Как пишется теорема косинусов

Содержание:

  • Формула теоремы косинусов
  • Следствие из теоремы косинусов
  • Примеры решения задач

Формула теоремы косинусов

Теорема

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное
произведение этих сторон на косинус угла между ними.

То есть для плоского треугольника (рис. 1) со сторонами $a$, $b$ и $c$ и углом $alpha$, противолежащим стороне $a$,
справедливо соотношение:

$a^{2}=b^{2}+c^{2}-2 b c cos alpha$

Теорема косинусов является обобщением теоремы Пифагора.
Утверждения, обобщающие теорему Пифагора и эквивалентные теореме косинусов,
были сформулированы отдельно для случаев острого и тупого угла в 12 и 13 предложениях II книги «Начал» древнегреческого математика Евклида
(ок. 300 г. до н. э.). Утверждения, эквивалентные теореме косинусов для сферического треугольника, применялись в сочинениях математиков
стран Средней Азии. Теорему косинусов для сферического треугольника в привычном нам виде сформулировал выдающийся немецкий астролог,
астроном и математик Региомонтан (1436 — 1476), назвав её «теоремой Альбатегния» (по имени выдающегося средневекового астронома и
математика Абу Абдаллах Мухаммад ибн Джабир ибн Синан ал-Баттани (858 — 929).

В Европе теорему косинусов популяризовал французский математик Франсуа Виет (1540 — 1603) в 16 столетии. В начале 19 века её
стали записывать в принятых по сей день алгебраических обозначениях.

Следствие из теоремы косинусов

  1. Теорема косинусов может быть использована для нахождения косинуса угла треугольника (рис. 1):

    $$cos alpha=frac{b^{2}+c^{2}-a^{2}}{2 b c}$$

  2. Если $b^{2}+c^{2}-a^{2}>0$, то угол $alpha$ — острый;

    Если $b^{2}+c^{2}-a^{2}=0$, то угол $alpha$ — прямой;

    Если $b^{2}+c^{2}-a^{2} lt 0$, то угол $alpha$ — тупой.

Примеры решения задач

Пример

Задание. В треугольнике $ABC AC=3, BC=5$ и $AB = 6 .$ Найти угол, противолежащий стороне $AB$

Решение. Согласно следствию из теоремы косинусов, имеем:

$$cos angle A C B=frac{A C^{2}+B C^{2}-A B^{2}}{2 cdot A C cdot B C}=frac{3^{2}+5^{2}-6^{2}}{2 cdot 3 cdot 5}=$$

$$=frac{9+25-36}{30}=-frac{2}{30}=-frac{1}{15}$$

Тогда

$$angle A C B=arccos left(-frac{1}{15}right)$$

Ответ. $angle A C B=arccos left(-frac{1}{15}right)$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Задан треугольник
$ABC$, длины сторон которого $AC=17, BC=14, angle ACB=60^{circ}$.
Найти длину третьей стороны рассматриваемого треугольника.

Решение. Согласно теореме косинусов

$$A B^{2}=A C^{2}+B C^{2}-2 cdot A C cdot B C cdot cos angle A C B=$$

$$=17^{2}+14^{2}-2 cdot 17 cdot 14 cdot cos 60^{circ}=289+196-238=24$$

Тогда

$$A B=sqrt{247}$$

Ответ. $A B=sqrt{247}$

Теорема косинусов отлично помогает в решении треугольников. Решение треугольника – это нахождение всех его сторон и углов. Но если нам даны только стороны треугольника, как определить углы в нем? Вот тогда и приходит на помощь теорема косинусов. Это общий случай теоремы Пифагора, подходящий для треугольника с любым углом, не только с углом 900.

Теорема и доказательство

Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.

Доказательство теоремы косинусов

Докажем теорему. Для этого нарисуем треугольник ABC и докажем, что:

    [BC^2=AB^2+AC^2-2AB cdot AC cdot cos A eqno      (1)]

Треугольник АВС к теореме косинусов

Если рассматривать стороны треугольника, как векторы, то будет справедливо равенство:

overrightarrow{BC}=overrightarrow{AC}-overrightarrow{AB}.

В теореме BC в квадрате, значит возведем векторное равенство в квадрат, получим:

    [overrightarrow{BC}^2=overrightarrow{AB}^2+overrightarrow{AC}^2-2overrightarrow{AB}cdot overrightarrow{AC} eqno  (2)]

Так как, overrightarrow{BC}^2={BC}^2, overrightarrow{AC}={AC}^2, а скалярное произведение векторов равно произведению их модулей на косинус угла между ними, то есть overrightarrow{AB}cdot overrightarrow{AC}={AB}cdot {AC} cdot cos A.

Подставим все в формулу (2):

BC^2=AB^2+AC^2-2AB cdot AC cdot cos A.

Что и требовалось доказать.

