giving a population probability of cancer of:

 Pr(text{cancer in population}) = 0.5text{ years} cdot frac{1}{text{250 per year}} = frac{1}{500}

For simplicity, let’s say that any association between a family history of primary hyperparathyroidism and risk of cancer is ignored, so the relative risk for the individual to have contracted cancer in the first place is similar to that of the population (RRcancer = 1):

 Pr(text{cancer WHOIFPI}) approx RR_text{cancer} cdot Pr(text{cancer in population}) = 1 cdot frac{1}{500} = frac{1}{500} = 0.002.

However, hypercalcemia only occurs in, very approximately, 10% of cancers,[7] (rcancer → hypercalcemia = 0.1), so:

begin{align}
& Pr(text{Hypercalcemia WHOIFPI by cancer}) \
= & Pr(text{cancer WHOIFPI}) cdot r_{text{cancer} rightarrow text{hypercalcemia}} \ = & 0.002 cdot 0.1 = 0.0002. end{align}

The probabilities that hypercalcemia would have occurred in the first place by other candidate conditions can be calculated in a similar manner. However, for simplicity, let’s say that the probability that any of these would have occurred in the first place is calculated at 0.0005 in this example.

For the instance of there being no disease, the corresponding probability in the population is complementary to the sum of probabilities for other conditions:

begin{align}
Pr(text{no disease in population}) & = 1 - Pr(text{PH in population}) - Pr(text{cancer in population}) \
& {} quad - Pr(text{other conditions in population}) \
& {} = 0.997.
end{align}

The probability that the individual would be healthy in the first place can be assumed to be the same:

 Pr(text{no disease WHOIFPI}) = 0.997. ,

The rate at which the case of no abnormal condition still ends up in measurement of serum calcium of being above the standard reference range (thereby classifying as hypercalcemia) is, by the definition of standard reference range, less than 2.5%. However, this probability can be further specified by considering how much the measurement deviates from the mean in the standard reference range. Let’s say that the serum calcium measurement was 1.30 mmol/L, which, with a standard reference range established at 1.05 to 1.25 mmol/L, corresponds to a standard score of 3 and a corresponding probability of 0.14% that such degree of hypercalcemia would have occurred in the first place in the case of no abnormality:

 r_{text{no disease} rightarrow text{hypercalcemia}}  = 0.0014

Subsequently, the probability that hypercalcemia would have resulted from no disease can be calculated as:

 begin{align} & Pr(text{Hypercalcemia WHOIFPI by no disease}) \
= & Pr(text{no disease WHOIFPI}) cdot r_{text{no disease} rightarrow text{hypercalcemia}} \
= & 0.997 cdot 0.0014 approx 0.0014 end{align}

The probability that hypercalcemia would have occurred in the first place in the individual can thus be calculated as:

begin{align}
& Pr(text{hypercalcemia WHOIFPI}) \
= & Pr(text{hypercalcemia WHOIFPI by PH}) + Pr(text{hypercalcemia WHOIFPI by cancer}) \
& {} + Pr(text{hypercalcemia WHOIFPI by other conditions}) + Pr(text{hypercalcemia WHOIFPI by no disease}) \
= & 0.00125 + 0.0002 + 0.0005 + 0.0014 = 0.00335 end{align}

Subsequently, the probability that hypercalcemia is caused by primary hyperparathyroidism (PH) in the individual can be calculated as:

begin{align} & Pr(text{hypercalcemia is caused by PH in individual}) \
= & frac {Pr(text{hypercalcemia WHOIFPI by PH})}{Pr(text{hypercalcemia WHOIFPI})} \
= & frac {0.00125}{0.00335} = 0.373 = 37.3% end{align}

Similarly, the probability that hypercalcemia is caused by cancer in the individual can be calculated as:

 begin{align} & Pr(text{hypercalcemia is caused by cancer in individual}) \
= & frac {Pr(text{hypercalcemia WHOIFPI by cancer})}{Pr(text{hypercalcemia WHOIFPI})} \
= & frac {0.0002}{0.00335} = 0.060 = 6.0%, end{align}

and for other candidate conditions:

begin{align} & Pr(text{hypercalcemia is caused by other conditions in individual}) \
= & frac {Pr(text{hypercalcemia WHOIFPI by other conditions})}{Pr(text{hypercalcemia WHOIFPI})} \
= & frac {0.0005}{0.00335} = 0.149 = 14.9%, end{align}

and the probability that there actually is no disease:

begin{align} & Pr(text{hypercalcemia is present despite no disease in individual}) \
= & frac {Pr(text{hypercalcemia WHOIFPI by no disease})}{Pr(text{hypercalcemia WHOIFPI})} \
= & frac {0.0014}{0.00335} = 0.418= 41.8% end{align}

For clarification, these calculations are given as the table in the method description:

PH Cancer Other conditions No disease
P(Condition in population) 0.000125 0.002 0.997
RRx 10 1
P(Condition WHOIFPI) 0.00125 0.002
rCondition →hypercalcemia 1 0.1 0.0014
P(hypercalcemia WHOIFPI by condition) 0.00125 0.0002 0.0005 0.0014
P(hypercalcemia WHOIFPI) = 0.00335
P(hypercalcemia is caused by condition in individual) 37.3% 6.0% 14.9% 41.8%

Thus, this method estimates that the probability that the hypercalcemia is caused by primary hyperparathyroidism, cancer, other conditions or no disease at all are 37.3%, 6.0%, 14.9%, and 41.8%, respectively, which may be used in estimating further test indications.

