Как пишется степень многочлена

После изучения одночленов переходим к многочленам. Данная статья расскажет о всех необходимых сведениях, необходимых для выполнения действий над ними. Мы определим многочлен с сопутствующими определениями члена многочлена, то есть свободный и подобный, рассмотрим многочлен стандартного вида, введем степень и научимся  ее находить, поработаем с его коэффициентами.

Многочлен и его члены – определения и примеры

Определение многочлена было дано еще в 7 классе после изучения одночленов. Рассмотрим его полное определение.

Определение 1

Многочленом считается сумма одночленов, причем сам одночлен – это частный случай многочлена.

Из определения следует, что примеры многочленов могут быть различными: 50, −1, x5·a·b3, x2·0,6·x·(−2)·y12, -213·x·y2·323·x·x3·y·z и так далее. Из определения имеем, что 1+x, a2+b2 и выражение x2-2·x·y+25·x2+y2+5,2·y·x являются многочленами.

Рассмотрим еще определения.

Определение 2

Членами многочлена называются его составляющие одночлены.

Рассмотрим такой пример, где имеем многочлен 3·x4−2·x·y+3−y3, состоящий из 4 членов: 3·x4, −2·x·y, 3 и −y3. Такой одночлен можно считать многочленом, который состоит из одного члена.

Определение 3

Многочлены, которые имеют в своем составе 2, 3 трехчлена имеют соответственное название – двучлен и трехчлен.

Отсюда следует, что выражение вида x+y – является двучленом, а выражение 2·x3·q−q·x·x+7·b – трехчленом.

По школьной программе работали с линейным двучленом вида a·x+b, где а и b являются некоторыми числами, а х – переменной. Рассмотрим примеры линейных двучленов вида: x+1, x·7,2−4 с примерами квадратных трехчленов x2+3·x−5 и  25·x2-3x+11.

Для преобразования и решения необходимо находить и приводить подобные слагаемые. Например, многочлен вида 1+5·x−3+y+2·x имеет подобные слагаемые 1 и -3, 5х и 2х. Их подразделяют в особую группу под названием подобных членов многочлена.

Определение 4

Подобные члены многочлена – это подобные слагаемые, находящиеся в многочлене.

В примере, приведенном выше, имеем, что 1 и -3, 5х и 2х являются подобными членами многочлена или подобными слагаемыми. Для того, что бы упростить выражение, применяют нахождение  и приведение подобных слагаемых.

Многочлен стандартного вида

У всех одночленов и многочленов имеются свои определенные названия.

Определение 5

Многочленом стандартного вида называют многочлен, у которого каждый входящий в него член  имеет одночлен стандартного вида и не содержит подобных членов.

Из определения видно, что возможно приведение многочленов стандартного вида, например, 3·x2−x·y+1 и __formula__, причем запись в стандартном виде. Выражения 5+3·x2−x2+2·x·z и 5+3·x2−x2+2·x·z многочленами стандартного вида не является, так как первый из них имеет подобные слагаемые в виде 3·x2 и −x2,  а второй содержит одночлен вида x·y3·x·z2, отличающийся от  стандартного многочлена.

Если того требуют обстоятельства, иногда многочлен приводится к стандартному виду. Многочленом стандартного вида считается и понятие свободного члена многочлена.

Определение 6

Свободным членом многочлена является многочлен стандартного вида, не имеющий буквенной части.

Иначе говоря, когда запись многочлена в стандартном виде имеет число, его называют свободным членом. Тогда число 5  является свободным членом многочлена x2·z+5, а многочлен 7·a+4·a·b+b3 свободного члена не имеет.

Степень многочлена – как ее найти?

Определение самой степени многочлена базируется на определении многочлена стандартного вида и на степенях одночленов, которые являются его составляющими.

Определение 7

Степенью многочлена стандартного вида называют наибольшую из степеней, входящих в его запись.

Рассмотрим на примере. Степень многочлена 5·x3−4 равняется 3, потому как одночлены, входящие в его состав, имеют степени 3 и 0, а большее из них 3 соответственно. Определение степени из многочлена 4·x2·y3−5·x4·y+6·x равняется наибольшему из  чисел, то есть 2+3=5, 4+1=5 и 1, значит 5.

Следует выяснить, каким образом находится сама степень.

Определение 8

Степень многочлена произвольного числа  — это степень соответствующего ему многочлена в стандартном виде.

Когда многочлен записан не в стандартном виде, но нужно найти его степень, необходимо приведение к стандартному, после чего находить искомую степень.

Пример 1

Найти степень многочлена 3·a12−2·a·b·c·a·c·b+y2·z2−2·a12−a12.

Решение

Для начала представим многочлен в стандартном виде. Получим выражение вида:

3·a12−2·a·b·c·a·c·b+y2·z2−2·a12−a12= =(3·a12−2·a12−a12)−2·(a·a)·(b·b)·(c·c)+y2·z2= =−2·a2·b2·c2+y2·z2

При получении многочлена стандартного вида получаем, что  отчетливо выделяются два из них −2·a2·b2·c2 и y2·z2. Для нахождения степеней посчитаем и получим, что 2+2+2=6 и 2+2=4. Видно, что наибольшая из них равняется 6. Из определения следует, что именно 6 является степенью многочлена −2·a2·b2·c2+y2·z2, следовательно и исходного значения.