Следствие теоремы косинусов

Проведем высоты CD:

Треугольник АВС к следствию теоремы косинусов

Обратим внимание, что AC cdot cos A = AD. То есть AD – это проекция стороны AC на сторону AB треугольника ABC. Если угол А острый, то AC cdot cos A >0, если угол А тупой, то косинус угла А будет отрицательным и AC cdot cos A <0. То есть из теоремы косинусов вытекает важное следствие:

квадрат стороны треугольника равен сумме квадратов двух других сторон “pm” удвоенное произведение одной из них на проекцию другой на эту сторону. Знак + надо брать, если угол тупой, а знак -, если угол острый.

Задачи на теорему косинусов

Задача 1

Найдите BC, если дано: angle B = 60^{circ}AB=8, AC=4sqrt 7.

Задача на теорему косинусов

Решение: Так как нам известен угол между сторонами AB и BC и известна сторона AC – мы сможем найти сторону ВС,  если воспользуемся теоремой косинусов.

Из теоремы косинусов AC^2={AB}^2+{BC}^2-2AB cdot {BC} cos {angle B} выразим сторону BC.

Получим:

{BC}^2-2AB cdot {BC} cos {angle B}-AC^2+{AB}^2 = 0

Обозначим {BC}=x

Тогда

x^2-2AB cdot  cos {angle B} cdot x-AC^2+{AB}^2=0

Получаем квадратное уравнение. Подставим в него значения и решим:

x^2-2 cdot 8 cdot frac{1}{2} x-{(4 sqrt 7)}^2+8^2=0

x^2-8x-112+64=0

x^2-8x-48=0

Находим дискриминант:

D=b^2-4ac=64-4cdot(-48)=64+192=256.

Тогда x_1=frac{8+16}{2}=frac{24}{2}=12.

x_2=frac{8-16}{2}=frac{-8}{2}=-4 – не может быть длиной стороны треугольника.

Ответ: 12.

Задача 2

В треугольника ABC AC=BC, angle C=120^{circ}, AB=6sqrt{3}. Найдите AC

Решение: Нарисуем треугольник ABC. Это равнобедренный треугольник.

Треугольник к задаче на теорему косинусов 2

Запишем теорему косинусов для сторону AB так как нам дан угол между двумя другими сторонами:

    [AB^2={AC}^2+{BC}^2-2AC cdot {BC} cos {angle 120^{circ}} eqno    (1)]

.

Так как AC=BC, то из формулы (1), получим:

AB^2=2{AC}^2-2{AC}^2 cdot cos {angle 120^{circ}}

Сделаем замену: AC=x:

AB^2=2{x}^2-2{x}^2 cdot cos {angle 120^{circ}},

перенесем {AB}^2 в правую часть равенства и получим квадратное уравнение:

2{x}^2-2{x}^2 cdot cos {angle 120^{circ}}-{AB}^2=0,

Подставим значения:

2{x}^2-2{x}^2 cdot cos {angle 120^{circ}}-{(6sqrt{3})}^2=0

cos {angle 120^{circ}}=-frac{1}{2}

2{x}^2+{x}^2-108=0

3{x}^2=108

{x}^2=36

x=sqrt{36}

x=6

Так как x=AC, значит, AC=6.

Ответ: 6

Задача 3

Решите треугольник ABC, если известно, что angle A=30^{circ}, AB=4, angle C=45^{circ}.

К задаче 3 по теореме косинусов

Решение: Решить треугольник – это значит, найти все его стороны и все углы. Нам два угла даны, значит, зная, что сумма всех углов в треугольнике равна 180^{circ} получим:

angle B = 180^{circ}-30^{circ}-45^{circ}=105^{circ}.

Обозначим неизвестные стороны треугольника: AC=x,   BC=y.

Выразим сторону треугольник AB по теореме косинусов:

    [AB^2={x}^2+y^2-2{xy} cdot cos {45^{circ}}eqno (1)]

Выразим сторону треугольника BC=y по теореме косинусов:

y^2={x}^2+{AB}^2-2{x}cdot{AB} cdot cos {30^{circ}}

или

    [y^2={x}^2+16-8{x}cdot cos {30^{circ}} eqno   (2)]

Решим уравнения (1) и (2) совместно, записав их в систему уравнений:

    [left{ begin{aligned} AB^2={x}^2+y^2-2{xy} cdot cos {45^{circ}}\ y^2={x}^2+16-8{x}cdot cos {30^{circ}}.\ end{aligned} right.]

    [left{ begin{aligned} 16={x}^2+y^2-{xy} cdot sqrt{2}\ y^2={x}^2+16-4{x}cdot sqrt{3}.\ end{aligned} right.]

Преобразуем второе уравнение системы:

    [left{ begin{aligned} 16={x}^2+y^2-{xy} cdot sqrt{2}\ -16={x}^2-y^2-4{x}cdot sqrt{3}.\ end{aligned} right.]