This case is continued in the example of the method described in the next section.

Likelihood ratio-based method[edit]

The procedure of differential diagnosis can become extremely complex when fully taking additional tests and treatments into consideration. One method that is somewhat a tradeoff between being clinically perfect and being relatively simple to calculate is one that uses likelihood ratios to derive subsequent post-test likelihoods.

Theory[edit]

The initial likelihoods for each candidate condition can be estimated by various methods, such as:

  • By epidemiology as described in the previous section.
  • By clinic-specific pattern recognition, such as statistically knowing that patients coming into a particular clinic with a particular complaint statistically has a particular likelihood of each candidate condition.

One method of estimating likelihoods even after further tests uses likelihood ratios (which is derived from sensitivities and specificities) as a multiplication factor after each test or procedure. In an ideal world, sensitivities and specificities would be established for all tests for all possible pathological conditions. In reality, however, these parameters may only be established for one of the candidate conditions. Multiplying with likelihood ratios necessitates conversion of likelihoods from probabilities to odds in favor (hereafter simply termed «odds») by:

text{odds} = frac{text{probability}}{1-text{probability}}

However, only the candidate conditions with known likelihood ratio need this conversion. After multiplication, conversion back to probability is calculated by:

 text{probability} = frac{text{odds}}{text{odds}+1}

The rest of the candidate conditions (for which there is no established likelihood ratio for the test at hand) can, for simplicity, be adjusted by subsequently multiplying all candidate conditions with a common factor to again yield a sum of 100%.

The resulting probabilities are used for estimating the indications for further medical tests, treatments or other actions. If there is an indication for an additional test, and it returns with a result, then the procedure is repeated using the likelihood ratio of the additional test. With updated probabilities for each of the candidate conditions, the indications for further tests, treatments, or other actions change as well, and so the procedure can be repeated until an endpoint where there no longer is any indication for currently performing further actions. Such an endpoint mainly occurs when one candidate condition becomes so certain that no test can be found that is powerful enough to change the relative probability profile enough to motivate any change in further actions. Tactics for reaching such an endpoint with as few tests as possible includes making tests with high specificity for conditions of already outstandingly high-profile-relative probability, because the high likelihood ratio positive for such tests is very high, bringing all less likely conditions to relatively lower probabilities. Alternatively, tests with high sensitivity for competing candidate conditions have a high likelihood ratio negative, potentially bringing the probabilities for competing candidate conditions to negligible levels. If such negligible probabilities are achieved, the clinician can rule out these conditions, and continue the differential diagnostic procedure with only the remaining candidate conditions.

Example[edit]

This example continues for the same patient as in the example for the epidemiology-based method. As with the previous example of epidemiology-based method, this example case is made to demonstrate how this method is applied but does not represent a guideline for handling similar real-world cases. Also, the example uses relatively specified numbers, while in reality, there are often just rough estimations. In this example, the probabilities for each candidate condition were established by an epidemiology-based method to be as follows:

PH Cancer Other conditions No disease
Probability 37.3% 6.0% 14.9% 41.8%

These percentages could also have been established by experience at the particular clinic by knowing that these are the percentages for final diagnosis for people presenting to the clinic with hypercalcemia and having a family history of primary hyperparathyroidism.

The condition of highest profile-relative probability (except «no disease») is primary hyperparathyroidism (PH), but cancer is still of major concern, because if it is the actual causative condition for the hypercalcemia, then the choice of whether to treat or not likely means life or death for the patient, in effect potentially putting the indication at a similar level for further tests for both of these conditions.

Here, let’s say that the clinician considers the profile-relative probabilities of being of enough concern to indicate sending the patient a call for a clinician visit, with an additional visit to the medical laboratory for an additional blood test complemented with further analyses, including parathyroid hormone for the suspicion of primary hyperparathyroidism.

For simplicity, let’s say that the clinician first receives the blood test (in formulas abbreviated as «BT») result for the parathyroid hormone analysis and that it showed a parathyroid hormone level that is elevated relative to what would be expected by the calcium level.

Such a constellation can be estimated to have a sensitivity of approximately 70% and a specificity of approximately 90% for primary hyperparathyroidism.[8] This confers a likelihood ratio positive of 7 for primary hyperparathyroidism.

The probability of primary hyperparathyroidism is now termed Pre-BTPH because it corresponds to before the blood test (Latin preposition prae means before). It was estimated at 37.3%, corresponding to an odds of 0.595. With the likelihood ratio positive of 7 for the blood test, the post-test odds is calculated as:

 operatorname{Odds}(text{PostBT}_{PH}) = operatorname{Odds}(text{PreBT}_{PH}) cdot LH(BT) = 0.595 cdot 7 = 4.16,

where:

  • Odds(PostBTPH) is the odds for primary hyperparathyroidism after the blood test for parathyroid hormone
  • Odds(PreBTPH is the odds in favor of primary hyperparathyroidism before the blood test for parathyroid hormone
  • LH(BT) is the likelihood ratio positive for the blood test for parathyroid hormone

An Odds(PostBTPH) of 4.16 is again converted to the corresponding probability by:

 Pr(text{PostBT}_{PH}) = frac{operatorname{Odds}(text{PostBT}_{PH})}{ operatorname{Odds}(text{PostBT}_{PH}) + 1} = frac{4.16}{4.16+1} = 0.806 = 80.6%