Ответ: 6.

Коэффициенты членов многочлена

Определение 9

Когда все члены многочлена являются одночленами стандартного вида, то в таком случаем они имеют название коэффициентов членов многочлена. Иначе говоря, их можно называть коэффициентами многочлена.

При рассмотрении примера видно, что многочлен вида 2·x−0,5·x·y+3·x+7 имеет в  своем составе 4 многочлена: 2·x, −0,5·x·y, 3·x и 7 с соответствующими их коэффициентами 2, −0,5, 3 и 7. Значит, 2, −0,5, 3 и 7 считаются коэффициентами членов заданного многочлена вида 2·x−0,5·x·y+3·x+7. При преобразовании важно обращать внимание на коэффициенты, стоящие перед переменными.


Download Article


Download Article

Polynomial means «many terms,» and it can refer to a variety of expressions that can include constants, variables, and exponents. For example, x — 2 is a polynomial; so is 25. To find the degree of a polynomial, all you have to do is find the largest exponent in the polynomial.[1]
If you want to find the degree of a polynomial in a variety of situations, just follow these steps.

  1. Image titled Find the Degree of a Polynomial Step 1

    1

    Combine like terms. Combine all of the like terms in the expression so you can simplify it, if they are not combined already. Let’s say you’re working with the following expression: 3x2 — 3x4 — 5 + 2x + 2x2 — x. Just combine all of the x2, x, and constant terms of the expression to get 5x2 — 3x4 — 5 + x.[2]

  2. Image titled Find the Degree of a Polynomial Step 2

    2

    Drop all of the constants and coefficients. The constant terms are all of the terms that are not attached to a variable, such as 3 or 5. The coefficients are the terms that are attached to the variable. When you’re looking for the degree of a polynomial, you can either just actively ignore these terms or cross them off. For instance, the coefficient of the term 5x2 would be 5. The degree is independent of the coefficients, so you don’t need them.

    • Working with the equation 5x2 — 3x4 — 5 + x, you would drop the constants and coefficients to get x2 — x4 + x.

    Advertisement

  3. Image titled Find the Degree of a Polynomial Step 3

    3

    Put the terms in decreasing order of their exponents. This is also called putting the polynomial in standard form.[3]
    . The term with the highest exponent should be first, and the term with the lowest exponent should be last. This will help you see which term has the exponent with the largest value. In the previous example, you would be left with
    -x4 + x2 + x.

  4. Image titled Find the Degree of a Polynomial Step 4

    4

    Find the power of the largest term. The power is simply number in the exponent. In the example, -x4 + x2 + x, the power of the first term is 4. Since you’ve arranged the polynomial to put the largest exponent first, that will be where you will find the largest term.

  5. Image titled Find the Degree of a Polynomial Step 5

    5

    Identify this number as the degree of the polynomial. You can just write that the degree of the polynomial = 4, or you can write the answer in a more appropriate form: deg (3x2 — 3x4 — 5 + 2x + 2x2 — x) = 4. You’re all done.[4]

  6. Image titled Find the Degree of a Polynomial Step 6

    6

    Know that the degree of a constant is zero. If your polynomial is only a constant, such as 15 or 55, then the degree of that polynomial is really zero. You can think of the constant term as being attached to a variable to the degree of 0, which is really 1. For example, if you have the constant 15, you can think of it as 15x0, which is really 15 x 1, or 15. This proves that the degree of a constant is 0.

  7. Advertisement

  1. Image titled Find the Degree of a Polynomial Step 7

    1

    Write the expression. Finding the degree of a polynomial with multiple variables is only a little bit trickier than finding the degree of a polynomial with one variable. Let’s say you’re working with the following expression:

    • x5y3z + 2xy3 + 4x2yz2
  2. Image titled Find the Degree of a Polynomial Step 8

    2

    Add the degree of variables in each term. Just add up the degrees of the variables in each of the terms; it does not matter that they are different variables. Remember that the degree of a variable without a written degree, such as x or y, is just one. Here’s how you do it for all three terms:[5]

    • deg(x5y3z) = 5 + 3 + 1 = 9
    • deg(2xy3) = 1 + 3 = 4
    • deg(4x2yz2) = 2 + 1 + 2 = 5
  3. Image titled Find the Degree of a Polynomial Step 9

    3

    Identify the largest degree of these terms. The largest degree of these three terms is 9, the value of the added degree values of the first term.[6]

  4. Image titled Find the Degree of a Polynomial Step 10

    4

    Identify this number as the degree of the polynomial. 9 is the degree of the entire polynomial. You can write the final answer like this: deg (x5y3z + 2xy3 + 4x2yz2) = 9.

  5. Advertisement

  1. Image titled Find the Degree of a Polynomial Step 11

    1

    Write down the expression. Let’s say you’re working with the following expression: (x2 + 1)/(6x -2).[7]

  2. Image titled Find the Degree of a Polynomial Step 12

    2

    Eliminate all coefficients and constants. You won’t need the coefficients or constant terms to find the degree of a polynomial with fractions. So, eliminate the 1 from the numerator and the 6 and -2 from the denominator. You’re left with x2/x.