Сложим первое и второе уравнения системы и запишем получившееся уравнение вместо второго уравнения, получим:

    [left{ begin{aligned} 16={x}^2+y^2-{xy} cdot sqrt{2}\ 0=2{x}^2-xy sqrt{2}-4{x}cdot sqrt{3}.\ end{aligned} right.]

Из второго уравнения выразим y:

xy sqrt{2}=2x^2-4x sqrt{3}

y=frac{2x^2-4x sqrt{3}}{x sqrt{2}}

y=frac{2x-4sqrt{3}}{sqrt{2}}

Итак, мы выразили y из второго уравнения системы, теперь возьмем и подставим его в первое уравнение и сделаем необходимые преобразования.

16=x^2+(frac{2x-4sqrt{3}}{sqrt{2}})^2-x sqrt{2}(frac{2x-4sqrt{3}}{sqrt{2}}), раскрываем скобки и умножим левую и правую части уравнения на 2:

32=2x^2+4x^2-16x sqrt{3}+16 cdot 3-2x(2x-4 sqrt{3})

2x^2-8x sqrt{3}+48-32=0

2x^2-8x sqrt{3}+16=0

Разделим левую и правую части уравнения на 2:

x^2-4x sqrt{3}+8=0.

Получили квадратное уравнение. Решим его.

Находим дискриминант:

D=b^2-4ac=(4 sqrt{3})^2-4 cdot 8 cdot 1=16 cdot 3 - 32=48-32=16

Тогда корни уравнения:

x_1=frac{-b-sqrt{D}}{2a}=frac{4 sqrt{3}-4}{2}=2 sqrt{3}-2

x_2=frac{-b+sqrt{D}}{2a}=frac{4 sqrt{3}+4}{2}=2 sqrt{3}+2.

Оба значения подходят – они положительны. Находим, y:

y_1= frac{2(2 sqrt{3}-2)-4 sqrt{3}}{sqrt{2}}=frac{-4}{sqrt{2}} – отрицательное значение нам не подходит.

y_2= frac{2(2 sqrt{3}+2)-4 sqrt{3}}{sqrt{2}}=frac{4}{sqrt{2}}=2 sqrt{2}.

Таким образом, получаем следующие значения x=2 sqrt{3}+2, y=2 sqrt{2}.

Вы можете самостоятельно сделать проверку и убедиться в том, что данные значения верны.

Ответ: AC=2 sqrt{3}+2BC=2 sqrt{2}.

Теорема косинусов для треугольника очень помогает в решении геометрических задач, однако некоторые задачи усложняются, если не знать еще одну теорему – синусов. Например, третью задачу мы могли решить гораздо проще – используя теорему синусов, с помощью которой мы бы довольно быстро получили тот же результат для y. Однако, с ней мы бы получили лишь приближенное значение x. Теорема косинусов дает нам точный результат. Однако, в дальнейшем, когда вы выучите две теоремы – рекомендуем решать задачи, используя их обе.

Для нахождения элементов в произвольном треугольнике используется теорема синусов или теорема косинусов.

4cepure.JPG

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов: 

asinA=bsinB=csinC

(в решении задачи одновременно пишутся две части, они образуют пропорцию).

Теорема синусов используется для вычисления:

  • неизвестных сторон треугольника, если даны два угла и одна сторона;

  • неизвестных углов треугольника, если даны две стороны и один прилежащий угол.

Так как один из углов треугольника может быть тупым, значение синуса тупого угла находится по формуле приведения

sin180°−α=sinα

.

Наиболее часто используемые тупые углы:

sin120°=sin180°−60°=sin60°=32;sin150°=sin180°−30°=sin30°=12;sin135°=sin180°−45°=sin45°=22.

Радиус описанной окружности

Треуг2.jpg

asinA=bsinB=csinC=2R

, где (R) — радиус описанной окружности.

Выразив радиус, получаем

R=a2sinA

, или

R=b2sinB

, или

R=c2sinC

.

Для вычисления элементов прямоугольного треугольника достаточно (2) данных величин (две стороны или сторона и угол).

Для вычисления элементов произвольного треугольника необходимо хотя бы (3) данных величины.

4cepure.JPG

Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

Также теорема исполняется для любой стороны треугольника:

Теорема косинусов используется для вычисления:

  • неизвестной стороны треугольника, если даны две стороны и угол между ними;

  • вычисления косинуса неизвестного угла треугольника, если даны все стороны треугольника.

Значение косинуса тупого угла находится по формуле приведения

cos180°−α=−cosα

.

Наиболее часто используемые тупые углы:

cos120°=cos180°−60°=−cos60°=−12;cos150°=cos180°−30°=−cos30°=−32;cos135°=cos180°−45°=−cos45°=−22. 

Если необходимо найти приблизительное значение синуса или косинуса другого угла или вычислить угол по найденному синусу или косинусу, то используется таблица или калькулятор.

Источники:

Рис. 1-3. Треугольник, окружность, © ЯКласс.