The sum of the probabilities for the rest of the candidate conditions should therefore be:

 Pr(text{PostBT}_{rest}) = 100% - 80.6% = 19.4%

Before the blood test for parathyroid hormone, the sum of their probabilities were:

 Pr(text{PreBT}_text{rest}) = 6.0% + 14.9% + 41.8% = 62.7%

Therefore, to conform to a sum of 100% for all candidate conditions, each of the other candidates must be multiplied by a correcting factor:

 text{Correcting factor} = frac{Pr(text{PostBT}_text{rest})}{Pr(text{PreBT}_text{rest})} = frac{19.4}{62.7} = 0.309

For example, the probability of cancer after the test is calculated as:

 Pr(text{PostBT}_text{cancer}) = Pr(text{PreBT}_text{cancer}) cdot text{Correcting factor} = 6.0% cdot 0.309 = 1.9%

The probabilities for each candidate conditions before and after the blood test are given in following table:

PH Cancer Other conditions No disease
P(PreBT) 37.3% 6.0% 14.9% 41.8%
P(PostBT) 80.6% 1.9% 4.6% 12.9%

These «new» percentages, including a profile-relative probability of 80% for primary hyperparathyroidism, underlie any indications for further tests, treatments, or other actions. In this case, let’s say that the clinician continues the plan for the patient to attend a clinician visit for a further checkup, especially focused on primary hyperparathyroidism.

A clinician visit can, theoretically, be regarded as a series of tests, including both questions in a medical history, as well as components of a physical examination, where the post-test probability of a previous test, can be used as the pre-test probability of the next. The indications for choosing the next test are dynamically influenced by the results of previous tests.

Let’s say that the patient in this example is revealed to have at least some of the symptoms and signs of depression, bone pain, joint pain or constipation of more severity than what would be expected by the hypercalcemia itself, supporting the suspicion of primary hyperparathyroidism,[9] and let’s say that the likelihood ratios for the tests, when multiplied together, roughly results in a product of 6 for primary hyperparathyroidism.

The presence of unspecific pathologic symptoms and signs in the history and examination are often concurrently indicative of cancer as well, and let’s say that the tests gave an overall likelihood ratio estimated at 1.5 for cancer. For other conditions, as well as the instance of not having any disease at all, let’s say that it’s unknown how they are affected by the tests at hand, as often happens in reality. This gives the following results for the history and physical examination (abbreviated as P&E):

PH Cancer Other conditions No disease
P(PreH&E) 80.6% 1.9% 4.6% 12.9%
Odds(PreH&E) 4.15 0.019 0.048 0.148
Likelihood ratio by H&E 6 1.5
Odds(PostH&E) 24.9 0.0285
P(PostH&E) 96.1% 2.8%
Sum of known P(PostH&E) 98.9%
Sum of the rest P(PostH&E) 1.1%
Sum of the rest P(PreH&E) 4.6% + 12.9% = 17.5%
Correcting factor 1.1% / 17.5% = 0.063
After correction 0.3% 0.8%
P(PostH&E) 96.1% 2.8% 0.3% 0.8%

These probabilities after the history and examination may make the physician confident enough to plan the patient for surgery for a parathyroidectomy to resect the affected tissue.

At this point, the probability of «other conditions» is so low that the physician cannot think of any test for them that could make a difference that would be substantial enough to form an indication for such a test, and the physician thereby practically regards «other conditions» as ruled out, in this case not primarily by any specific test for such other conditions that were negative, but rather by the absence of positive tests so far.

For «cancer», the cutoff at which to confidently regard it as ruled out maybe more stringent because of severe consequences of missing it, so the physician may consider that at least a histopathologic examination of the resected tissue is indicated.

This case is continued in the example of Combinations in the corresponding section below.

Coverage of candidate conditions[edit]

The validity of both the initial estimation of probabilities by epidemiology and further workup by likelihood ratios are dependent on the inclusion of candidate conditions that are responsible for a large part as possible of the probability of having developed the condition, and it is clinically important to include those where relatively fast initiation of therapy is most likely to result in the greatest benefit. If an important candidate condition is missed, no method of differential diagnosis will supply the correct conclusion. The need to find more candidate conditions for inclusion increases with the increasing severity of the presentation itself. For example, if the only presentation is a deviating laboratory parameter and all common harmful underlying conditions have been ruled out, then it may be acceptable to stop finding more candidate conditions, but this would much more likely be unacceptable if the presentation would have been severe pain.

Combinations[edit]

If two conditions get high post-test probabilities, especially if the sum of the probabilities for conditions with known likelihood ratios becomes higher than 100%, then the actual condition is a combination of the two. In such cases, that combined condition can be added to the list of candidate conditions, and the calculations should start over from the beginning.