  3. Image titled Find the Degree of a Polynomial Step 13

    3

    Subtract the degree of the variable in the denominator from the degree of the variable in the numerator. The degree of the variable in the numerator is 2 and the degree of the variable in the denominator is 1. So, subtract 1 from 2. 2-1 = 1.

  4. Image titled Find the Degree of a Polynomial Step 14

    4

    Write the result as your answer. The degree of this rational expression is 1. You can write it like this: deg [(x2 + 1)/(6x -2)] = 1.

  5. Advertisement

Add New Question

  • Question

    What is the degree of a polynomial?

    Community Answer

    In the case of a polynomial with only one variable (such as 2x³ + 5x² — 4x +3, where x is the only variable),the degree is the same as the highest exponent appearing in the polynomial (in this case 3). In the case of a polynomial with more than one variable, the degree is found by looking at each monomial within the polynomial, adding together all the exponents within a monomial, and choosing the largest sum of exponents. That sum is the degree of the polynomial. For example, in the expression 2x²y³ + 4xy² — 3xy, the first monomial has an exponent total of 5 (2+3), which is the largest exponent total in the polynomial, so that’s the degree of the polynomial.

  • Question

    What is degree of 1/x^4 + x^2?

    Donagan

    1 / (x^4) is equivalent to x^(-4). So the highest (most positive) exponent in the polynomial is 2, meaning that 2 is the degree of the polynomial.

  • Question

    What about a polynomial with multiple variables that has one or more negative exponents in it?

    Donagan

    Combine the exponents found within a given monomial as you would if all the exponents were positive, but you would subtract the negative exponents.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • This just shows the steps you would go through in your mind. You don’t have to do this on paper, though it might help the first time. If you do it on paper, however, you won’t make a mistake.

  • By convention, the degree of the zero polynomial is generally considered to be negative infinity.

  • For the third step, linear terms like x can be written as x1 and non-zero constant terms like 7 can be written as 7x0

Thanks for submitting a tip for review!

Advertisement

References

About This Article

Article SummaryX

To find the degree of a polynomial with one variable, combine the like terms in the expression so you can simplify it. Next, drop all of the constants and coefficients from the expression. Then, put the terms in decreasing order of their exponents and find the power of the largest term. The power of the largest term is the degree of the polynomial. To find the degree of a polynomial with multiple variables, write out the expression, then add the degree of variables in each term. The power of the largest term is your answer! If you want to learn how to find the degree of a polynomial in a rational expression, keep reading the article!

Did this summary help you?

Thanks to all authors for creating a page that has been read 863,302 times.

Did this article help you?


Download Article


Download Article

Polynomial means «many terms,» and it can refer to a variety of expressions that can include constants, variables, and exponents. For example, x — 2 is a polynomial; so is 25. To find the degree of a polynomial, all you have to do is find the largest exponent in the polynomial.[1]
If you want to find the degree of a polynomial in a variety of situations, just follow these steps.

  1. Image titled Find the Degree of a Polynomial Step 1

    1

    Combine like terms. Combine all of the like terms in the expression so you can simplify it, if they are not combined already. Let’s say you’re working with the following expression: 3x2 — 3x4 — 5 + 2x + 2x2 — x. Just combine all of the x2, x, and constant terms of the expression to get 5x2 — 3x4 — 5 + x.[2]

  2. Image titled Find the Degree of a Polynomial Step 2

    2

    Drop all of the constants and coefficients. The constant terms are all of the terms that are not attached to a variable, such as 3 or 5. The coefficients are the terms that are attached to the variable. When you’re looking for the degree of a polynomial, you can either just actively ignore these terms or cross them off. For instance, the coefficient of the term 5x2 would be 5. The degree is independent of the coefficients, so you don’t need them.

    • Working with the equation 5x2 — 3x4 — 5 + x, you would drop the constants and coefficients to get x2 — x4 + x.

    Advertisement

  3. Image titled Find the Degree of a Polynomial Step 3

    3

    Put the terms in decreasing order of their exponents. This is also called putting the polynomial in standard form.[3]
    . The term with the highest exponent should be first, and the term with the lowest exponent should be last. This will help you see which term has the exponent with the largest value. In the previous example, you would be left with
    -x4 + x2 + x.

  4. Image titled Find the Degree of a Polynomial Step 4

    4

    Find the power of the largest term. The power is simply number in the exponent. In the example, -x4 + x2 + x, the power of the first term is 4. Since you’ve arranged the polynomial to put the largest exponent first, that will be where you will find the largest term.

  5. Image titled Find the Degree of a Polynomial Step 5

    5

    Identify this number as the degree of the polynomial. You can just write that the degree of the polynomial = 4, or you can write the answer in a more appropriate form: deg (3x2 — 3x4 — 5 + 2x + 2x2 — x) = 4. You’re all done.[4]

  6. Image titled Find the Degree of a Polynomial Step 6

    6

    Know that the degree of a constant is zero. If your polynomial is only a constant, such as 15 or 55, then the degree of that polynomial is really zero. You can think of the constant term as being attached to a variable to the degree of 0, which is really 1. For example, if you have the constant 15, you can think of it as 15x0, which is really 15 x 1, or 15. This proves that the degree of a constant is 0.