Морфемный разбор слова:

Однокоренные слова к слову:

Теорема косинусов и синусов

Формулировка и доказательство теоремы косинусов

Для начала вспомним теорему Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Формула Теоремы Пифагора:

a 2 > + b 2 > = c 2 >, где a, b — катеты, с — гипотенуза.

Теорема косинусов звучит так: квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Формула теоремы косинусов:

В доказательстве теоремы косинусов используем формулу длины отрезка в координатах. Рассмотрим данную формулу:

В доказательстве теоремы косинусов BC — это сторона треугольника АВС, которая обозначена буквой а. Введем удобную систему координат и найдем координаты нужных нам точек. У точки В координаты (с; 0).
Координаты точки С — (b cos α; b sin α) при α ∈ (0° ; 180°).

cos 2 α + sin 2 α = 1основное тригонометрическое тождество.

Что и требовалось доказать.

Совет: чтобы быстрее разобраться в сложной теме, запишитесь на онлайн-курсы по математике для детей и подростков.

С помощью теоремы косинусов можно найти косинус угла треугольника:


Сформулируем еще одно доказательство теоремы косинусов.

Пусть нам дан треугольник ABC, в котором из вершины C на сторону AB опустили высоту CD. Это значит:

Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:

Приравниваем правые части уравнений:

Если один из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определим стороны b и c:

Формулировка теоремы для каждой из сторон треугольника

Теорема косинусов справедлива для всех сторон треугольника, то есть:

Теорема косинусов может быть использована для любого вида треугольника.

Косинусы углов треугольника

Теорема косинусов позволяет найти как косинус, так и угол треугольника. Найдём косинусы углов:

Определение угла с помощью косинуса

А теперь обратим внимание на углы.

Как мы уже знаем, косинус угла из промежутка (0°; 180°) определяет угол (в отличие от его синуса).

Пусть нам дана единичная полуокружность. Если нам задан cos α, то нам задана точка на верхней полуокружности и задан угол α. Следовательно, cos α однозначно определяет точку М(cos α; sin α), и однозначно определяется угол ∠AOM.

Рассмотрение пределов изменения cos α и sin α

Рассмотрим пределы изменения синуса и косинуса α. Вспомним, что если α — угол треугольника, то он лежит в пределах от 0° до 180°.

Примеры решения задач

При помощи теоремы косинусов можно решать задачки по геометрии. Рассмотрим интересные случаи.

Пример 1. Дан треугольник АВС. Найти длину СМ.

∠C = 90°, АВ = 9, ВС = 3, AM/MB = 1/2, где М — точка на гипотенузе АВ.

Источник

Теорема косинусов

Теорема косинусов — в любом треугольнике квадрат одной стороны равен сумме квадратов двух других сторон минус удвоенное произведение этих двух сторон на косинус угла между ними.

Например:

Одна сторона треугольника равна 12 см, другая — 8 см, между ними образовался угол 120º. Найдите длину третьей стороны.

Решение по формуле a² = b² + c² – 2b.c.cosα:

Длина третьей стороны — примерно 17,436 см.

Следствия

Следствие косинуса угла треугольника

При помощи теоремы косинусов можно найти косинус угла треугольника.

Используйте теорему косинусов, чтобы найти угол β.

Решение:

Будем использовать эту версию формулы:

cos β = (6² + 8² − 7²) / 2×6×8

Следствие верхней части формулы cos α

Чтобы узнать, если угол α острый, прямой или тупой, нужно вычислить b²+c²−a² (это верхняя часть формулы для cos α):

Доказательство теоремы косинусов

Нужно доказать, что c² = a² + b² − 2a.b.cos C

1. Из определения косинуса известно, что в прямоугольном треугольнике BCD: cos C = CD/a CD = a.cos C.

2. Вычитаем это из стороны b, так мы получим DA:

3. Мы знаем из определения синуса, что в том же треугольнике BCD:

sin C = BD/a BD = a.sinC.

4. Применяем теорему Пифагора в треугольнике ADB: c² = BD² + DA²

5. Заменим BD и DA из пунктов 2) и 3), получится выражение: c²= (a. sin C)²+(b−a.cos C)²

6. Раскрываем скобки: c² = a² sin ²C + b² − 2a.b.cosC + a².cos²C

6.1. Поменяем их местами (a²cos²C поставим на второе место): c² = a² sin ²C + a²cos²C + b² − 2a.b.cosC

7. Выносим за скобки «a²»: c² = a² (sin²C+cos²C) + b² − 2a.b.cosC

8. В скобках получилось основное тригонометрическим тождество (sin²α + cos²α = 1), значит его можно сократить т. к. умножение на единицу ничего не меняет, получилось: c² = a² + b² − 2a.b.cos C

Теорема косинусов для равнобедренного треугольника

В равнобедренном треугольнике:

Используем формулу теоремы косинусов

Подставляем все известные:

x² = 8² + 8² – 2×8×8×cos140º

x² = 64 + 64 – 128 × (-0,766)

Теорема синусов

Теорема синусов гласит, что отношение стороны треугольника к синусу угла, противолежащего данной стороне, одинаково для всех сторон и углов в данном треугольнике:

Источник

Теорема косинусов (ЕГЭ 2022)

Что же такое теорема косинусов?