To continue the example used above, let’s say that the history and physical examination were indicative of cancer as well, with a likelihood ratio of 3, giving an Odds(PostH&E) of 0.057, corresponding to a P(PostH&E) of 5.4%. This would correspond to a «Sum of known P(PostH&E)» of 101.5%. This is an indication for considering a combination of primary hyperparathyroidism and cancer, such as, in this case, a parathyroid hormone-producing parathyroid carcinoma. A recalculation may therefore be needed, with the first two conditions being separated into «primary hyperparathyroidism without cancer», «cancer without primary hyperparathyroidism» as well as «combined primary hyperparathyroidism and cancer», and likelihood ratios being applied to each condition separately. In this case, however, tissue has already been resected, wherein a histopathologic examination can be performed that includes the possibility of parathyroid carcinoma in the examination (which may entail appropriate sample staining).
Let’s say that the histopathologic examination confirms primary hyperparathyroidism, but also showed a malignant pattern. By an initial method by epidemiology, the incidence of parathyroid carcinoma is estimated at 1 in 6 million people per year,[10] giving a very low probability before taking any tests into consideration. In comparison, the probability that non-malignant primary hyperparathyroidism would have occurred at the same time as an unrelated non-carcinoma cancer that presents with malignant cells in the parathyroid gland is calculated by multiplying the probabilities of the two. The resultant probability is, however, much smaller than the 1 in 6 million. Therefore, the probability of parathyroid carcinoma may still be close to 100% after histopathologic examination despite the low probability of occurring in the first place.

Machine differential diagnosis[edit]

Machine differential diagnosis is the use of computer software to partly or fully make a differential diagnosis. It may be regarded as an application of artificial intelligence. Alternatively, it may be seen as «Augmented Intelligence» if it meets the FDA criteria, namely that (1) it reveals the underlying data, (2) reveals the underlying logic, and (3) leaves the clinician in charge to shape and make the decision. Machine Learning AI is generally seen as a device by the FDA, whereas Augmented Intelligence applications are not.

Many studies demonstrate improvement of quality of care and reduction of medical errors by using such decision support systems. Some of these systems are designed for a specific medical problem such as schizophrenia,[11] Lyme disease[12] or ventilator-associated pneumonia.[13] Others are designed to cover all major clinical and diagnostic findings to assist physicians with faster and more accurate diagnosis.

However, these tools all still require advanced medical skills to rate symptoms and choose additional tests to deduce the probabilities of different diagnoses. Machine differential diagnosis is also currently unable to diagnose multiple concurrent disorders.[14] Thus, non-professionals should still see a health care provider for a proper diagnosis.

History[edit]

The method of differential diagnosis was first suggested for use in the diagnosis of mental disorders by Emil Kraepelin. It is more systematic than the old-fashioned method of diagnosis by gestalt (impression).[citation needed]

Alternative medical meanings[edit]

‘Differential diagnosis’ is also used more loosely, to refer simply to a list of the most common causes of a given symptom, to a list of disorders similar to a given disorder, or to such lists when they are annotated with advice on how to narrow the list down (French’s Index of Differential Diagnosis is an example). Thus, a differential diagnosis in this sense is medical information specially organized to aid in diagnosis.

Usage apart from in medicine[edit]

Methods similar to those of differential diagnostic processes in medicine are also used by biological taxonomists to identify and classify organisms, living and extinct. For example, after finding an unknown species, there can first be a listing of all potential species, followed by ruling out of one by one until, optimally, only one potential choice remains.
Similar procedures may be used by plant and maintenance engineers and automotive mechanics and used to be used in diagnosing faulty electronic circuitry.

In art[edit]

The American television medical drama House, featuring Hugh Laurie as the main protagonist Dr. Gregory House who leads a team of diagnosticians at the fictional Princeton–Plainsboro Teaching Hospital in New Jersey, revolves around using differential diagnostics procedures in a bid to come up with the right diagnosis.

Throughout the series, the doctors have diagnosed such diseases as lupus, mastocytosis, Plummer’s disease, rabies, Kawasaki’s syndrome, smallpox, Rickettsialpox, and dozens of others.

See also[edit]

  • Comorbidity
  • Diagnosis of exclusion
  • Dual diagnosis
  • Gender-bias in medical diagnosis
  • List of medical symptoms

References[edit]