  7. Advertisement

  1. Image titled Find the Degree of a Polynomial Step 7

    1

    Write the expression. Finding the degree of a polynomial with multiple variables is only a little bit trickier than finding the degree of a polynomial with one variable. Let’s say you’re working with the following expression:

    • x5y3z + 2xy3 + 4x2yz2
  2. Image titled Find the Degree of a Polynomial Step 8

    2

    Add the degree of variables in each term. Just add up the degrees of the variables in each of the terms; it does not matter that they are different variables. Remember that the degree of a variable without a written degree, such as x or y, is just one. Here’s how you do it for all three terms:[5]

    • deg(x5y3z) = 5 + 3 + 1 = 9
    • deg(2xy3) = 1 + 3 = 4
    • deg(4x2yz2) = 2 + 1 + 2 = 5
  3. Image titled Find the Degree of a Polynomial Step 9

    3

    Identify the largest degree of these terms. The largest degree of these three terms is 9, the value of the added degree values of the first term.[6]

  4. Image titled Find the Degree of a Polynomial Step 10

    4

    Identify this number as the degree of the polynomial. 9 is the degree of the entire polynomial. You can write the final answer like this: deg (x5y3z + 2xy3 + 4x2yz2) = 9.

  5. Advertisement

  1. Image titled Find the Degree of a Polynomial Step 11

    1

    Write down the expression. Let’s say you’re working with the following expression: (x2 + 1)/(6x -2).[7]

  2. Image titled Find the Degree of a Polynomial Step 12

    2

    Eliminate all coefficients and constants. You won’t need the coefficients or constant terms to find the degree of a polynomial with fractions. So, eliminate the 1 from the numerator and the 6 and -2 from the denominator. You’re left with x2/x.

  3. Image titled Find the Degree of a Polynomial Step 13

    3

    Subtract the degree of the variable in the denominator from the degree of the variable in the numerator. The degree of the variable in the numerator is 2 and the degree of the variable in the denominator is 1. So, subtract 1 from 2. 2-1 = 1.

  4. Image titled Find the Degree of a Polynomial Step 14

    4

    Write the result as your answer. The degree of this rational expression is 1. You can write it like this: deg [(x2 + 1)/(6x -2)] = 1.

  5. Advertisement

Add New Question

  • Question

    What is the degree of a polynomial?

    Community Answer

    In the case of a polynomial with only one variable (such as 2x³ + 5x² — 4x +3, where x is the only variable),the degree is the same as the highest exponent appearing in the polynomial (in this case 3). In the case of a polynomial with more than one variable, the degree is found by looking at each monomial within the polynomial, adding together all the exponents within a monomial, and choosing the largest sum of exponents. That sum is the degree of the polynomial. For example, in the expression 2x²y³ + 4xy² — 3xy, the first monomial has an exponent total of 5 (2+3), which is the largest exponent total in the polynomial, so that’s the degree of the polynomial.

  • Question

    What is degree of 1/x^4 + x^2?

    Donagan

    1 / (x^4) is equivalent to x^(-4). So the highest (most positive) exponent in the polynomial is 2, meaning that 2 is the degree of the polynomial.

  • Question

    What about a polynomial with multiple variables that has one or more negative exponents in it?

    Donagan

    Combine the exponents found within a given monomial as you would if all the exponents were positive, but you would subtract the negative exponents.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • This just shows the steps you would go through in your mind. You don’t have to do this on paper, though it might help the first time. If you do it on paper, however, you won’t make a mistake.

  • By convention, the degree of the zero polynomial is generally considered to be negative infinity.

  • For the third step, linear terms like x can be written as x1 and non-zero constant terms like 7 can be written as 7x0

Thanks for submitting a tip for review!

Advertisement

References

About This Article

Article SummaryX

To find the degree of a polynomial with one variable, combine the like terms in the expression so you can simplify it. Next, drop all of the constants and coefficients from the expression. Then, put the terms in decreasing order of their exponents and find the power of the largest term. The power of the largest term is the degree of the polynomial. To find the degree of a polynomial with multiple variables, write out the expression, then add the degree of variables in each term. The power of the largest term is your answer! If you want to learn how to find the degree of a polynomial in a rational expression, keep reading the article!

Did this summary help you?

Thanks to all authors for creating a page that has been read 863,302 times.

Did this article help you?

Часто путают понятия одночлена и многочлена.

Давайте разберемся, что называют одночленом, а что многочленом.
Прежде всего, вспомним, что называли одночленом в уроке «Одночлены».

Обратите внимание, что «внутри» одночлена (между буквами и числовым коэффициентом) есть только знак умножения.
Например, в одночлене:
3ab = 3 · a · b

Запомните!
!

Многочленом называется алгебраическая сумма нескольких одночленов.

Одночлены, из которых составлен многочлен, называют членами многочлена.

Примеры многочленов:
a + 2b2 − c;
 3t5 − 4b;
  4 − 6xy

Несложно заметить, что любой многочлен состоит из нескольких одночленов.

Рассмотрим многочлен подробнее.

пример многочлена

Возникает вопрос, почему многочленом называют алгебраическую сумму
одночленов, если в многочлене присутствует
знак минуса.

Это объясняется тем, что на самом деле знак «» относится к числовому коэффициенту одночлена,
который стоит справа от знака.