Представь себе, это такая… теорема Пифагора для произвольного треугольника. Она однажды тебя спасёт!

Дальше смотри рисунки и ты все поймешь. Один рисунок лучше тысячи слов ?

Разберёшься в ней – будь уверен, что любая задача с треугольником окажется тебе под силу!

Теорема косинусов — коротко о главном

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

Почему теорема косинусов это… теорема Пифагора

И причем тут теорема Пифагора? Сейчас поясню.

Согласно теореме Пифагора в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов его катетов.

А что будет, если угол ( displaystyle angle C), скажем, острый?

Вроде ясно, что величина ( displaystyle <^<2>>) должна быть меньше, чем ( displaystyle <^<2>>+<^<2>>). Но вот на сколько меньше?

А если угол ( displaystyle angle C) – тупой?

Ну, тогда величина ( displaystyle <^<2>>) больше, чем ( displaystyle <^<2>>+<^<2>>)?

Но, опять же, на сколько? И как это связано с величиной ( displaystyle angle C)?

Обрати внимание на вот эту добавку к теорему Пифагора: ( displaystyle «-2abcos gamma »).

Вот она и «адаптирует» теорему Пифагора под острые и тупые углы треугольника. Сейчас мы докажем теорему косинусов и ты увидишь в теореме косинусов теорему Пифагора своими глазами.

Доказательство теоремы косинусов

Итак, для всякого (и остроугольного, и тупоугольного и даже прямоугольного!) треугольника верна теорема косинусов.

Теорема косинусов гласит: квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

Рассмотрим три случая:

И убедимся, что для всех трех случаев теорема косинусов работает!

Угол С острый

( displaystyle angle C

Он прямоугольный, можно пользоваться теоремой Пифагора:

( displaystyle AH) можно выразить из треугольника (прямоугольного!) ( displaystyle AHC).

( displaystyle AH=bsin gamma )

А вот ( displaystyle BH=a-CH=a-bcos gamma ) (снова из ( displaystyle Delta AHC) ).

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

Угол С тупой

Начинаем точно также: опускаем высоту из точки ( displaystyle A).

А теперь, внимание, отличие!

( displaystyle BH=a+bcos left( <<180>^<circ >>-gamma right)).

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

Угол С прямой

Но тогда ( displaystyle cos gamma =0) и теорема косинусов просто превращается в теорему Пифагора:

В каких же задачах бывает полезна теорема косинусов?

Ну, например, если у тебя даны две стороны треугольника и угол между ними, то ты прямо сразу можешь найти третью сторону.

Или, если тебе даны все три стороны, то ты тут же найдешь косинус любого угла по формуле:

И даже, если тебе даны две стороны и угол НЕ между ними, то третью сторону тоже можно найти, решая квадратное уравнение. Правда, в этом случае получается иногда два ответа и нужно соображать, какой же из них выбрать, или оставить оба.

Попробуй применять и не бояться – теорема косинусов почти также легка в обращении, как и теорема Пифагора.

И приходи к нам на бесплатные вебинары и занятия ( о них ниже).

Бонус: Вебинар на решение задач по теореме косинусов и синусов

Теорема косинусов (и синусов) — универсальный инструмент при решении треугольников — это теоремы косинусов и синусов.

А как мы уже знаем, почти любая задача в планиметрии сводится именно к треугольникам.

Этот вебинар из нашего курса подготовки к ЕГЭ по математике (о нем ниже). Вы выучите сами теоремы и научитесь применять их при решении задач первой части.

Берите ручку и бумагу и решайте вместе с Алексеем Шевчуком.

Источник

Теорема косинусов. Доказательство

Теорема 1 (теорема косинусов). Квадрат любой стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

То есть для любого треугольника ABC со сторонами a, b, c справедливо равенство:

Доказательство. Пусть задан треугольник ABC. Проведем высоту h из вершины C на сторону c=AB (Рис.1).

Теорема Пифагора для прямоугольных треугольников ADC и CDB имеет вид:

Учитывая, что: , получим:

Доказательство (по векторам). Пусть задан треугольник ABC. Представим вектор AC в виде суммы векторов AB и BC (Рис.2).

где − скалярное произведение векторов и .

Используя дистрибутивность скалярного произведения векторов относительно сложения и коммутативность скалярного произведения векторов уравнение (5) можно преобразовать так:

Примеры и решения

Задание 1. В треугольнике ABC, a=16, b=10, угол между ними . Найти сторону c.

Решение. Из теоремы косинусов, имеем:

Подставляя значения сторон a, b и угла C в (6), получим:

Ответ: .