  1. ^ «differential diagnosis». Merriam-Webster (Medical dictionary). Retrieved 30 December 2014.
  2. ^ Wilson, MC (2012). The Patient History: Evidence-Based Approach To Differential Diagnosis. New York, NY: McGraw Hill. ISBN 9780071804202.
  3. ^ Siegenthaler, Walter (2011). Differential diagnosis in internal medicine : from symptom to diagnosis. Thieme. p. 6. ISBN 978-1604062199.
  4. ^ Lim, Eric KS; Oster, Andrew JK; Rafferty, Andrew T (2014). Churchill’s pocketbook of differential diagnosis (Fourth ed.). Elsevier Health Sciences. ISBN 978-0702054044.
  5. ^ Cf. VINDICATE – Mnemonic for differential diagnosis Archived 20 December 2012 at the Wayback Machine at PG Blazer.com.
  6. ^ Richardson, WS. (March 1999). «Users’ Guides to the Medical Literature: XV. How to use an article about disease probability for differential diagnosis». JAMA. 281 (13): 1214–1219. doi:10.1001/jama.281.13.1214. PMID 10199432. S2CID 2389981. [1]
  7. ^ Seccareccia, D. (March 2010). «Cancer-related hypercalcemia». Can Fam Physician. 56 (3): 244–6, e90–2. PMC 2837688. PMID 20228307. [2] [3]
  8. ^ Lepage, R.; d’Amour, P.; Boucher, A.; Hamel, L.; Demontigny, C.; Labelle, F. (1988). «Clinical performance of a parathyrin immunoassay with dynamically determined reference values». Clinical Chemistry. 34 (12): 2439–2443. doi:10.1093/clinchem/34.12.2439. PMID 3058363.
  9. ^ Bargren, A. E.; Repplinger, D.; Chen, H.; Sippel, R. S. (2011). «Can Biochemical Abnormalities Predict Symptomatology in Patients with Primary Hyperparathyroidism?». Journal of the American College of Surgeons. 213 (3): 410–414. doi:10.1016/j.jamcollsurg.2011.06.401. PMID 21723154.
  10. ^ Parathyroid Cancer Treatment at National Cancer Institute. Last Modified: 03/11/2009
  11. ^ Razzouk, D.; Mari, J. J.; Shirakawa, I.; Wainer, J.; Sigulem, D. (January 2006). «Decision support system for the diagnosis of schizophrenia disorders». Brazilian Journal of Medical and Biological Research. 39 (1): 119–28. doi:10.1590/s0100-879×2006000100014. PMID 16400472.
  12. ^ Hejlesen OK, Olesen KG, Dessau R, Beltoft I, Trangeled M (2005). «Decision support for diagnosis of lyme disease». Studies in Health Technology and Informatics. 116: 205–10. PMID 16160260.
  13. ^ «Evaluation of a Computer Assisted Decision Support System (DSS) for Diagnosis and Treatment of Ventilator Associated Pneumonia (VAP) in Intensive Care Unit (ICU)». nih.gov. Archived from the original on 10 February 2009. Retrieved 3 October 2008.
  14. ^ Wadhwa, R.R.; Park, D.Y.; Natowicz, M.R. (2018). «The accuracy of computer‐based diagnostic tools for the identification of concurrent genetic disorders». American Journal of Medical Genetics Part A. 176 (12): 2704–2709. doi:10.1002/ajmg.a.40651. PMID 30475443. S2CID 53758271.

Дифференциальная диагностика — в медицине способ диагностики, исключающий не подходящие по каким-либо фактам или симптомам заболевания, возможные у больного, что в конечном счёте должно свести диагноз к единственно вероятной болезни.

Содержание

  • 1 Дифференциальную диагностику в медицине можно разделить на три этапа
  • 2 Использование компьютерной техники
  • 3 См. также
  • 4 Примечания
  • 5 Ссылки

Дифференциальную диагностику в медицине можно разделить на три этапа

  • 1. В первый этап входит сбор анамнеза заболевания, то есть тщательное изучение истории данного заболевания у больного, выяснения причин его появления. Причины, как правило, у каждого заболевания свои, но у различных болезней причины могут быть одни и те же. Например у острого респираторного — вирусного заболевания (ОРВИ) и пневмонии причиной может быть переохлаждение организма.
  • 2. Во второй этап входит осмотр больного и симптоматика. Это самый главный этап дифференциальной диагностики. В особенности он важен для работников скорой помощи. Не имея под рукой данных лабораторного и инструментального исследования нужно поставить правильный диагноз и верно оказать скорую медицинскую помощь.
  • 3. Третий этап дифференциальной диагностики является заключительным. Сюда входят лабораторные и инструментальные исследования для подтверждения правильности поставленного диагноза. [1]

Использование компьютерной техники

Существуют компьютерные программы, которые позволяют полностью или частично провести дифференциальную диагностику.

Существуют системы, предназначенные для диагностики таких заболеваний, как шизофрения,[2] болезнь Лайма[3] или ассоциированная пневмония[4]. Существуют такие программы, как QMR, DiagnosisPro,[5] и VisualDx[6].

См. также

  • Методы медицинской диагностики

Примечания

  1. Врачебная ошибка или медицинская халатность. — Полезная информация <!-if()->- <!-endif-> — Каталог статей — Фельдшерский пункт
  2. Razzouk D, Mari JJ, Shirakawa I, Wainer J, Sigulem D (January 2006). «Decision support system for the diagnosis of schizophrenia disorders». Brazilian Journal of Medical and Biological Research 39 (1): 119–28. DOI:/S0100-879X2006000100014. PMID 16400472.
  3. Hejlesen OK, Olesen KG, Dessau R, Beltoft I, Trangeled M (2005). «Decision support for diagnosis of lyme disease». Studies in Health Technology and Informatics 116: 205–10. PMID 16160260.
  4. Evaluation of a Computer Assisted Decision Support System (DSS) for Diagnosis and Treatment of Ventilator Associated Pneumonia (VAP) in Intensive Care Unit (ICU).. nih.gov.(недоступная ссылка — история) Проверено 3 октября 2008.
  5. DiagnosisPro differential diagnosis reminder tool. diagnosispro.com. Архивировано из первоисточника 15 марта 2012. Проверено 3 октября 2008.
  6. VisualDx — Visual Clinical Decision Support System (CDSS) for Diagnostic Accuracy

Ссылки

  • Дифференциальная диагностика

Есть более полная статья

На букву Д Со слова «дифференциальная»

Фраза «дифференциальная диагностика»

Фраза состоит из двух слов и 27 букв без пробелов.