многочлен как сумма одночленов

Любой многочлен можно записать
по правилу знаков
как сумму одночленов.

многочлен как сумма одночленов с коэффициентов

В многочлене знак, который стоит слева от одночлена относится к числовому коэффициенту самого одночлена.

Как найти степень многочлена

Запомните!
!

Степенью многочлена называют наибольшую из степеней входящих в него одночленов.

То есть, чтобы найти степень многочлена, нужно сначала найти
степень каждого одночлена, который входит в
состав многочлена.

Степени многочленов

Многочлен Степень
многочлена

a2
− 3a2b
+ x =

a2(степень одночлена 2)
− 3a2b(степень одночлена 3)
+ x(степень одночлена 1)

3

1
3

x2y2
+ 4x2 =

1
3

x2y2(степень одночлена 4)
+ 4x2(степень одночлена 2)

4

8x2
− 3a
+ 4 =

8x2(степень одночлена 2)
− 3a(степень одночлена 1)
+ 4(степень одночлена 0)


2

Любой одночлен является многочленом.
В самом деле, любой одночлен, по сути, является многочленом, который состоит всего из одного одночлена.

Примеры таких многочленов: 2a2b; 
−3d3;  a.

Число «0» называют нулевым многочленом.

Содержание:

Многочлены

Многочлен

Выражение Многочлены - определение и вычисление с примерами решения

Определение: Многочленом называют сумму нескольких одночленов.

Одночлены, составляющие многочлен, называют членами этого многочлена.

Например, членами многочлена Многочлены - определение и вычисление с примерами решения являются одночлены Многочлены - определение и вычисление с примерами решения

Многочлен, состоящий из двух членов, называют двучленом, многочлен, состоящий из трех членов, — трехчленом и т. д. Так,

Многочлены - определение и вычисление с примерами решения — двучлены;

Многочлены - определение и вычисление с примерами решения — трехчлены.

Считают, что каждый одночлен является многочленом, который состоит из одного члена.

Многочлен стандартного вида

Рассмотрим многочлен Многочлены - определение и вычисление с примерами решения Два его члена Многочлены - определение и вычисление с примерами решения являются подобными слагаемыми, поскольку отличаются только числовыми множителями. Члены -6 и 3 не содержат переменных. Они также являются подобными слагаемыми. Подобные слагаемые многочлена называют подобными членами многочлена.

Приведем в многочлене Многочлены - определение и вычисление с примерами решения его подобные члены:

Многочлены - определение и вычисление с примерами решения

Многочлен Многочлены - определение и вычисление с примерами решения уже не имеет подобных членов, и каждый его член является одночленом стандартного вида. Такой многочлен называют многочленом стандартного вида.

Определение:

Многочлен, являющийся суммой одночленов стандартного вида, среди которых нет подобных членов, называют многочленом стандартного вида.

Среди многочленов

Многочлены - определение и вычисление с примерами решения

только первый является многочленом стандартного вида, а два другие — нет, поскольку во втором многочлене первый член не является одночленом стандартного вида, а третий многочлен имеет подобные члены.

Степень многочлена

МногочленМногочлены - определение и вычисление с примерами решения имеет стандартный вид, и его членами являются одночлены соответственно четвертой, третьей и первой степени. Наибольшую из этих степеней называют степенью данного многочлена. Итак, Многочлены - определение и вычисление с примерами решения — многочлен четвертой степени.

Определение:

Степенью многочлена стандартного вида называют наибольшую степень одночленов, образующих данный многочлен.

По этому определению Многочлены - определение и вычисление с примерами решения — многочлены первой степени; Многочлены - определение и вычисление с примерами решения — многочлен второй степени; Многочлены - определение и вычисление с примерами решения — многочлен шестой степени.

Члены многочлена можно записывать в произвольном порядке. Для многочленов стандартного вида, содержащих одну переменную, члены, как правило, записывают в порядке убывания или возрастания показателей степеней. Например:

Многочлены - определение и вычисление с примерами решения

Каждый многочлен является целым выражением. Однако не каждое целое выражение является многочленом. Например, целые выражения Многочлены - определение и вычисление с примерами решения Многочлены - определение и вычисление с примерами решения — не многочлены, поскольку они не являются суммами одночленов.

Примеры выполнения заданий:

Пример №117

Записать в стандартному виде многочлен:

Многочлены - определение и вычисление с примерами решения

Многочлены - определение и вычисление с примерами решения

Многочлены - определение и вычисление с примерами решения

Сложение и вычитание многочленов

Сложение многочленов

Сложим многочлены Многочлены - определение и вычисление с примерами решения

Многочлены - определение и вычисление с примерами решения.

Раскрыв скобки и приведя подобные слагаемые, мы записали сумму данных многочленов в виде многочлена. Итак, суммой многочленов Многочлены - определение и вычисление с примерами решения является многочлен Многочлены - определение и вычисление с примерами решения

Таким же образом находят сумму трех и более многочленов. Сумму любых многочленов всегда можно записать в виде многочлена.

Вычитание многочленов

Вычтем из многочлена Многочлены - определение и вычисление с примерами решения многочлен Многочлены - определение и вычисление с примерами решения

Многочлены - определение и вычисление с примерами решения

Раскрыв скобки и приведя подобные слагаемые, мы записали разность данных многочленов в виде многочлена. Итак, разностью многочленов Многочлены - определение и вычисление с примерами решения является многочлен Многочлены - определение и вычисление с примерами решения

Разность любых многочленов всегда можно записать в виде многочлена.

Примеры выполнения заданий:

Пример №118

Найти сумму многочленов:

Многочлены - определение и вычисление с примерами решения

Многочлены - определение и вычисление с примерами решения

Многочлены - определение и вычисление с примерами решения

Пример №119

Найти разность многочленов Многочлены - определение и вычисление с примерами решения

Решение:

Многочлены - определение и вычисление с примерами решения

Пример №120

Решить уравнение Многочлены - определение и вычисление с примерами решения

Решение:

Многочлены - определение и вычисление с примерами решения

Ответ.-1,5.

Пример №121

Доказать, что сумма трех последовательных нечетных чисел делится на 3.

Решение:

Пусть из трех последовательных нечетных чисел наименьшим является Многочлены - определение и вычисление с примерами решения где Многочлены - определение и вычисление с примерами решения — некоторое целое число. Тогда следующие нечетные числа — Многочлены - определение и вычисление с примерами решения Сумма этих трех чисел

Многочлены - определение и вычисление с примерами решения

делится на 3, поскольку имеет делитель 3.

Умножение одночлена на многочлен

Умножим одночлен Многочлены - определение и вычисление с примерами решения на многочлен Многочлены - определение и вычисление с примерами решения Используя распределительное свойство умножения, получим:

Многочлены - определение и вычисление с примерами решения

Итак, произведением одночлена Многочлены - определение и вычисление с примерами решения и многочлена Многочлены - определение и вычисление с примерами решения является многочлен Многочлены - определение и вычисление с примерами решения Чтобы найти произведение, мы умножили одночлен на каждый член многочлена и полученные результаты сложили.

Чтобы умножить одночлен на многочлен, нужно одночлен умножить на каждый член многочлена и полученные произведения сложить.

По этому правилу можно умножать и многочлен на одночлен. Например:

Многочлены - определение и вычисление с примерами решения

Произведение любого одночлена и любого многочлена всегда можно :ать в виде многочлена.

Примеры выполнения заданий:

Пример №122

Выполнить умножение:

Многочлены - определение и вычисление с примерами решения

Многочлены - определение и вычисление с примерами решения

Сокращенная запись: Многочлены - определение и вычисление с примерами решения

Многочлены - определение и вычисление с примерами решения

Сокращенная запись: Многочлены - определение и вычисление с примерами решения

Пример №123

Упростить выражение Многочлены - определение и вычисление с примерами решения

Решение:

Многочлены - определение и вычисление с примерами решения

Пример №124

Решить уравнение Многочлены - определение и вычисление с примерами решения

Решение:

Многочлены - определение и вычисление с примерами решения

Ответ. 0,5.

Умножение многочлена на многочлен

Умножим многочлен Многочлены - определение и вычисление с примерами решения на многочлен Многочлены - определение и вычисление с примерами решения Сведем умножение этих многочленов к умножению многочлена на одночлен. Для этого обозначим многочлен Многочлены - определение и вычисление с примерами решения через Многочлены - определение и вычисление с примерами решения Тогда:

Многочлены - определение и вычисление с примерами решения

Возвращаясь к замене Многочлены - определение и вычисление с примерами решения получаем:

Многочлены - определение и вычисление с примерами решения

Итак, произведением многочлена Многочлены - определение и вычисление с примерами решения и многочлена Многочлены - определение и вычисление с примерами решения является многочлен Многочлены - определение и вычисление с примерами решения

Многочлены - определение и вычисление с примерами решения

Выражение Многочлены - определение и вычисление с примерами решения мы получили бы сразу, если бы умножили Многочлены - определение и вычисление с примерами решения, потом Многочлены - определение и вычисление с примерами решения и полученные произведения сложили. Можно сказать и так: произведение Многочлены - определение и вычисление с примерами решения можно получить, если умножить каждый член многочлена Многочлены - определение и вычисление с примерами решения на каждый член многочлена Многочлены - определение и вычисление с примерами решения и полученные произведения сложить.

Приходим к такому правилу:

Чтобы умножить многочлен на многочлен, достаточно каждый член одного многочлена умножить на каждый член другого многочлена и полученные произведения сложить.

Умножим по этому правилу многочлен Многочлены - определение и вычисление с примерами решения на многочлен Многочлены - определение и вычисление с примерами решения

Многочлены - определение и вычисление с примерами решения

Выполняя умножение многочленов, промежуточные результаты можно не записывать:

Многочлены - определение и вычисление с примерами решения

В каждом из рассмотренных примеров произведение двух многочленов мы записывали в виде многочлена. Вообще, произведение любых многочленов всегда можно записать в виде многочлена.

  • Заказать решение задач по высшей математике

Примеры выполнения заданий:

Пример №125

Выполнить умножение:

Многочлены - определение и вычисление с примерами решения

Многочлены - определение и вычисление с примерами решения

б) Найдем произведение первых двух многочленов, а потом полученное произведение умножим на третий многочлен:

Многочлены - определение и вычисление с примерами решения

Пример №126

Решить уравнение Многочлены - определение и вычисление с примерами решения

Решение:

Многочлены - определение и вычисление с примерами решения

Ответ.-1,8.

Разложение многочленов на множители способом вынесения общего множителя за скобки

1. В шестом классе мы изучали разложение чисел на множители. Например, число 60 можно записать в виде произведения двух чисел 12 и 5:

Многочлены - определение и вычисление с примерами решения

Говорят, что число 60 разложили на два множителя 12 и 5.

На множители можно разложить и многочлены. Например,

Многочлены - определение и вычисление с примерами решения

Записав многочлен Многочлены - определение и вычисление с примерами решения в виде произведения Многочлены - определение и вычисление с примерами решения говорят, что многочлен Многочлены - определение и вычисление с примерами решения разложили на два множителя Многочлены - определение и вычисление с примерами решения Каждый из этих множителей — многочлен (первый многочлен состоит только из одного члена).

Разложить многочлен на множители значит представить его в виде произведения нескольких многочленов.

Сравните

Многочлены - определение и вычисление с примерами решения

2. Рассмотрим один из способов разложения многочленов на множители. Выполним умножение одночлена на многочлен:

Многочлены - определение и вычисление с примерами решения

Перепишем эти равенства в обратном порядке:

Многочлены - определение и вычисление с примерами решения

Многочлен Многочлены - определение и вычисление с примерами решения разложили на два множителя Многочлены - определение и вычисление с примерами решения Чтобы разложить многочлен Многочлены - определение и вычисление с примерами решения на множители, достаточно в его членах Многочлены - определение и вычисление с примерами решения и Многочлены - определение и вычисление с примерами решения выделить общий множитель Многочлены - определение и вычисление с примерами решения а потом на основании распределительного свойства умножения записать полученное выражение в виде произведения многочленов Многочлены - определение и вычисление с примерами решения

Такой способ разложения многочленов на множители называют способом вынесения общего множителя за скобки.

Примеры выполнения заданий:

Пример №127

Разложить на множителя многочлен 12х3у — 18х2у2.

Решение:

Сначала найдем общий числовой множитель для коэффициентов 12 и -18. Если коэффициентами являются целые числа, то в качестве общего числового множителя берут, как правило, наибольший общий делитель модулей этих коэффициентов. В нашем случае это число 6. Степени с основанием Многочлены - определение и вычисление с примерами решения входят в оба члена многочлена. Поскольку первый член содержит Многочлены - определение и вычисление с примерами решения а второй — Многочлены - определение и вычисление с примерами решения, то общим множителем для степеней с основанием Многочлены - определение и вычисление с примерами решения является Многочлены - определение и вычисление с примерами решения (за скобки выносят переменную с меньшим показателем). В члены многочлена входят соответственно множители Многочлены - определение и вычисление с примерами решения и Многочлены - определение и вычисление с примерами решения, за скобки можно вынести Многочлены - определение и вычисление с примерами решения. Таким образом, за скобки можно вынести одночлен Многочлены - определение и вычисление с примерами решения

Многочлены - определение и вычисление с примерами решения

Пример №128

Разложить на множители многочлен Многочлены - определение и вычисление с примерами решения

Решение:

Многочлены - определение и вычисление с примерами решения

Пример №129

Разложить на множители: Многочлены - определение и вычисление с примерами решения

Решение:

Данное выражение является суммой двух слагаемых, для которых общим множителем является выражение Многочлены - определение и вычисление с примерами решения Вынесем этот множитель за скобки:

Многочлены - определение и вычисление с примерами решения

Пример №130

Разложить на множители: Многочлены - определение и вычисление с примерами решения

Решение:

Слагаемые имеют множители Многочлены - определение и вычисление с примерами решения и Многочлены - определение и вычисление с примерами решения которые отличаются только знаками. В выражении Многочлены - определение и вычисление с примерами решения вынесем за скобки -1, тогда второе слагаемое будет иметь вид Многочлены - определение и вычисление с примерами решения и оба слагаемых будут иметь общий множитель Многочлены - определение и вычисление с примерами решения.

Следовательно,

Многочлены - определение и вычисление с примерами решения

Пример №131

Найти значение выражения Многочлены - определение и вычисление с примерами решения при Многочлены - определение и вычисление с примерами решения

Решение:

Разложим сначала многочлен Многочлены - определение и вычисление с примерами решения на множители:

Многочлены - определение и вычисление с примерами решения

При Многочлены - определение и вычисление с примерами решения получим:

Многочлены - определение и вычисление с примерами решения

Пример №132

Решить уравнение Многочлены - определение и вычисление с примерами решения

Решение:

Разложим левую часть уравнения на множители:

Многочлены - определение и вычисление с примерами решения

Произведение Многочлены - определение и вычисление с примерами решения равно нулю только тогда, когда хотя бы один из множителей равен нулю:

Многочлены - определение и вычисление с примерами решения

Ответ. 0; -1,25.

Разложение многочленов на множители способом группировки

Изучение этого способа разложения многочленов на множители начнем с рассмотрения примера умножения многочленов. Выполним умножение двучлена Многочлены - определение и вычисление с примерами решения на двучлен Многочлены - определение и вычисление с примерами решения следующим образом:

Многочлены - определение и вычисление с примерами решения

Выполняя преобразования в обратном порядке, многочлен Многочлены - определение и вычисление с примерами решения можно разложить на два множителя Многочлены - определение и вычисление с примерами решения

Многочлены - определение и вычисление с примерами решения

Проанализируем последние преобразования. Имеем многочлен, члены которого можно группировать так, чтобы каждая группа имела общий множитель: для группы Многочлены - определение и вычисление с примерами решения — общий множитель Многочлены - определение и вычисление с примерами решения для группы Многочлены - определение и вычисление с примерами решения — общий множитель Многочлены - определение и вычисление с примерами решения В каждой группе выносим общий множитель за скобки. В образованной разности Многочлены - определение и вычисление с примерами решения имеем общий множитель Многочлены - определение и вычисление с примерами решения Выносим его за скобки и получаем Многочлены - определение и вычисление с примерами решения

Рассмотренный способ разложения многочленов на множители называют способом группировки. При применении этого способа нужно образовывать такие группы членов, чтобы они имели общий множитель. После вынесения в каждой группе общего множителя за скобки должен образоваться общин множитель для всех групп, который также нужно вынести за скобки.

Многочлен Многочлены - определение и вычисление с примерами решения можно разложить на множители, группируя его члены иначе:

Многочлены - определение и вычисление с примерами решения

Сравните

Многочлены - определение и вычисление с примерами решения

Примеры выполнения заданий:

Пример №133

Разложить на множители многочлен Многочлены - определение и вычисление с примерами решения

Решение:

Многочлены - определение и вычисление с примерами решения

Пример №134

Разложить на множители трехчлен Многочлены - определение и вычисление с примерами решения

Решение:

Представим второй член Многочлены - определение и вычисление с примерами решения в виде Многочлены - определение и вычисление с примерами решения Тогда:

Многочлены - определение и вычисление с примерами решения

  • Формулы сокращенного умножения
  • Разложение многочленов на множители
  • Системы линейных уравнений с двумя переменными
  • Рациональные выражения
  • Выражения и уравнения 
  • Линейное уравнение с одной переменной
  • Целые выражения
  • Одночлены

Степень многочлена




Что такое степень многочлена? Как определить степень одночлена?

Определение.

Степенью многочлена  называют наибольшую из степеней входящих в него одночленов.

Обычно, прежде чем искать степень многочлена, его приводят к многочлену стандартного вида, хотя, вообще говоря, это не обязательно.

Итак, чтобы найти степень многочлена:

1) Можно привести многочлен к стандартному виду.

2) Найти степень всех входящих в него одночленов — членов многочлена.

3) Выбрать наибольшую из этих степеней.

Примеры.

Найти степень многочлена:

    [1)7{x^2}y - 11xy + 4y - 9;]

    [2)10{x^2}{y^3} + 32{x^4} - 12{x^2}{y^2};]

    [3)14a{a^2} - 3{a^3}b + 8ab cdot 2{b^2} - 2{a^3}b;]

    [4)1,7x + 2y - 12;]

    [5)20.]

Решение:

    [1)7{x^2}y - 11xy + 4y - 9;]

Данный многочлен записан в стандартном виде. Степень первого члена многочлена — одночлена 7x²y — равна 2+1=3. Степень второго члена многочлена — -11xy — равна 1+1=2. Степень третьего члена многочлена — 4y — равна 1. -9 — одночлен нулевой степени.

Наибольшая из степеней одночленов — 3. Таким образом, это — многочлен третьей степени.

    [2)10{x^2}{y^3} + 32{x^4} - 12{x^2}{y^2};]

Здесь 10x²y³ — одночлен 5-й степени, 32x⁴ — 4-й, -12x²y² — также одночлен 4-й степени. Наибольшая из степеней одночленов — 5. Следовательно, это — многочлен 5-й степени.

3) Сначала приведем данный многочлен к стандартному виду:

    [14a{a^2} - 3{a^3}b + 8ab cdot 2{b^2} - 2{a^3}b = ]

    [ = 14{a^3}underline { - 3{a^3}b} + 16a{b^3}underline { - 2{a^3}b} = ]

    [ = 14{a^3} - 5{a^3}b + 16a{b^3}.]

14a³ — одночлен 3-й степени, -5a³b — 4-й, 16ab³ — также одночлен 4-й степени. Наибольшая из степеней входящих в многочлен одночленов — 4. Таким образом, данный многочлен имеет четвертую степень.

Хотя в алгебре принято упрощать многочлен, приводя его к стандартному виду, степень можно искать и для многочлена, не записанного в стандартном виде.

    [4)1,7x + 2y - 12;]

1,7x — одночлен 1-й степени, 2y — одночлен 1-й степени, -12 — одночлен 0-й степени. Значит,  это — многочлен первой степени.

    [5)20]

Одночлен считают многочленом, состоящим из одного члена. 20 — одночлен 0-й степени. Следовательно, 20  является многочленом нулевой степени.

Понравилась статья? Поделить с друзьями:
  • Как пишется столетие цифрами
  • Как пишется степана разина улица
  • Как пишется столбовая дворянка
  • Как пишется стендов 2 на английском
  • Как пишется стол во множественном числе