Задание 2. В треугольнике ABC, a=8, b=14, c=12. Найти углы α, β, γ (Рис.3).

Решение. Из теоремы косинусов, имеем:

Подставляя значения a, b, c в (7), (8), (9), получим:

Ответ: , , .

Источник

Теорема косинусов

Теорема косинусов — в любом треугольнике квадрат одной стороны равен сумме квадратов двух других сторон минус удвоенное произведение этих двух сторон на косинус угла между ними.

Например:

Одна сторона треугольника равна 12 см, другая — 8 см, между ними образовался угол 120º. Найдите длину третьей стороны.

Решение по формуле a² = b² + c² – 2b.c.cosα:

Длина третьей стороны — примерно 17,436 см.

Следствия

Следствие косинуса угла треугольника

При помощи теоремы косинусов можно найти косинус угла треугольника.

Используйте теорему косинусов, чтобы найти угол β.

Решение:

Будем использовать эту версию формулы:

cos β = (6² + 8² − 7²) / 2×6×8

Следствие верхней части формулы cos α

Чтобы узнать, если угол α острый, прямой или тупой, нужно вычислить b²+c²−a² (это верхняя часть формулы для cos α):

Доказательство теоремы косинусов

Нужно доказать, что c² = a² + b² − 2a.b.cos C

1. Из определения косинуса известно, что в прямоугольном треугольнике BCD: cos C = CD/a CD = a.cos C.

2. Вычитаем это из стороны b, так мы получим DA:

3. Мы знаем из определения синуса, что в том же треугольнике BCD:

sin C = BD/a BD = a.sinC.

4. Применяем теорему Пифагора в треугольнике ADB: c² = BD² + DA²

5. Заменим BD и DA из пунктов 2) и 3), получится выражение: c²= (a. sin C)²+(b−a.cos C)²

6. Раскрываем скобки: c² = a² sin ²C + b² − 2a.b.cosC + a².cos²C

6.1. Поменяем их местами (a²cos²C поставим на второе место): c² = a² sin ²C + a²cos²C + b² − 2a.b.cosC

7. Выносим за скобки «a²»: c² = a² (sin²C+cos²C) + b² − 2a.b.cosC

8. В скобках получилось основное тригонометрическим тождество (sin²α + cos²α = 1), значит его можно сократить т. к. умножение на единицу ничего не меняет, получилось: c² = a² + b² − 2a.b.cos C

Теорема косинусов для равнобедренного треугольника

В равнобедренном треугольнике:

Используем формулу теоремы косинусов

Подставляем все известные:

x² = 8² + 8² – 2×8×8×cos140º

x² = 64 + 64 – 128 × (-0,766)

Теорема синусов

Теорема синусов гласит, что отношение стороны треугольника к синусу угла, противолежащего данной стороне, одинаково для всех сторон и углов в данном треугольнике:

Источник

Ссылки на статьи о тригонометрии
Тригонометрия
Sinus und Kosinus am Einheitskreis 1.svg
  • Обзор тригонометрии (англ.)
  • История
  • Использование (англ.)
  • Функции (Обратные)
  • Обобщённая тригонометрия (англ.)
Справочник
  • Тождества
  • Точные константы (англ.)
  • Таблицы
  • Единичная окружность
Законы и теоремы
  • Теорема синусов
  • Теорема Пифагора
  • Теорема косинусов
  • Теорема тангенсов
  • Теорема котангенсов
  • Решение треугольников
Математический анализ
  • Тригонометрическая подстановка (англ.)
  • Интегралы (обратные функции)
  • Производные (англ.)

пор

Стандартные обозначения

Стандартные обозначения углов и сторон треугольника

Теорема косинусов — теорема евклидовой геометрии, обобщающая теорему Пифагора на произвольные плоские треугольники.

Содержание

  • 1 Формулировка
    • 1.1 Доказательства
  • 2 Следствия
    • 2.1 Для других углов
  • 3 История
  • 4 Вариации и обобщения
    • 4.1 Для евклидовых нормированных пространств
    • 4.2 Для четырёхугольников
    • 4.3 Косвенный аналог для четырёхугольника
    • 4.4 Симплексы
  • 5 См. также
  • 6 Литература
  • 7 Примечания

Формулировка

Для плоского треугольника со сторонами a,b,c и углом alpha , противолежащим стороне a,
справедливо соотношение:

{displaystyle a^{2}=b^{2}+c^{2}-2cdot bcdot ccdot cos alpha }.

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними[1]

Доказательства

Классическое доказательство

Theorem of cosin.svg

Рассмотрим треугольник ABC. Из вершины C на сторону AB опущена высота CD. Из треугольника ADC следует:

AD=bcos alpha ,
DB=c-bcos alpha

Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:

h^{2}=b^{2}-(bcos alpha )^{2}qquad qquad qquad (1)
h^{2}=a^{2}-(c-bcos alpha )^{2}qquad qquad (2)

Приравниваем правые части уравнений (1) и (2) и:

b^{2}-(bcos alpha )^{2}=a^{2}-(c-bcos alpha )^{2}

или

a^{2}=b^{2}+c^{2}-2bccos alpha .