  • Синонимы к фразе
  • Написание фразы наоборот
  • Написание фразы в транслите
  • Написание фразы шрифтом Брайля
  • Передача фразы на азбуке Морзе
  • Произношение фразы на дактильной азбуке
  • Остальные фразы со слова «дифференциальная»
  • Остальные фразы из 2 слов

Видео Дифференциальная диагностика лимфом (автор: НМИЦ онкологии им. Н.Н. Петрова)23:51

Дифференциальная диагностика лимфом

Видео Дифференциальная диагностика диссеминированных процессов в легких и туберкулеза (автор: Врач на ланч)29:31

Дифференциальная диагностика диссеминированных процессов в легких и туберкулеза

Видео И.А. Соколина - Дифференциальная диагностика очагов и очаговой диссеминации легких (автор: Национальная школа рентгенорадиологии)35:13

И.А. Соколина — Дифференциальная диагностика очагов и очаговой диссеминации легких

Видео Дифференциальная диагностика экзаменационных препаратов по гистологии. Видео лекция С.М.Зиматкин (автор: Portoble)28:48

Дифференциальная диагностика экзаменационных препаратов по гистологии. Видео лекция С.М.Зиматкин

Видео Дифференциальная диагностика регулярных тахикардий (автор: So Bytie)43:28

Дифференциальная диагностика регулярных тахикардий

Видео Дифференциальная диагностика в нейрорадиологии. Андрей Цориев (автор: Компания ЛИНС)52:50

Дифференциальная диагностика в нейрорадиологии. Андрей Цориев

Синонимы к фразе «дифференциальная диагностика»

Какие близкие по смыслу слова и фразы, а также похожие выражения существуют. Как можно написать по-другому или сказать другими словами.

Фразы

  • + абсцесс головного мозга −
  • + внутричерепное кровоизлияние −
  • + водянка оболочек яичка −
  • + гиперплазия предстательной железы −
  • + диабетическая стопа −
  • + диагностика заболевания −
  • + диагностическое значение −
  • + дифференциальная диагностика −
  • + дифференциальный диагноз −
  • + диффузный токсический зоб −
  • + затруднять диагностику −
  • + инфекционный эндокардит −
  • + кишечная непроходимость −
  • + клиническая диагностика −
  • + клинические проявления −
  • + лабораторная диагностика −
  • + лечебные мероприятия −
  • + механическая желтуха −
  • + мочевая система −
  • + неотложное состояние −
  • + патологические процессы −
  • + первичные иммунодефициты −
  • + плевральная жидкость −
  • + ранняя диагностика −

Ваш синоним добавлен!

Написание фразы «дифференциальная диагностика» наоборот

Как эта фраза пишется в обратной последовательности.

акитсонгаид яаньлаицнереффид 😀

Написание фразы «дифференциальная диагностика» в транслите

Как эта фраза пишется в транслитерации.

в латинской🇬🇧 differentsialnaya diagnostika

Как эта фраза пишется в пьюникоде — Punycode, ACE-последовательность IDN

xn--80aakeaqczpd1a0ca6a1g4b xn--80aaicucowj4al

Как эта фраза пишется в английской Qwerty-раскладке клавиатуры.

lbaathtywbfkmyfzlbfuyjcnbrf

Написание фразы «дифференциальная диагностика» шрифтом Брайля

Как эта фраза пишется рельефно-точечным тактильным шрифтом.

⠙⠊⠋⠋⠑⠗⠑⠝⠉⠊⠁⠇⠾⠝⠁⠫⠀⠙⠊⠁⠛⠝⠕⠎⠞⠊⠅⠁

Передача фразы «дифференциальная диагностика» на азбуке Морзе

Как эта фраза передаётся на морзянке.

– ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ – ⋅ ⋅ ⋅ – ⋅ ⋅ ⋅ – ⋅ ⋅ – ⋅ – ⋅ – ⋅ ⋅ ⋅ ⋅ – ⋅ – ⋅ ⋅ – ⋅ ⋅ – – ⋅ ⋅ – ⋅ – ⋅ – – ⋅ ⋅ ⋅ ⋅ ⋅ – – – ⋅ – ⋅ – – – ⋅ ⋅ ⋅ – ⋅ ⋅ – ⋅ – ⋅ –

Произношение фразы «дифференциальная диагностика» на дактильной азбуке

Как эта фраза произносится на ручной азбуке глухонемых (но не на языке жестов).

Передача фразы «дифференциальная диагностика» семафорной азбукой

Как эта фраза передаётся флажковой сигнализацией.

zdvvcpcasdnäöanwzdnfagerdxn

Остальные фразы со слова «дифференциальная»

Какие ещё фразы начинаются с этого слова.

  • дифференциальная геометрия
  • дифференциальная геометрия и топология
  • дифференциальная геометрия кривых
  • дифференциальная геометрия поверхностей
  • дифференциальная защита
  • дифференциальная импульсно-кодовая модуляция
  • дифференциальная приватность
  • дифференциальная психология
  • дифференциальная психофизиология
  • дифференциальная рента
  • дифференциальная теория галуа
  • дифференциальная эволюция

Ваша фраза добавлена!

Остальные фразы из 2 слов

Какие ещё фразы состоят из такого же количества слов.

  • а вдобавок
  • а вдруг
  • а ведь
  • а вот
  • а если
  • а ещё
  • а именно
  • а капелла
  • а каторга
  • а ну-ка
  • а приятно
  • а также
  • а там
  • а то
  • аа говорит
  • аа отвечает
  • аа рассказывает
  • ааронов жезл
  • аароново благословение
  • аароново согласие
  • аб ово
  • абажур лампы
  • абазинская аристократия
  • абазинская литература

Комментарии

@poks 04.01.2020 06:56

Что значит фраза «дифференциальная диагностика»? Как это понять?..

Ответить

@lujednt 30.08.2022 19:27

1

×

Здравствуйте!

У вас есть вопрос или вам нужна помощь?

Спасибо, ваш вопрос принят.

Ответ на него появится на сайте в ближайшее время.

А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я

Транслит Пьюникод Шрифт Брайля Азбука Морзе Дактильная азбука Семафорная азбука

Палиндромы Сантана

Народный словарь великого и могучего живого великорусского языка.

Онлайн-словарь слов и выражений русского языка. Ассоциации к словам, синонимы слов, сочетаемость фраз. Морфологический разбор: склонение существительных и прилагательных, а также спряжение глаголов. Морфемный разбор по составу словоформ.

По всем вопросам просьба обращаться в письмошную.


Орфографический словарь русского языка (онлайн)

Как пишется слово «дифференциально-диагностический» ?
Правописание слова «дифференциально-диагностический»

А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

дифференциа́льно-диагности́ческий

Рядом по алфавиту:

дифтери́т , -а
дифтери́тный
дифтери́я , -и
дифтеро́иды , -ов, ед. -о́ид, -а
дифто́нг , -а
дифтонгиза́ция , -и
дифтонгизи́роваться , -руется
дифтонги́ческий
дифтонго́ид , -а
диффамацио́нный
диффама́ция , -и
диффенба́хия , -и
диффере́нт , -а (тех.; фин.)
дифференто́метр , -а
дифференциа́л , -а
дифференциа́льно-диагности́ческий
дифференциа́льно-ра́зностный
дифференциа́льность , -и
дифференциа́льный
дифференциа́тор , -а
дифференциа́ция , -и
дифференциона́льный
дифференци́рование , -я
дифференци́рованный , кр. ф. -ан, -ана
дифференци́ровать(ся) , -рую, -рует(ся)
дифференциро́вка , -и, р. мн. -вок
дифференциро́вочный
дифференци́рующий(ся)
диффере́нция , -и
диффлю́гия , -и
диффузиони́зм , -а

Дифференциальная диагностика — это процесс, при котором врач проводит различие между двумя или более заболеваниями, которые могут вызвать симптомы у человека.

Зачастую не существует лабораторных методов, которые могли бы окончательно поставить причину симптомов заболевания. Это происходит потому, что многие состояния имеют одинаковые или сходные симптомы, а некоторые проявляются по-разному. Чтобы поставить диагноз, врач может использовать метод, называемый дифференциальной диагностикой.

Дифференциальная диагностика включает в себя составление списка возможных состояний, которые могут быть причиной симптомов. Врач будет основываться на информации, которую он получает от:

  • истории болезни человека
  • результатов физического обследования
  • диагностического тестирования

Шаги проведения дифференциальной диагностики

Дифференциальный диагноз может занять некоторое время. Для того чтобы врач поставил окончательный диагноз, он должен выполнить следующие действия.

1. Изучит историю болезни

При подготовке к дифференциальной диагностике врач должен будет изучить полную историю болезни человека. Некоторые вопросы, которые врач может задать больному:

  • Каковы ваши симптомы?
  • Как долго вы испытываете симптомы?
  • Есть ли у вас в семейном анамнезе определенные заболевания?
  • Вы недавно выезжали за пределы страны?

Важно, чтобы человек отвечал на все вопросы честно и максимально подробно.

2. Выполнит физический осмотр

Затем врач проведет базовое медицинское обследование. Оно может включать в себя:

  • измерение частоты сердечных сокращений
  • измерение артериального давления
  • прослушивание легких или исследование других областей тела, которые вызывают симптомы

3. Проведение диагностических тестов

После изучения истории болезни и проведения медицинского осмотра у врача могут возникнуть некоторые мысли относительно того, что может быть причиной симптомов заболевания.

Врач может назначить диагностические тесты, чтобы исключить определенные состояния. Такие тесты могут включать в себя:

  • анализ крови
  • анализ мочи

диагностические тесты визуализации, такие как:

  • УЗИ
  • Рентгенография
  • МРТ-сканирование
  • Компьютерная томография
  • Эндоскопия

4. Отправит человека на консультацию

В некоторых случаях врач может почувствовать, что у него нет специальных знаний, чтобы точно диагностировать причину симптомов человека. В таких случаях он может направить больного к специалисту для получения заключения.

Нередко несколько врачей рассматривают одного пациента во время дифференциальной диагностики.

Примеры дифференциальных диагнозов

Боль в груди

Боль в груди — это симптом, который может иметь множество причин. Некоторые из них относительно легкие, в то время как другие серьезные и требуют немедленной медицинской помощи. Если человек имеет боль в груди, врач должен будет задать вопросы, чтобы выделить определенные факторы, такие как локализацию, тяжесть и частота боли.

Эти вопросы могут включать в себя:

  • Как вы себя чувствуете? Опишите это ощущение.
  • Где болит?
  • Распространяется ли боль на другую часть вашего тела?
  • Что-нибудь вызвало эту боль?
  • Как долго длится эта боль?
  • Что-нибудь сделало боль слабее или сильнее?
  • Испытывали ли вы какие-либо другие симптомы?

Задавая эти вопросы, врач сможет классифицировать боль в груди как один из следующих типов:

  1. Сердце: эти состояния относятся к заболеванию сердца. Примеры включают нестабильную стенокардию и сердечный приступ.
  2. Легочные: эти состояния относятся к заболеванию легким. 