Случай, когда один из углов при основании тупой (и высота падает на продолжение основания), полностью аналогичен рассмотренному.

Выражения для сторон b и c:

b^{2}=a^{2}+c^{2}-2accos beta
c^{2}=a^{2}+b^{2}-2abcos gamma .

Доказательство через координаты

Одним из доказательств является доказательство её в координатной плоскости.

Внесём в координатную плоскость произвольный треугольник ABC так, чтобы точка А совпала с началом координат, а прямая АВ лежала на прямой ОХ. Введём обозначения AB=c,AC=b,CB=a, a угол CAB=α(пока будем считать что α≠90°).
Тогда точка A имеет координаты (0;0), точка B(c;0). Через функцию sin и cos, а также сторону АС=b выведем координаты точки С. С(b×cosα;b×sinα).
Координаты точки С остаются неизменными при тупом и остром угле α.
Зная координаты С и B, а также зная, что CB=a, найдя длину отрезка, мы можем составить равенство:
a^{2}=(bcos {a}-c)^{2}+b^{2}sin ^{2}{a}
a^{2}=b^{2}cos ^{2}{a}-2bccos {a}+c^{2}+b^{2}sin ^{2}{a}
a^{2}=b^{2}(cos ^{2}{a}+sin ^{2}{a})+c^{2}-2bccos {a}
Так как
cos ^{2}{a}+sin ^{2}{a}=1 (основное тригонометрическое тождество), то
a^{2}=b^{2}+c^{2}-2bccos {a}
Теорема доказана.
Стоит отметить, что для прямого угла α, теорема также работает cos90°=0 и a²=b²+с² — известная всем теорема Пифагора. Но так как в основе координатного метода лежит теорема Пифагора, то доказательство её через теорему косинусов не совсем правильно.

Доказательство через вектора

Ниже подразумеваются операции над векторами, а не длинами отрезков
{displaystyle AC=AB+BC=>BC=AC-AB=>BC^{2}=AC^{2}+AB^{2}-2cdot ACcdot AB}

Так как скалярное произведение векторов равно произведению их модулей (длин) на косинус угла между ними, последнее выражение можно переписать:
{displaystyle a^{2}=b^{2}+c^{2}-2cdot bcdot ccdot cos alpha }
где a, b, c — длины соответствующих векторов

Следствия

  • Теорема косинусов может быть использована для нахождения косинуса угла треугольника
    cos {alpha }={frac {b^{2}+c^{2}-a^{2}}{2bc}}
В частности,
  • Теорема косинусов может быть записана также в следующем виде[2]:
a^{2}=(b+c)^{2}-4cdot bcdot ccdot cos ^{2}(alpha /2),
a^{2}=(b-c)^{2}+4cdot bcdot ccdot sin ^{2}(alpha /2).

Доказательство

Последние две формулы мгновенно следуют из основной формулы теоремы косинусов (см. в рамке выше), если в правой её части воспользоваться формулами разложения квадрата суммы (для второй формулы — квадрата разности) двух членов на квадратный трехчлен, являющийся полным квадратом. Для получения окончательного результата (двух формул выше) в правой части надо еще воспользоваться известными тригонометрическими формулами:

1+cos alpha =2cdot cos ^{2}(alpha /2),
1-cos alpha =2cdot sin ^{2}(alpha /2).

Кстати, вторая формула формально не содержит косинусов, но её все равно именуют теоремой косинусов.

Для других углов

Теорема косинусов для двух других углов имеет вид:

{displaystyle c^{2} =a^{2}+b^{2}-2abcos gamma }
{displaystyle b^{2} =a^{2}+c^{2}-2accos beta }

Из этих и из основной формулы могут быть выражены углы:

{displaystyle alpha =arccos left({frac {b^{2}+c^{2}-a^{2}}{2bc}}right)}
{displaystyle beta =arccos left({frac {a^{2}+c^{2}-b^{2}}{2ac}}right)}
{displaystyle gamma =arccos left({frac {a^{2}+b^{2}-c^{2}}{2ab}}right)}

История

Утверждения, обобщающие теорему Пифагора и эквивалентные теореме косинусов, были сформулированы отдельно для случаев острого и тупого угла в 12 и 13 предложениях II книги «Начал» Евклида.

Утверждения, эквивалентные теореме косинусов для сферического треугольника, применялись в сочинениях ал-Баттани.[3]:105
Теорему косинусов для сферического треугольника в привычном нам виде сформулировал Региомонтан, назвав её «теоремой Альбатегния» по имени ал-Баттани.

В Европе теорему косинусов популяризовал Франсуа Виет в XVI столетии. В начале XIX столетия её стали записывать в принятых по сей день алгебраических обозначениях.