Примеры включают в себя:

  • легочная эмболия
  • легочная гипертензия
  • пневмония
  1. Желудочно-кишечный тракт: эти состояния относятся к заболеваниям пищеварительной системы. Примеры включают гастроэзофагеальную рефлюксную болезнь, которая может привести к пищеводу Барретта, и пептические язвы.
  2. Опорно-двигательный аппарат: эти состояния относятся к заболеваниям мышц, костей и соединительной ткани. Примерами могут служить переломы ребер и другие травмы грудной клетки или грудины.
  3. Разное: эта категория описывает другие потенциальные причины боли в груди, такие как:
  • тревожность
  • приступ паники
  • лимфома

Как только врач определит тип боли, он назначит диагностические тесты, чтобы определить потенциальную причину боли. Эти тесты могут включать в себя:

  • электрокардиограмму (ЭКГ)
  • эхокардиограмму (ЭКГ)
  • эндоскопию
  • рентгенографию

Головные боли

Головные боли — это распространенный симптом. В связи с этим врачу трудно определить, когда головная боль является доброкачественным раздражением, а когда-серьезной проблемой для здоровья.

Во время дифференциальной диагностики врач будет искать определенные “красные флажки”, которые указывают на то, что головная боль — это больше, чем просто дискомфорт.

Внезапное начало сильной головной боли может указывать на несколько основных состояний, таких как субарахноидальное кровоизлияние или апоплексия гипофиза. Головная боль после травмы головы может указывать на внутричерепное кровоизлияние, субдуральную гематому или эпидуральную гематому. Врач задаст следующие вопросы, чтобы определить, представляет ли головная боль серьезную опасность для здоровья человека:

  • Головная боль началась постепенно или внезапно?
  • Что-нибудь вызвало головную боль?
  • В каком месте болит?
  • Кажется ли, что боль распространяется на какую-то другую область? Если да, то какую?
  • Какая боль? Пульсирующая, колющая, тупая или что-то еще?
  • Насколько сильна ваша боль по шкале от 1 до 10?
  • У вас регулярно бывают головные боли?
  • Это ваша первая и самая сильная головная боль?
  • Эта головная боль похожа на те, что обычно бывают?
  • Есть ли у вас другие симптомы, которые возникают при головной боли?

В некоторых случаях врач может провести неврологическое обследование, в том числе:

  • реакцию зрачков на свет
  • реакцию на прикосновение или ощущение прикосновения
  • глубокие сухожильные рефлексы
  • походку

История болезни и медицинский осмотр могут сузить круг возможных причин головной боли. Нейровизуализационные тесты с использованием КТ или МРТ могут исключить или подтвердить определенные диагнозы.

Инсульт

Инсульт требует своевременной диагностики и лечения. В связи с этим многие врачи обращаются к дифференциально-диагностическому методу при рассмотрении возможности возникновения инсульта. Во время медицинского осмотра врач проверит пациента на наличие следующих симптомов инсульта:

  • снижение когнитивной активности
  • проблемы с координацией и балансом
  • проблемы со зрением
  • онемение или слабость лица, рук или ног
  • трудности с речью или общением

Врач изучит историю болезни человека, чтобы выяснить, есть ли у него какие-либо заболевания, которые могут увеличить риск инсульта. Такие состояния включают в себя:

  • высокое артериальное давление
  • высокий уровень холестерина
  • диабет
  • атеросклероз, в том числе болезнь сонных артерий

Затем врач назначит тесты:

  • анализы
  • компьютерная томография, чтобы посмотреть на возможное кровоизлияние в мозг
  • МРТ-сканирование, чтобы проверить мозговую ткань на наличие признаков повреждения
  • ЭКГ, чтобы найти проблемы с сердцем, которые могли бы вызвать инсульт

Как интерпретировать полученные результаты 

Человеку может потребоваться несколько обследований и диагностических тестов, прежде чем он получит окончательный диагноз. Некоторые пациенты могут иметь множественные отрицательные результаты теста, прежде чем им поставят диагноз. Тем не менее, каждый отрицательный результат теста приближает врача к выяснению причины симптомов человека.

Некоторым пациентам может потребоваться начать лечение до того, как врач подтвердит их диагноз. Это может иметь место, если одна из потенциальных причин симптомов человека требует немедленного лечения, чтобы предотвратить дальнейшие осложнения. Реакция человека на то или иное лечение сама по себе может дать ценную информацию о причине его симптомов.

Заключение

Дифференциальная диагностика относится к перечню возможных состояний, которые могут быть причиной симптомов человека. Врач будет основываться на истории болезни человека и результаты физических обследований и диагностических тестов.

Многие заболевания имеют одни и те же симптомы. Это может затруднить диагностику некоторых состояний. Дифференциально-диагностический подход необходим в тех случаях, когда существует несколько потенциальных причин симптомов человека.

Врач ультразвуковой диагностики АО «СЗЦДМ» (г. Санкт-Петербург)

Учредитель сетевого издания Medical Insider, главный редактор и автор статей.

E-mail для связи — [email protected]

Понравилась статья? Поделить с друзьями:
  • Как пишется слово дификалт на английском
  • Как пишется слово диферамбы или дифирамбы
  • Как пишется слово дифект или дефект
  • Как пишется слово дитя или дитя
  • Как пишется слово дитя или детя