Вариации и обобщения

  • Теоремы косинусов (сферическая геометрия) или Теорема косинусов для трёхгранного угла.
  • Теоремы косинусов (геометрия Лобачевского)
  • Тождество параллелограмма. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон (смотрите также Теорема Птолемея):
    AC^{2}+BD^{2}=AB^{2}+BC^{2}+CD^{2}+DA^{2}.

Для евклидовых нормированных пространств

Пусть в евклидовом пространстве E задана норма, ассоциированная со скалярным произведением, то есть leftVert {vec {a}}rightVert ={sqrt {({vec {a}},{vec {a}})}}. Тогда теорема косинусов формулируется следующим образом:

Теорема.
leftVert {vec {a}}-{vec {b}}rightVert ^{2}=leftVert {vec {a}}rightVert ^{2}+leftVert {vec {b}}rightVert ^{2}-2({vec {a}},{vec {b}})

Для четырёхугольников

Возводя в квадрат тождество {overline {AD}}={overline {AB}}+{overline {BC}}+{overline {CD}} можно получить утверждение, иногда называемое теоремой косинусов для четырёхугольников:

d^{2}=a^{2}+b^{2}+c^{2}-2abcos angle B-2accos omega -2bccos angle C, где omega  — угол между прямыми AB и CD.

Или иначе:

d^{2}=a^{2}+b^{2}+c^{2}-2abcos angle B+2accos(angle A+angle D)-2bccos angle C
Формула справедлива и для тетраэдра, под w подразумевается угол между скрещивающимися ребрами.
С помощью неё можно найти косинус угла между скрещивающимися ребрами a и c зная все ребра тетраэдра:
cosw=(b^{2}+d^{2}-e^{2}-f^{2})/2ac
Где b и d, e и f пары скрещивающихся ребер тетраэдра.

Косвенный аналог для четырёхугольника

Соотношение Бретшнайдера — соотношение в четырёхугольнике, косвенный аналог теоремы косинусов:

Между сторонами a, b, c, d и противоположными углами {displaystyle alpha ,gamma } и диагоналями e, f простого (несамопересекающегося) четырёхугольника выполняется соотношение:

{displaystyle e^{2}f^{2}=a^{2}c^{2}+b^{2}d^{2}-2abcdcos(alpha +gamma )}
  • Если четырёхугольник вырождается в треугольник, и одна вершина попадает на сторону, то получается теорема Стюарта.
  • Теорема косинусов для треугольника является частным случаем соотношения Бретшнайдера, если в качестве четвёртой вершины выбрать центр описанной окружности треугольника.

Симплексы

{displaystyle S_{i}S_{j}cos angle A={frac {(-1)^{(n-1+i+j)}}{2^{n-1}((n-1)!)^{2}}}{begin{vmatrix}0&1&1&1&dots &1\1&0&d_{12}^{2}&d_{13}^{2}&dots &d_{1(n+1)}^{2}\1&d_{21}^{2}&0&d_{23}^{2}&dots &d_{2(n+1)}^{2}\1&d_{31}^{2}&d_{32}^{2}&0&dots &d_{3(n+1)}^{2}\vdots &vdots &vdots &vdots &ddots &vdots \1&d_{(n+1)1}^{2}&d_{(n+1)2}^{2}&d_{(n+1)3}^{2}&dots &0\end{vmatrix}}}

при этом мы должны зачеркнуть строку и столбец, где находится d_{ij} или d_{ji}.

A — угол между гранями S_{i} и S_{j}, S_{i} -грань, находящаяся против вершины i,d_{ij}— расстояние между вершинами i и j.

См. также

  • Решение треугольников
  • Скалярное произведение
  • Соотношение Бретшнайдера
  • Теорема косинусов для трёхгранного угла
  • Теорема о проекциях
  • Теорема Пифагора
  • Сферическая теорема косинусов
  • Теорема котангенсов
  • Теорема синусов
  • Теорема тангенсов
  • Тригонометрические тождества
  • Тригонометрические функции

Литература

  • Понарин Я. П. Элементарная геометрия. В 2 т. — М.: МЦНМО, 2004. — С. 84—85. — ISBN 5-94057-170-0.

Примечания

  1. Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия 7—9: учеб. для общеобразоват. учреждений — 15-е изд. — М.: Просвещение, 2005. — С. 257. — 384 с.: ил. — ISBN 5-09-014398-6
  2. 1 2 Корн Г. А., Корн Т. М. Справочник по математике для научных работников и инженеров. — М.: «Наука», 1974. — С. 51. — 832 с.
  3. Florian Cajori. A History of Mathematics — 5th edition 1991

Понравилась статья? Поделить с друзьями:

Не пропустите и эти статьи:

  • Как пишется тенями
  • Как пишется тентасион
  • Как пишется теннисный мячик
  • Как пишется тенистый парк
  • Как пишется тендерлибай

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии