Составная часть атмосферы, основное сырье для процесса фотосинтеза зеленых растений, продукт жизнедеятельности живых организмов.
По систематической международной номенклатуре (IUPAC) вещество с формулой СО2 получило название – Оксид углерода(IV). Тривиальные (общепринятые названия) – двуокись или диоксид углерода, угольный ангидрид (солеобразующий оксид, обладающий кислотными свойствами).
Формула углекислого газа
СО2
Молекула углекислого газа образована двумя атомами кислорода и атомом углерода. Структурная формула – О=С=О. Валентность углерода равна 4. Степень окисления – (+4). Тип связи – ковалентная полярная.
Получение углекислого газа
Природные источники углекислого газа
Углекислый газ образуется при медленном окислении в процессах дыхания, брожения, гниения органических веществ. Выделяется при разложении природных карбонатов, сгорании топлива, образовании дымовых газов. Содержится в воздухе, минеральных источниках.
В сутки организм человека выделяет 1 кг СО2. В воздухе содержится 0,03% углекислого газа.
Лабораторные способы получения
В лаборатории газ можно получить взаимодействием соляной кислоты с мелом, мрамором, содой. Собирается газ методом вытеснения воздуха.
CaCO3 + 2HCl → CaCl2+ H2O + CO2,
NaHCO3+ HCl → NaCl + H2O + CO2.
Промышленные способы получения
- Обжиг известняка: CaCO3 → CaO + CO2.
- Как побочный продут разделения воздуха при получении кислорода, азота, аргона.
Свойства углекислого газа
Физические свойства
Вещество нетоксичное, негорючее.
Свойство | Описание |
---|---|
Агрегатное состояние при н.у. | Газ |
Цвет | Бесцветный |
Запах | Без запаха |
Температура плавления | -750оC |
Температура кипения | -56,50оC |
Растворимость в воде | Растворяется частично. При t +150оC в 1 литре воды может раствориться 1,7 л углекислого газа |
Плотность | 1,977 г/л |
Молярная масса | 44г/моль |
Вещество в твердом агрегатном состоянии называется «сухим льдом».
Высокую концентрацию диоксида углерода можно определить органолептически – во рту, на языке появляется кисловатый привкус. Повышенное содержание опасно для организма – вызывает удушье.
Химические свойства
- Качественная реакция: при взаимодействии углекислого газа с известковым молочком (гидроксидом кальция) образуется карбонат кальция – осадок белого цвета.
CO2 + Ca(OH)2 = CaCO3↓ + H2O.
- CO2, как кислотный оксид, реагирует с водой с образованием угольной кислоты. Эта кислота – соединение нестойкое, легко распадается на углекислый газ и воду. Тип реакции – реакция соединения, обратимая.
CO2 + H2O ↔ H2CO3.
-
При нагревании распадается на оксид углерода(II) и воду: 2CO2 = 2CO + O2.
-
Взаимодействует с основными оксидами, с образованием солей:
CaO + CO2 = CaCO3; Al2O3 + 3CO2 = Al2(CO3)3.
Тип реакции – реакция соединения.
- Взаимодействует со щелочами, с образованием кислых и средних солей:
CO2 + NaOH = NaHCO3;
CO2 + 2NaOH = Na2CO3 + H2O.
Средняя соль образуется при избытке щелочи. Кислая соль образуется при отношении количеств вещества оксида и щелочи – 1:1.
- При температуре реагирует с активными металлами:
CO2 + 2Mg = C + 2MgO
Углекислый газ в основном проявляет восстановительные свойства, но при взаимодействии с активными металлами является окислителем.
- Вступает в реакции взаимодействия с простыми веществами:
CO2 + 4H2 = CH4 + 2H2O (условия протекания реакции – высокая температура, катализатор Cu2O).
Применение углекислого газа
В пищевой промышленности:
- используется при производстве минеральной воды и газированных напитков;
- как пищевая добавка (Е290), повышает сроки хранения продуктов;
- в качестве разрыхлителя придает легкость и пышность кондитерским изделиям;
- как хладогент;
- для удаления из кофе кофеина.
В авиамоделировании используется как источник энергии для двигателей; применяется в пневматическом оружии; как заправка для углекислотных огнетушителей. Используется в качестве защитной среды при сварке.
Находит углекислый газ применение и в медицине – используется для криоабляции новообразований, служит стимулятором глубокого дыхания.
В химической промышленности газ используется в синтезе химических веществ, производстве солей угольной кислоты, процессах осушки и очистки полимеров, волокон растительного и животного происхождения. Применяется для очистки сточных вод, повышает проводимость сверхчистой воды.
Примеры решения задач
Задача 1
Найти массовую долю углерода в углекислом газе.
Решение
М(СО2) = 12+2х16 = 44 г/моль.
Аr(С) = 12 г/моль.
W(С) = 12/44 = 0,27 или 27%
Ответ: массовая доля углерода в углекислом газе равна 27%.
Задача 2
Вычислить объем углекислого газа, выделившегося при взаимодействии соляной кислоты с мрамором массой 100 г.
Решение
300 г — х л
CaCO3 + 2HCl → CaCl2+ H2O + CO2
1 моль — 1 моль
100 г/моль — 22,4 л/моль
100 г — 22,4 л
х(СО2) = 300х22,4/100 = 67, 2 (л).
Ответ: Объем углекислого газа равен 67, 2 л.
Тест по теме «Углекислый газ»
Диоксид углерода | |
---|---|
Другие названия | углекислый газ, углекислота, сухой лед(твердый) |
Формула | CO2 |
Молярная масса | 44.0095(14) г/моль |
В твердом виде | сухой лед |
Вид | бесцветный газ |
Номер CAS | [124-38-9] |
Свойства | |
Плотность и фазовое состояние | 1.98 кг/м³, при н.у.; 771 кг/м³, жидкий; 1512 кг/м³, твёрдый |
Растворимость в воде | 1.45 кг/м³ |
Удельная теплота плавления | 25.13 кДж/моль |
Точка плавления | −57 °C (216 K), под давлением |
Точка кипения | −78 °C (195 K), возгоняется |
Константа диссоциации кислоты (pKa) | 6.35 and 10.33 |
Вязкость | 0.07 пз при −78 °C |
Строение | |
Форма молекулы | линейная |
Кристаллическая решётка | кварцевидная |
Дипольный момент | ноль |
Техника безопасности | |
MSDS | External MSDS |
Главные опасности | удушающее, раздражающее |
NFPA 704 |
0 0 0 (жидкость) |
R-phrases | R: As, Fb |
S-phrases | S9, S23, S36 (ж) |
RTECS number | FF6400000 |
Страница дополнительных сведений | |
Структура и свойства | n, εr, и т. д. |
Спектр | УФ, ИК, ЯМР, Масс-спектроскопия |
Родственные соединения | |
Оксиды | CO C3O2 C2O CO3 |
Если не указано иное, данные даны для материалов при стандартных условиях (25 °C, 100 кПа) Infobox disclaimer and references |
Диокси́д углеро́да (двуо́кись углеро́да, углеки́слый газ, окси́д углеро́да (IV), диокси́д углеро́да, у́гольный ангидрид, углекислота́) — CO2, бесцветный газ со слегка кисловатым запахом и вкусом.
Концентрация углекислого газа в атмосфере Земли составляет 0,038 %.
- Не следует путать с Диоксин.
Содержание
- 1 Свойства
- 1.1 Физические
- 1.2 Химические
- 1.3 Биологические
- 2 Получение
- 3 Применение
- 4 Методы регистрации
- 5 Концентрация
- 6 Примечания
- 7 См. также
- 8 Ссылки
Свойства
Физические
Плотность при нормальных условиях 1,98 г/л. При атмосферном давлении диоксид углерода не существует в жидком состоянии, переходя непосредственно из твёрдого состояния в газообразное. Твёрдый диоксид углерода называют сухим льдом. При повышенном давлении и обычных температурах углекислый газ переходит в жидкость, что используется для его хранения.
Углекислый газ легко пропускает ультрафиолетовые лучи и лучи видимой части спектра, которые поступают на Землю от Солнца и обогревают её. В то же время он поглощает испускаемые Землёй инфракрасные лучи и является одним из парниковых газов, вследствие чего принимает участие в процессе глобального потепления. Постоянный рост уровня содержания этого газа в атмосфере наблюдается с начала индустриальной эпохи.
Химические
По химическим свойствам диоксид углерода относится к кислотным оксидам. При растворении в воде образует угольную кислоту. Реагирует со щёлочами с образованием карбонатов и гидрокарбонатов. Вступает в реакции электрофильного замещения (например, с фенолом — реакция Кольбе) и нуклеофильного присоединения (например, с магнийорганическими соединениями).
Биологические
Диоксид углерода играет одну из главных ролей в живой природе, участвуя во многих процессах метаболизма живой клетки. Диоксид углерода получается в результате множества окислительных реакций у животных, и выделяется в атмосферу с дыханием. Углекислый газ атмосферы — основной источник углерода для растений. Однако, ошибкой будет утверждение, что животные только выделяют углекислый газ, а растения — только поглощают его. Растения поглощают углекислый газ в процессе фотосинтеза, а без освещения они тоже его выделяют.
Диоксид углерода не токсичен, но не поддерживает дыхание. Большая концентрация в воздухе вызывает удушье (см. Гиперкапния). Недостаток углекислого газа тоже опасен (см. Гипокапния)
Углекислый газ в организмах животных имеет и физиологическое значение, например, участвует в регуляции сосудистого тонуса (см. Артериолы).
Получение
В промышленности получают из печных газов, из продуктов разложения природных карбонатов (известняк, доломит). Смесь газов промывают раствором карбоната калия, который поглощает углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании разлагается, высвобождая углекислоту. При промышленном производстве закачивается в баллоны.
В лабораторных условиях небольшие количества получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например мрамора с соляной кислотой.
Применение
В пищевой промышленности диоксид углерода используется как консервант и обозначается на упаковке под кодом Е290, а также в качестве разрыхлителя теста.
Жидкая углекислота (жидкая пищевая углекислота) — сжиженный углекислый газ, хранящийся под высоким давлением (~ 65-70 Атм). Бесцветная жидкость. При выпуске жидкой углекислоты из баллона в атмосферу часть её испаряется, а другая часть образует хлопья сухого льда.
Баллоны с жидкой углекислотой широко применяются в качестве огнетушителей и для производства газированной воды и лимонада. Углекислый газ используется в качестве активной среды при сварке проволокой так как при температуре дуги углекислота разлагается на угарный газ СО и кислород который в свою очередь и входит в заимодействие с жидким металом окисляя его. Углекислота в баллончиках применяется в пневматическом оружии и в качестве источника энергии для двигателей в авиамоделировании.
Твёрдая углекислота — сухой лёд — используется в качестве хладагента в ледниках и морозильных установках.
Методы регистрации
Измерение парциального давления углекислого газа требуется в технологических процессах, в медицинских применениях — анализ дыхательных смесей при искусственной вентиляции лёгких и в замкнутых системах жизнеобеспечения. Анализ концентрации CO2 в атмосфере используется для экологических и научных исследований, для изучения парникового эффекта.
Углекислый газ регистрируют с помощью газоанализаторов основанных на принципе инфракрасной спектроскопии и других газоизмерительных систем. Медицинский газоанализатор для регистрации содержания углекислоты в выдыхаемом воздухе называется капнограф.
Концентрация
- Подземное животное голый землекоп отличается терпимостью к большим (смертельным для других животных) концентрациям углекислого газа.[1]
Примечания
- ↑ А. Шиндер. Животное, не чувствующее боли. 2000-Аспекты-Проблемы № 26(420), 27 июня-3 июля 2008
См. также
- Выхлопные газы
Ссылки
- International Chemical Safety Card 0021 (англ.)
- CID 280 с сайта PubChem (англ.)
- CO2 Диоксид углерода, свойства, применение (англ.)
- Фазовая диаграмма (давление-температура)для диоксида углерода
- Molview from bluerhinos.co.uk Диоксид углерода в 3D
- Dry Ice information (англ.)
- Trends in Atmospheric Carbon Dioxide (NOAA)
- Phase Diagram of Carbon Dioxide(англ.)
- Experiment 071 — Triple Point Phase Transition for Carbon Dioxide
- CO2 как природный рефрежерант — FAQs (англ.)
- Великобритания разрабатывает метод сохранения двуокиси углерода
Климат, Климатология |
|
---|---|
Изменение климата | Палеоклиматология • Эль-Ниньо • Геохимический цикл углерода • Протерозойское оледенение, Ледниковый период, Малый ледниковый период • Термальный максимум (Позднепалеоценовый термальный максимум, Последний ледниковый максимум) • Ледники |
Глобальное потепление | Вырубка лесов • Противодействие изменению климата • Глобальная климатическая модель • Глобальное похолодание • Глобальное затемнение • Озоновая дыра • Парниковый эффект • Диоксид углерода • Парниковые газы • Межправительственная группа экспертов по изменению климата • Рамочная конвенция ООН об изменении климата (Киотский протокол) • Пик нефти • Возобновляемая энергия • Температурный тренд • Повышение уровня моря • Копенгагенский консенус |
Wikimedia Foundation.
2010.
Справочник содержит названия веществ и описания химических формул (в т.ч. структурные формулы и скелетные формулы).
Введите часть названия или формулу для поиска:
Углекислый газ
Брутто-формула:
CO2
Названия
Русский:
- Оксид углерода(IV)(IUPAC)
- Углекислый газ
- двуокись углерода
- диоксид углерода
- угольный ангидрид
English:
- Carbon dioxide
- Carbon oxide
- Carbon(IV) oxide
- Carbonic acid gas
- Carbonic anhydride
- Carbonic oxide
- Dry ice
Варианты формулы:
Реакции, в которых участвует Углекислый газ
-
SO2 + 2CO -> 2CO2 + S
-
Na2[Zn(OH)4] + CO2 -> Na2CO3 + Zn(OH)2″|v» + H2O
-
{X} + O2 = {X}O2
, где X =
S Se C Si -
BaCO3 + 2HI -> BaI2 + CO2″|^» + H2O
-
CO2 + H2O <=> H^+ + HCO3^-
Углекислый газ
4.3
Средняя оценка: 4.3
Всего получено оценок: 429.
4.3
Средняя оценка: 4.3
Всего получено оценок: 429.
Диоксид углерода, оксид углерода, углекислота – все эти названия одного вещества, известного нам, как углекислый газ. Так какими же свойствами обладает этот газ, и каковы области его применения?
Углекислый газ и его физические свойства
Углекислый газ состоит из углерода и кислорода. Формула углекислого газа выглядит так – CO₂. В природе он образуется при сжигании или гниении органических веществ. В воздухе и минеральных источниках содержание газа также достаточно велико. кроме того люди и животные также выделяют диоксид углерода при выдыхании.
Диоксид углерода является абсолютно бесцветным газом, его невозможно увидеть. Также он не имеет и запаха. Однако при его большой концентрации у человека может развиться гиперкапния, то есть удушье. Недостаток углекислого газа также может причинить проблемы со здоровьем. В результате недостатка это газа может развиться обратное состояние к удушью – гипокапния.
Если поместить углекислый газ в условия низкой температуры, то при -72 градусах он кристаллизуется и становится похож на снег. Поэтому углекислый газ в твердом состоянии называют «сухой снег».
Углекислый газ плотнее воздуха в 1,5 раза. Его плотность составляет 1,98 кг/м³ Химическая связь в молекуле углекислого газа ковалентная полярная. Полярной она является из-за того, что у кислорода больше значение электроотрицательности.
Важным понятием при изучении веществ является молекулярная и молярная масса. Молярная масса углекислого газа равна 44. Это число формируется из суммы относительных атомных масс атомов, входящих в состав молекулы. Значения относительных атомных масс берутся из таблицы Д.И. Менделеева и округляются до целых чисел. Соответственно, молярная масса CO₂ = 12+2*16.
Чтобы вычислить массовые доли элементов в углекислом газе необходимо следовать формулерасчета массовых долей каждого химического элемента в веществе.
w = n * Ar / Mr
n – число атомов или молекул.
Ar – относительная атомная масса химического элемента.
Mr – относительная молекулярная масса вещества.
Рассчитаем относительную молекулярную массу углекислого газа.
Mr(CO₂) = 14 + 16 * 2 = 44 w(C) = 1 * 12 / 44 = 0,27 или 27 % Так как в формулу углекислого газа входит два атома кислорода, то n = 2 w(O) = 2 * 16 / 44 = 0,73 или 73 %
Ответ: w(C) = 0,27 или 27 %; w(O) = 0,73 или 73 %
Химические и биологические свойства углекислого газа
Углекислый газ обладает кислотными свойствами, так как является кислотным оксидом, и при растворении в воде образует угольную кислоту:
CO₂+H₂O=H₂CO₃
Вступает в реакцию со щелочами, в результате чего образуются карбонаты и гидрокарбонаты. Этот газ не подвержен горению. В нем горят только некоторые активные металлы, например, магний.
При нагревании углекислый газ распадается на угарный газ и кислород:
2CO₃=2CO+O₃.
Как и другие кислотные оксиды, данный газ легко вступает в реакцию с другими оксидами:
СaO+Co₃=CaCO₃.
Углекислый газ входит в состав всех органических веществ. Круговорот этого газа в природе осуществляется с помощью продуцентов, консументов и редуцентов. В процессе жизнедеятельности человек вырабатывает примерно 1 кг углекислого газа в сутки. При вдохе мы получаем кислород, однако в этот момент в альвеолах образуется углекислый газ. В этот момент происходит обмен: кислород попадает в кровь, а углекислый газ выходит наружу.
Получение углекислого газа происходит при производстве алкоголя. Также этот газ является побочным продуктом при получении азота, кислорода и аргона. Применение углекислого газа необходимо в пищевой промышленности, где углекислый газ выступает в качестве консерванта, а также углекислый газ в виде жидкости содержится в огнетушителях.
Что мы узнали?
Углекислый газ – вещество, которое в нормальных условиях не имеет цвета и запаха. помимо своего обычного названия – углекислый газ, его также называют оксидом углерода или диоксидом углерода.
Тест по теме
Доска почёта
Чтобы попасть сюда — пройдите тест.
-
Яна Василькова
8/10
-
Карина Гаврилова
10/10
-
Елена Асадова
7/10
-
Лиана Бизина
10/10
-
Кристина Микляева
10/10
Оценка доклада
4.3
Средняя оценка: 4.3
Всего получено оценок: 429.
А какая ваша оценка?
Углекислый газ, свойства, получение и применение.
Углекислый газ – бинарное химическое соединение углерода и кислорода, имеющее формулу CO2.
Углекислый газ, формула, молекула, строение, состав, вещество
Физические свойства углекислого газа. Сухой лёд
Получение углекислого газа
Химические свойства углекислого газа. Химические реакции (уравнения) углекислого газа
Применение углекислого газа
Цена на выбросы CO2
Углекислый газ, формула, молекула, строение, состав, вещество:
Углекислый газ (диоксид углерода, двуокись углерода, углекислота, оксид углерода (IV), угольный ангидрид) – бесцветный газ, почти без запаха (в больших концентрациях с кисловатым «содовым» запахом).
Углекислый газ – бинарное химическое соединение углерода и кислорода, имеющее формулу CO2.
Химическая формула углекислого газа CO2.
Строение молекулы углекислого газа, структурная формула углекислого газа:
Углекислый газ тяжелее воздуха приблизительно в 1,5 раза. Его плотность при нормальных условиях составляет 1,98 кг/м3, по отношении к воздуху – 1,524. Поэтому скапливается в низких непроветриваемых местах.
Концентрация углекислого газа в воздухе (в атмосфере Земли) составляет в среднем 0,046 % (по массе) и 0,0314 % (по объему).
Углекислый газ вырабатывается в органах и тканях человека образуется в качестве одного из конечных продуктов метаболизма. Он переносится от тканей по венозной системе и затем выделяется с выдыхаемым воздухом через лёгкие. Таким образом, содержание углекислого газа в крови велико в венозной системе, уменьшается в капиллярной сети лёгких, и содержание его мало в артериальной крови. В выдыхаемом человеком воздухе содержится около 4,5% диоксида углерода, что в 60-110 раз больше, чем во вдыхаемом. Организм человека выделяет приблизительно 1 кг углекислого газа в сутки.
Углекислый газ растворяется в воде. В 100 граммах воды растворяется 0,3803 грамма CO2 при 16 °C, 0,3369 грамма CO2 – при 20 °C, 0,2515 грамма CO2 – при 30 °C. Растворяясь в воде, образует угольную кислоту Н2CO3. Растворим также в ацетоне, бензоле, метаноле и этаноле.
Термически устойчив при температурах менее 1000 °C. При температуре 1000 °C восстанавливается углем до оксида углерода (II).
При нормальном атмосферном давлении диоксид углерода не существует в жидком состоянии, существует только в твердом или газообразном состоянии. Твердая двуокись углерода при повышении температуры не плавится, а переходит (возгоняется) непосредственно из твёрдого состояния в газообразное. Твёрдую двуокись углерода также называют сухим льдом. Внешний вид сухого льда напоминает обычный лед, снегоподобную массу. При сублимации сухой лед поглощает около 590 кДж/кг (140 ккал/кг) теплоты.
Под давлением 35 000 атм. твердая углекислота становится проводником электрического тока.
Жидкий углекислый газ можно получить при повышении давления. Так, при температуре 20 °С и давлении свыше 6 МПа (~60 атм.) газ сгущается в бесцветную жидкость. При нормальных условиях (20 °С и 101,3 кПа) при испарении 1 кг жидкой углекислоты образуется 509 л углекислого газа. Хранят и транспортируют углекислый газ, как правило, в жидком состоянии
Двуокись углерода негорюча, но в ее атмосфере может поддерживаться горение активных металлов, например, щелочных металлов и щелочноземельных – магния, кальция, бария.
Двуокись углерода нетоксична, невзрывоопасна.
Предельно допустимая концентрация двуокиси углерода в воздухе рабочей зоны не установлена, при оценке этой концентрации можно ориентироваться на нормативы для угольных и озокеритовых шахт, установленные в пределах 0,5% (об.) или 9,2 г/м (см. ГОСТ 8050-85 «Двуокись углерода газообразная и жидкая. Технические условия»).
По степени воздействия на организм человека двуокись углерода относится к 4-му классу опасности по ГОСТ 12.1.007-76.
При концентрациях более 5% (92 г/м) двуокись углерода оказывает вредное влияние на здоровье человека, так как она тяжелее воздуха в полтора раза и может накапливаться в слабопроветриваемых помещениях у пола и в приямках, а также во внутренних объемах оборудования для получения, хранения и транспортирования газообразной, жидкой и твердой двуокиси углерода. При этом снижается объемная доля кислорода в воздухе, что может вызвать явление кислородной недостаточности и удушья.
Углекислый газ образуется при гниении и горении органических веществ, в результате вулканической деятельности. Содержится в воздухе и минеральных источниках, выделяется при дыхании животных и растений. Искусственными источниками образования углекислого газа являются промышленные выбросы и выхлопные газы автомобильного транспорта.
Углекислый газ легко пропускает излучение в ультрафиолетовой и видимой частях спектра, которое поступает на Землю от Солнца и обогревает её. В то же время он поглощает испускаемое Землёй инфракрасное излучение и является одним из парниковых газов, вследствие чего участвует в процессе глобального потепления.
Физические свойства углекислого газа:
Наименование параметра: | Значение: |
Химическая формула | CO2 |
Синонимы и названия иностранном языке | углерода двуокись (рус.)
углерода диоксид (рус.) угольный ангидрид (рус.) оксид углерода (IV) carbon dioxide (англ.) |
Тип вещества | неорганическое |
Внешний вид | бесцветный газ |
Цвет | бесцветный |
Вкус | кисловатый вкус |
Запах | почти без запаха (в больших концентрациях с кисловатым «содовым» запахом) |
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) | газ |
Плотность (состояние вещества – твердое вещество, при -79 °C и атмосферном давлении 1 атм.), кг/м3 | 1561 |
Плотность (состояние вещества – твердое вещество, при -79 °C и атмосферном давлении 1 атм.), г/см3 | 1,561 |
Плотность (состояние вещества – жидкость, при -60 °C и атмосферном давлении 1 атм.), кг/м3 | 1190 |
Плотность (состояние вещества – жидкость, при -60 °C и атмосферном давлении 1 атм.), г/см3 | 1,19 |
Плотность (состояние вещества – жидкость, при -37 °C и атмосферном давлении 1 атм.), кг/м3 | 1101 |
Плотность (состояние вещества – жидкость, при -37 °C и атмосферном давлении 1 атм.), г/см3 | 1,101 |
Плотность (состояние вещества – жидкость, при 0 °C и атмосферном давлении 35,5 атм.), кг/м3 | 925 |
Плотность (состояние вещества – жидкость, при 0 °C и атмосферном давлении 35,5 атм.), г/см3 | 0,925 |
Плотность (состояние вещества – газ, при 0 °C и атмосферном давлении 1 атм.), кг/м3 | 1,9768 |
Плотность (состояние вещества – газ, при 0 °C и атмосферном давлении 1 атм.), г/см3 | 0,0019768 |
Температура сублимации (возгонки), °C | -78,5 |
Критическая температура*, °C | 31 |
Критическое давление, МПа | 7,387 |
Критический удельный объём, м3/кг | 0,468 |
Критическая точка | 31 °C, 7,38 МПа |
Тройная точка | −56,6 °C, 0,52 МПа |
Молярная масса, г/моль | 44,01 |
Растворимость в воде, г/100 г | 0,3803 при 16 °C,
0,3369 при 20 °C, 0,2515 при 30 °C |
Теплопроводность, Вт/(м·K) | 0,0166 |
Удельная теплоемкость, Дж/(кг·К) | 849 |
Удельная теплота испарения, кДж/кг | 379,5 |
Удельная теплота плавления, кДж/кг | 205 |
Стандартная энтальпия образования ΔH (при 298 К, для состояния вещества – газ), кДж/моль | -393,51 |
Стандартная энергия Гиббса образования ΔG (при 298 К, для состояния вещества – газ), кДж/моль | -394,38 |
Стандартная энтропия вещества S (при 298 К, для состояния вещества – газ) | 213,68 |
Стандартная мольная теплоемкость Cp (298 К, для состояния вещества – газ), Дж/(моль·K) | 37,11 |
Энтальпия плавления ΔHпл, кДж/моль | 8,37 |
Энтальпия возгонки ΔHвозг, кДж/моль | 25,23 |
Скорость звука в веществе (при 20°C, состояние среды – газ), м/с | 274,6 |
Давление паров, мм.рт.ст. | 0,000001 (при -186,4°C),
0,00001 (при -180,7°C), 0,0001 (при -174,3°C), 0,001 (при -166,8°C), 0,01 (при -158°C), 2,31 (при -130°C), 9,81 (при -120°C), 34,63 (при -110°C), 104,81 (при -100°C), 279,5 (при -90°C), 672,2 (при -80°C), 1486,1 (при -70°C), 3073,1 (при -60°C), 5127,8 (при -50°C), 7545 (при -40°C), 10718 (при -30°C), 14781 (при -20°C), 19872 (при -10°C), 26142 (при 0°C), 33763 (при 10°C), 42959 (при 20°C), 54086 (при 30°C) |
* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.
Получение углекислого газа:
В промышленности углекислый газ образуется в дымовых газах при сжигании различных органических и неорганических веществ или как побочный продукт химических процессов, например, при разложении природных карбонатов (доломита, известняка). Также углекислый газ как побочный продукт получают на установках разделения воздуха с целью получения чистого кислорода, азота и аргона.
В лабораторных условиях углекислый газ получают, например, в результате следующих химических реакций:
1. взаимодействия карбоната кальция и азотной кислоты:
CaCO3 + 2HNO3 → Ca(NO3)2 + CO2 + H2O,
2. в результате взаимодействия карбоната кальция с другими минеральными кислотами,
3. взаимодействия пищевой соды с лимонной кислотой или с кислым лимонным соком,
4. реакции горения углерода:
С + O2 → CO2.
Химические свойства углекислого газа. Химические реакции (уравнения) углекислого газа:
Диоксид углерода относится к кислотным оксидам, поэтому для него характерны следующие химические реакции:
1. реакция взаимодействия оксида углерода (IV) и водорода:
CO2 + 4H2 → CH4 + 2H2O (t ~ 200 °C, kat = Cu2O).
В результате реакции образуются метан и вода.
2. реакция взаимодействия оксида углерода (IV) и углерода:
CO2 + C ⇄ 2CO (t = 700-1000 °C).
В результате реакции образуется оксид углерода (II). Реакция протекает при взаимодействии углекислого газа с раскаленными углями.
3. реакция взаимодействия оксида углерода (IV) и магния:
CO2 + 2Mg → 2MgO + C (t ~ 500 °C).
В результате реакции образуются оксид магния и углерод.
4. реакция взаимодействия оксида углерода (IV) и гафния:
Hf + CO2 → HfC + HfO2 (t = 800-1000 °C).
В результате реакции образуются карбид гафния и оксид гафния.
5. реакция взаимодействия оксида углерода (IV) и германия:
Ge + CO2 → GeO + CO (t = 700-900 °C).
В результате реакции образуются оксид германия и оксид углерода (II).
6. реакция взаимодействия оксида углерода (IV) и цинка:
Zn + CO2 → ZnO + CO (t = 800-950 °C).
В результате реакции образуются оксид цинка и оксид углерода (II).
7. реакция взаимодействия оксида углерода (IV) и индия:
2In + CO2 → In2O + CO (t ~ 850 °C).
В результате реакции образуются оксид индия и оксид углерода (II).
8. реакция взаимодействия оксида углерода (IV) и циркония:
2Zr + CO2 → ZrC + ZrO2 (t = 800-100 °C).
В результате реакции образуются карбид циркония и оксид циркония.
9. реакция взаимодействия оксида углерода (IV) и вольфрама:
W + 2CO2 → WO2 + 2CO (t ~ 1200 °C).
В результате реакции образуются оксид вольфрама и оксид углерода (II).
10. реакция взаимодействия оксида углерода (IV) и оксида лития:
Li2O + CO2 → Li2CO3.
В результате реакции образуется карбонат лития.
11. реакция взаимодействия оксида углерода (IV) и оксида натрия:
Na2O + CO2 → Na2CO3 (t = 450-550 °C).
В результате реакции образуется карбонат натрия.
12. реакция взаимодействия оксида углерода (IV) и оксида калия:
K2O + CO2 → K2CO3 (t ~ 400 °C).
В результате реакции образуется карбонат калия.
13. реакция взаимодействия оксида углерода (IV) и оксида бария:
BaO + CO2 → BaCO3.
В результате реакции образуется карбонат бария.
14. реакция взаимодействия оксида углерода (IV) и оксида кальция:
CaO + CO2 → CaCO3.
В результате реакции образуется карбонат кальция.
15. реакция взаимодействия карбоната кальция, оксида углерода (IV) и воды:
CaCO3 + CO2 + H2O → Ca(HCO3)2.
В результате реакции образуется гидрокарбонат кальция.
16. реакция взаимодействия оксида углерода (IV) и оксида магния:
MgO + CO2 → MgCO3.
В результате реакции образуется карбонат магния.
17. реакция взаимодействия оксида углерода (IV) и оксида кремния (II):
SiO + CO2 → SiO2 + CO (t ~ 500 °C).
В результате реакции образуются оксид кремния (IV) и оксид углерода (II).
18. реакция взаимодействия оксида углерода (IV) и воды:
CO2 + H2O ⇄ H2CO3.
В результате реакции образуется угольная кислота.
19. реакция взаимодействия оксида углерода (IV) и гидроксида лития:
2LiOH + CO2 → Li2CO3 + H2O.
В результате реакции образуются карбонат лития и вода. В ходе реакции используется концентрированный раствор гидроксида лития.
20. реакция взаимодействия оксида углерода (IV) и гидроксида калия:
KOH + CO2 → KHCO3,
2KOH + CO2 → K2CO3 + H2O.
В первом случае в результате реакции образуются гидрокарбонат калия, во втором случае – карбонат калия и вода. Реакция протекает в первом случае в этаноле и используется разбавленный раствор гидроксида калия, во втором используется концентрированный раствор гидроксида калия.
21. реакция взаимодействия оксида углерода (IV) и гидроксида натрия:
NaOH + CO2 → NaHCO3,
2NaOH + CO2 → Na2CO3 + H2O.
В первом случае в результате реакции образуются гидрокарбонат натрия, во втором – карбонат натрия и вода. В ходе первой реакции используется разбавленный раствор гидроксида натрия, в ходе второй – концентрированный раствор гидроксида натрия.
22. реакция взаимодействия оксида углерода (IV) и гидроксида кальция:
Ca(OH)2 + CO2 → CaCO3 + H2O.
В результате реакции образуются карбонат кальция и вода.
23. реакция взаимодействия оксида углерода (IV) и гидроксида бария:
Ba(OH)2 + CO2 → BaCO3 + H2O.
В результате реакции образуются карбонат бария и вода.
24. реакция взаимодействия оксида углерода (IV) и метана:
CH4 + CO2 → 2CO + 2H2 (t = 800-900 °C, kat = NiO, нанесенный на Al2O3).
В результате реакции образуются оксид углерода (II) и вода.
25. реакция термического разложения оксида углерода (IV):
2CO2 → 2CO + O2 (t > 2000 °C).
В результате реакции образуются оксид углерода (II) и кислород.
26. реакция фотосинтеза:
6CO2 + 6H2O → C6H12O6 + 6O2 (hv, kat = хлорофилл).
В результате реакции образуются глюкоза и кислород.
Применение углекислого газа:
Углекислый газ используется во многих отраслях промышленности и быту:
– как пищевая добавка Е290 в качестве разрыхлителя в пищевом производстве и консерванта в алкогольных и безалкогольных газированных напитках, а также для газирования лимонада, газированной воды и других напитков;
– в системах пожаротушения и в огнетушителях;
– для создания защитной среды при сварке металлов;
– для охлаждения, замораживания и хранения пищевых продуктов при прямом и косвенном контакте с сухим льдом;
– для сушки литейных форм;
– в качестве активной среды углекислотного лазера.
Примечание: © Фото https://www.pexels.com, https://pixabay.com.
Коэффициент востребованности
5 785
|
||
Names | ||
---|---|---|
Other names
|
||
Identifiers | ||
CAS Number |
|
|
3D model (JSmol) |
|
|
3DMet |
|
|
Beilstein Reference |
1900390 | |
ChEBI |
|
|
ChEMBL |
|
|
ChemSpider |
|
|
ECHA InfoCard | 100.004.271 | |
EC Number |
|
|
E number | E290 (preservatives) | |
Gmelin Reference |
989 | |
KEGG |
|
|
MeSH | Carbon+dioxide | |
PubChem CID |
|
|
RTECS number |
|
|
UNII |
|
|
UN number | 1013 (gas), 1845 (solid) | |
CompTox Dashboard (EPA) |
|
|
InChI
|
||
SMILES
|
||
Properties | ||
Chemical formula |
CO2 | |
Molar mass | 44.009 g·mol−1 | |
Appearance | Colorless gas | |
Odor |
|
|
Density |
|
|
Critical point (T, P) | 304.128(15) K[2] (30.978(15) °C), 7.3773(30) MPa[2] (72.808(30) atm) | |
Sublimation |
194.6855(30) K (−78.4645(30) °C) at 1 atm (0.101325 MPa) | |
Solubility in water |
1.45 g/L at 25 °C (77 °F), 100 kPa (0.99 atm) | |
Vapor pressure | 5.7292(30) MPa, 56.54(30) atm (20 °C (293.15 K)) | |
Acidity (pKa) | 6.35, 10.33 | |
Magnetic susceptibility (χ) |
−20.5·10−6 cm3/mol | |
Thermal conductivity | 0.01662 W·m−1·K−1 (300 K (27 °C; 80 °F))[3] | |
Refractive index (nD) |
1.00045 | |
Viscosity |
|
|
Dipole moment |
0 D | |
Structure | ||
Crystal structure |
Trigonal | |
Molecular shape |
Linear | |
Thermochemistry | ||
Heat capacity (C) |
37.135 J/K·mol | |
Std molar |
214 J·mol−1·K−1 | |
Std enthalpy of |
−393.5 kJ·mol−1 | |
Pharmacology | ||
ATC code |
V03AN02 (WHO) | |
Hazards | ||
NFPA 704 (fire diamond) |
[7][8] 2 0 0 SA |
|
Lethal dose or concentration (LD, LC): | ||
LCLo (lowest published) |
90,000 ppm (human, 5 min)[6] | |
NIOSH (US health exposure limits): | ||
PEL (Permissible) |
TWA 5000 ppm (9000 mg/m3)[5] | |
REL (Recommended) |
TWA 5000 ppm (9000 mg/m3), ST 30,000 ppm (54,000 mg/m3)[5] | |
IDLH (Immediate danger) |
40,000 ppm[5] | |
Safety data sheet (SDS) | Sigma-Aldrich | |
Related compounds | ||
Other anions |
|
|
Other cations |
|
|
Related carbon oxides |
|
|
Related compounds |
|
|
Supplementary data page | ||
Carbon dioxide (data page) | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). verify (what is ?) Infobox references |
Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth’s atmosphere at 421 parts per million (ppm), or about 0.04% by volume (as of May 2022), having risen from pre-industrial levels of 280 ppm.[9][10] Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of climate change.[11] Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water, it forms carbonate and mainly bicarbonate (HCO−
3), which causes ocean acidification as atmospheric CO2 levels increase.[12]
As the source of available carbon in the carbon cycle, atmospheric CO2 is the primary carbon source for life on Earth. Its concentration in Earth’s pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product.[13] In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration.[14] CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth.
Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks.[15] These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere.[16] CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids.
CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying.[17] It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth,[18] but at normally encountered concentrations it is odorless.[1]
Chemical and physical properties
Structure, bonding and molecular vibrations
The symmetry of a carbon dioxide molecule is linear and centrosymmetric at its equilibrium geometry. The length of the carbon-oxygen bond in carbon dioxide is 116.3 pm, noticeably shorter than the roughly 140-pm length of a typical single C–O bond, and shorter than most other C–O multiply-bonded functional groups such as carbonyls.[19] Since it is centrosymmetric, the molecule has no electric dipole moment.
Stretching and bending oscillations of the CO2 carbon dioxide molecule. Upper left: symmetric stretching. Upper right: antisymmetric stretching. Lower line: degenerate pair of bending modes.
As a linear triatomic molecule, CO2 has four vibrational modes as shown in the diagram. In the symmetric and the antisymmetric stretching modes, the atoms move along the axis of the molecule. There are two bending modes, which are degenerate, meaning that they have the same frequency and same energy, because of the symmetry of the molecule. When a molecule touches a surface or touches another molecule, the two bending modes can differ in frequency because the interaction is different for the two modes. Some of the vibrational modes are observed in the infrared (IR) spectrum: the antisymmetric stretching mode at wavenumber 2349 cm−1 (wavelength 4.25 μm) and the degenerate pair of bending modes at 667 cm−1 (wavelength 15 μm). The symmetric stretching mode does not create an electric dipole so is not observed in IR spectroscopy, but it is detected in by Raman spectroscopy at 1388 cm−1 (wavelength 7.2 μm).[20]
In the gas phase, carbon dioxide molecules undergo significant vibrational motions and do not keep a fixed structure. However, in a Coulomb explosion imaging experiment, an instantaneous image of the molecular structure can be deduced. Such an experiment[21] has been performed for carbon dioxide.
The result of this experiment, and the conclusion of theoretical calculations[22] based on an ab initio potential energy surface of the molecule, is that none of the
molecules in the gas phase are ever exactly linear. This counter-intuitive result is trivially due to
the fact that the nuclear motion volume element vanishes for linear geometries.[22]
This is so for all molecules (except diatomics!).
In aqueous solution
Carbon dioxide is soluble in water, in which it reversibly forms H2CO3 (carbonic acid), which is a weak acid since its ionization in water is incomplete.
The hydration equilibrium constant of carbonic acid is, at 25 °C:
Hence, the majority of the carbon dioxide is not converted into carbonic acid, but remains as CO2 molecules, not affecting the pH.
The relative concentrations of CO2, H2CO3, and the deprotonated forms HCO−3 (bicarbonate) and CO2−3(carbonate) depend on the pH. As shown in a Bjerrum plot, in neutral or slightly alkaline water (pH > 6.5), the bicarbonate form predominates (>50%) becoming the most prevalent (>95%) at the pH of seawater. In very alkaline water (pH > 10.4), the predominant (>50%) form is carbonate. The oceans, being mildly alkaline with typical pH = 8.2–8.5, contain about 120 mg of bicarbonate per liter.
Being diprotic, carbonic acid has two acid dissociation constants, the first one for the dissociation into the bicarbonate (also called hydrogen carbonate) ion (HCO−3):
- Ka1 = 2.5×10−4 mol/L; pKa1 = 3.6 at 25 °C.[19]
This is the true first acid dissociation constant, defined as
where the denominator includes only covalently bound H2CO3 and does not include hydrated CO2(aq). The much smaller and often-quoted value near 4.16×10−7 is an apparent value calculated on the (incorrect) assumption that all dissolved CO2 is present as carbonic acid, so that
Since most of the dissolved CO2remains as CO2 molecules, Ka1(apparent) has a much larger denominator and a much smaller value than the true Ka1.[23]
The bicarbonate ion is an amphoteric species that can act as an acid or as a base, depending on pH of the solution. At high pH, it dissociates significantly into the carbonate ion (CO2−3):
- Ka2 = 4.69×10−11 mol/L; pKa2 = 10.329
In organisms carbonic acid production is catalysed by the enzyme, carbonic anhydrase.
Chemical reactions of CO2
CO2 is a potent electrophile having an electrophilic reactivity that is comparable to benzaldehyde or strong α,β-unsaturated carbonyl compounds. However, unlike electrophiles of similar reactivity, the reactions of nucleophiles with CO2 are thermodynamically less favored and are often found to be highly reversible.[24] Only very strong nucleophiles, like the carbanions provided by Grignard reagents and organolithium compounds react with CO2 to give carboxylates:
- where M = Li or Mg Br and R = alkyl or aryl.
In metal carbon dioxide complexes, CO2 serves as a ligand, which can facilitate the conversion of CO2 to other chemicals.[25]
The reduction of CO2 to CO is ordinarily a difficult and slow reaction:
Photoautotrophs (i.e. plants and cyanobacteria) use the energy contained in sunlight to photosynthesize simple sugars from CO2 absorbed from the air and water:
The redox potential for this reaction near pH 7 is about −0.53 V versus the standard hydrogen electrode. The nickel-containing enzyme carbon monoxide dehydrogenase catalyses this process.[26]
Physical properties
Pellets of «dry ice», a common form of solid carbon dioxide
Carbon dioxide is colorless. At low concentrations the gas is odorless; however, at sufficiently high concentrations, it has a sharp, acidic odor.[1] At standard temperature and pressure, the density of carbon dioxide is around 1.98 kg/m3, about 1.53 times that of air.[27]
Carbon dioxide has no liquid state at pressures below 0.51795(10) MPa[2] (5.11177(99) atm). At a pressure of 1 atm (0.101325 MPa), the gas deposits directly to a solid at temperatures below 194.6855(30) K[2] (−78.4645(30) °C) and the solid sublimes directly to a gas above this temperature. In its solid state, carbon dioxide is commonly called dry ice.
Pressure–temperature phase diagram of carbon dioxide. Note that it is a log-lin chart.
Liquid carbon dioxide forms only at pressures above 0.51795(10) MPa[2] (5.11177(99) atm); the triple point of carbon dioxide is 216.592(3) K[2] (−56.558(3) °C) at 0.51795(10) MPa[2] (5.11177(99) atm) (see phase diagram). The critical point is 304.128(15) K[2] (30.978(15) °C) at 7.3773(30) MPa[2] (72.808(30) atm). Another form of solid carbon dioxide observed at high pressure is an amorphous glass-like solid.[28] This form of glass, called carbonia, is produced by supercooling heated CO2 at extreme pressures (40–48 GPa, or about 400,000 atmospheres) in a diamond anvil. This discovery confirmed the theory that carbon dioxide could exist in a glass state similar to other members of its elemental family, like silicon dioxide (silica glass) and germanium dioxide. Unlike silica and germania glasses, however, carbonia glass is not stable at normal pressures and reverts to gas when pressure is released.
At temperatures and pressures above the critical point, carbon dioxide behaves as a supercritical fluid known as supercritical carbon dioxide.
Table of thermal and physical properties of saturated liquid carbon dioxide:[29][30]
Temperature (°C) | Density (kg/m^3) | Specific heat (kJ/kg K) | Kinematic viscosity (m^2/s) | Conductivity (W/m K) | Thermal diffusivity (m^2/s) | Prandtl Number | Bulk modulus (K^-1) |
-50 | 1156.34 | 1.84 | 1.19E-07 | 0.0855 | 4.02E-08 | 2.96 | — |
-40 | 1117.77 | 1.88 | 1.18E-07 | 0.1011 | 4.81E-08 | 2.46 | — |
-30 | 1076.76 | 1.97 | 1.17E-07 | 0.1116 | 5.27E-08 | 2.22 | — |
-20 | 1032.39 | 2.05 | 1.15E-07 | 0.1151 | 5.45E-08 | 2.12 | — |
-10 | 983.38 | 2.18 | 1.13E-07 | 0.1099 | 5.13E-08 | 2.2 | — |
0 | 926.99 | 2.47 | 1.08E-07 | 0.1045 | 4.58E-08 | 2.38 | — |
10 | 860.03 | 3.14 | 1.01E-07 | 0.0971 | 3.61E-08 | 2.8 | — |
20 | 772.57 | 5 | 9.10E-08 | 0.0872 | 2.22E-08 | 4.1 | 1.40E-02 |
30 | 597.81 | 36.4 | 8.00E-08 | 0.0703 | 0.279E-08 | 28.7 | — |
Table of thermal and physical properties of carbon dioxide (CO2) at atmospheric pressure:[29][30]
Temperature (K) | Density (kg/m^3) | Specific heat (kJ/kg °C) | Dynamic viscosity (kg/m s) | Kinematic viscosity (m^2/s) | Thermal conductivity (W/m °C) | Thermal diffusivity (m^2/s) | Prandtl Number |
220 | 2.4733 | 0.783 | 1.11E-05 | 4.49E-06 | 0.010805 | 5.92E-06 | 0.818 |
250 | 2.1657 | 0.804 | 1.26E-05 | 5.81E-06 | 0.012884 | 7.40E-06 | 0.793 |
300 | 1.7973 | 0.871 | 1.50E-05 | 8.32E-06 | 0.016572 | 1.06E-05 | 0.77 |
350 | 1.5362 | 0.9 | 1.72E-05 | 1.12E-05 | 0.02047 | 1.48E-05 | 0.755 |
400 | 1.3424 | 0.942 | 1.93E-05 | 1.44E-05 | 0.02461 | 1.95E-05 | 0.738 |
450 | 1.1918 | 0.98 | 2.13E-05 | 1.79E-05 | 0.02897 | 2.48E-05 | 0.721 |
500 | 1.0732 | 1.013 | 2.33E-05 | 2.17E-05 | 0.03352 | 3.08E-05 | 0.702 |
550 | 0.9739 | 1.047 | 2.51E-05 | 2.57E-05 | 0.03821 | 3.75E-05 | 0.685 |
600 | 0.8938 | 1.076 | 2.68E-05 | 3.00E-05 | 0.04311 | 4.48E-05 | 0.668 |
650 | 0.8143 | 1.1 | 2.88E-05 | 3.54E-05 | 0.0445 | 4.97E-05 | 0.712 |
700 | 0.7564 | 1.13E+00 | 3.05E-05 | 4.03E-05 | 0.0481 | 5.63E-05 | 0.717 |
750 | 0.7057 | 1.15 | 3.21E-05 | 4.55E-05 | 0.0517 | 6.37E-05 | 0.714 |
800 | 0.6614 | 1.17E+00 | 3.37E-05 | 5.10E-05 | 0.0551 | 7.12E-05 | 0.716 |
Biological role
Carbon dioxide is an end product of cellular respiration in organisms that obtain energy by breaking down sugars, fats and amino acids with oxygen as part of their metabolism. This includes all plants, algae and animals and aerobic fungi and bacteria. In vertebrates, the carbon dioxide travels in the blood from the body’s tissues to the skin (e.g., amphibians) or the gills (e.g., fish), from where it dissolves in the water, or to the lungs from where it is exhaled. During active photosynthesis, plants can absorb more carbon dioxide from the atmosphere than they release in respiration.
Photosynthesis and carbon fixation
Carbon fixation is a biochemical process by which atmospheric carbon dioxide is incorporated by plants, algae and (cyanobacteria) into energy-rich organic molecules such as glucose, thus creating their own food by photosynthesis. Photosynthesis uses carbon dioxide and water to produce sugars from which other organic compounds can be constructed, and oxygen is produced as a by-product.
Ribulose-1,5-bisphosphate carboxylase oxygenase, commonly abbreviated to RuBisCO, is the enzyme involved in the first major step of carbon fixation, the production of two molecules of 3-phosphoglycerate from CO2 and ribulose bisphosphate, as shown in the diagram at left.
RuBisCO is thought to be the single most abundant protein on Earth.[31]
Phototrophs use the products of their photosynthesis as internal food sources and as raw material for the biosynthesis of more complex organic molecules, such as polysaccharides, nucleic acids and proteins. These are used for their own growth, and also as the basis of the food chains and webs that feed other organisms, including animals such as ourselves. Some important phototrophs, the coccolithophores synthesise hard calcium carbonate scales.[32] A globally significant species of coccolithophore is Emiliania huxleyi whose calcite scales have formed the basis of many sedimentary rocks such as limestone, where what was previously atmospheric carbon can remain fixed for geological timescales.
Overview of photosynthesis and respiration. Carbon dioxide (at right), together with water, form oxygen and organic compounds (at left) by photosynthesis, which can be respired to water and (CO2).
Plants can grow as much as 50 percent faster in concentrations of 1,000 ppm CO2 when compared with ambient conditions, though this assumes no change in climate and no limitation on other nutrients.[33] Elevated CO2 levels cause increased growth reflected in the harvestable yield of crops, with wheat, rice and soybean all showing increases in yield of 12–14% under elevated CO2 in FACE experiments.[34][35]
Increased atmospheric CO2 concentrations result in fewer stomata developing on plants[36] which leads to reduced water usage and increased water-use efficiency.[37] Studies using FACE have shown that CO2 enrichment leads to decreased concentrations of micronutrients in crop plants.[38] This may have knock-on effects on other parts of ecosystems as herbivores will need to eat more food to gain the same amount of protein.[39]
The concentration of secondary metabolites such as phenylpropanoids and flavonoids can also be altered in plants exposed to high concentrations of CO2.[40][41]
Plants also emit CO2 during respiration, and so the majority of plants and algae, which use C3 photosynthesis, are only net absorbers during the day. Though a growing forest will absorb many tons of CO2 each year, a mature forest will produce as much CO2 from respiration and decomposition of dead specimens (e.g., fallen branches) as is used in photosynthesis in growing plants.[42] Contrary to the long-standing view that they are carbon neutral, mature forests can continue to accumulate carbon[43] and remain valuable carbon sinks, helping to maintain the carbon balance of Earth’s atmosphere. Additionally, and crucially to life on earth, photosynthesis by phytoplankton consumes dissolved CO2 in the upper ocean and thereby promotes the absorption of CO2 from the atmosphere.[44]
Toxicity
Symptoms of carbon dioxide toxicity, by increasing volume percent in air[45]
Carbon dioxide content in fresh air (averaged between sea-level and 10 kPa level, i.e., about 30 km (19 mi) altitude) varies between 0.036% (360 ppm) and 0.041% (412 ppm), depending on the location.[46][clarification needed]
CO2 is an asphyxiant gas and not classified as toxic or harmful in accordance with Globally Harmonized System of Classification and Labelling of Chemicals standards of United Nations Economic Commission for Europe by using the OECD Guidelines for the Testing of Chemicals. In concentrations up to 1% (10,000 ppm), it will make some people feel drowsy and give the lungs a stuffy feeling.[45] Concentrations of 7% to 10% (70,000 to 100,000 ppm) may cause suffocation, even in the presence of sufficient oxygen, manifesting as dizziness, headache, visual and hearing dysfunction, and unconsciousness within a few minutes to an hour.[47] The physiological effects of acute carbon dioxide exposure are grouped together under the term hypercapnia, a subset of asphyxiation.
Because it is heavier than air, in locations where the gas seeps from the ground (due to sub-surface volcanic or geothermal activity) in relatively high concentrations, without the dispersing effects of wind, it can collect in sheltered/pocketed locations below average ground level, causing animals located therein to be suffocated. Carrion feeders attracted to the carcasses are then also killed. Children have been killed in the same way near the city of Goma by CO2 emissions from the nearby volcano Mount Nyiragongo.[48] The Swahili term for this phenomenon is mazuku.
Adaptation to increased concentrations of CO2 occurs in humans, including modified breathing and kidney bicarbonate production, in order to balance the effects of blood acidification (acidosis). Several studies suggested that 2.0 percent inspired concentrations could be used for closed air spaces (e.g. a submarine) since the adaptation is physiological and reversible, as deterioration in performance or in normal physical activity does not happen at this level of exposure for five days.[49][50] Yet, other studies show a decrease in cognitive function even at much lower levels.[51][52] Also, with ongoing respiratory acidosis, adaptation or compensatory mechanisms will be unable to reverse such condition.
Below 1%
There are few studies of the health effects of long-term continuous CO2 exposure on humans and animals at levels below 1%. Occupational CO2 exposure limits have been set in the United States at 0.5% (5000 ppm) for an eight-hour period.[53] At this CO2 concentration, International Space Station crew experienced headaches, lethargy, mental slowness, emotional irritation, and sleep disruption.[54] Studies in animals at 0.5% CO2 have demonstrated kidney calcification and bone loss after eight weeks of exposure.[55] A study of humans exposed in 2.5 hour sessions demonstrated significant negative effects on cognitive abilities at concentrations as low as 0.1% (1000 ppm) CO2 likely due to CO2 induced increases in cerebral blood flow.[51] Another study observed a decline in basic activity level and information usage at 1000 ppm, when compared to 500 ppm.[52] However a review of the literature found that most studies on the phenomenon of carbon dioxide induced cognitive impairment to have a small effect on high-level decision making and most of the studies were confounded by inadequate study designs, environmental comfort, uncertainties in exposure doses and differing cognitive assessments used.[56] Similarly a study on the effects of the concentration of CO2 in motorcycle helmets has been criticized for having dubious methodology in not noting the self-reports of motorcycle riders and taking measurements using mannequins. Further when normal motorcycle conditions were achieved (such as highway or city speeds) or the visor was raised the concentration of CO2 declined to safe levels (0.2%).[57][58]
Ventilation
Poor ventilation is one of the main causes of excessive CO2 concentrations in closed spaces, leading to poor indoor air quality. Carbon dioxide differential above outdoor concentrations at steady state conditions (when the occupancy and ventilation system operation are sufficiently long that CO2 concentration has stabilized) are sometimes used to estimate ventilation rates per person.[citation needed] Higher CO2 concentrations are associated with occupant health, comfort and performance degradation.[59][60] ASHRAE Standard 62.1–2007 ventilation rates may result in indoor concentrations up to 2,100 ppm above ambient outdoor conditions. Thus if the outdoor concentration is 400 ppm, indoor concentrations may reach 2,500 ppm with ventilation rates that meet this industry consensus standard. Concentrations in poorly ventilated spaces can be found even higher than this (range of 3,000 or 4,000 ppm).
Miners, who are particularly vulnerable to gas exposure due to insufficient ventilation, referred to mixtures of carbon dioxide and nitrogen as «blackdamp», «choke damp» or «stythe». Before more effective technologies were developed, miners would frequently monitor for dangerous levels of blackdamp and other gases in mine shafts by bringing a caged canary with them as they worked. The canary is more sensitive to asphyxiant gases than humans, and as it became unconscious would stop singing and fall off its perch. The Davy lamp could also detect high levels of blackdamp (which sinks, and collects near the floor) by burning less brightly, while methane, another suffocating gas and explosion risk, would make the lamp burn more brightly.
In February 2020, three people died from suffocation at a party in Moscow when dry ice (frozen CO2) was added to a swimming pool to cool it down.[61] A similar accident occurred in 2018 when a woman died from CO2 fumes emanating from the large amount of dry ice she was transporting in her car.[62]
Outdoor areas with elevated concentrations
Local concentrations of carbon dioxide can reach high values near strong sources, especially those that are isolated by surrounding terrain. At the Bossoleto hot spring near Rapolano Terme in Tuscany, Italy, situated in a bowl-shaped depression about 100 m (330 ft) in diameter, concentrations of CO2 rise to above 75% overnight, sufficient to kill insects and small animals. After sunrise the gas is dispersed by convection.[63] High concentrations of CO2 produced by disturbance of deep lake water saturated with CO2 are thought to have caused 37 fatalities at Lake Monoun, Cameroon in 1984 and 1700 casualties at Lake Nyos, Cameroon in 1986.[64]
Human physiology
Content
Blood compartment | (kPa) | (mm Hg) | |
---|---|---|---|
Venous blood carbon dioxide | 5.5–6.8 | 41–51[65] | 41–51[65] |
Alveolar pulmonary gas pressures |
4.8 | 36 | 36 |
Arterial blood carbon dioxide | 4.7–6.0 | 35–45[65] | 35–45[65] |
The body produces approximately 2.3 pounds (1.0 kg) of carbon dioxide per day per person,[66] containing 0.63 pounds (290 g) of carbon. In humans, this carbon dioxide is carried through the venous system and is breathed out through the lungs, resulting in lower concentrations in the arteries. The carbon dioxide content of the blood is often given as the partial pressure, which is the pressure which carbon dioxide would have had if it alone occupied the volume.[67] In humans, the blood carbon dioxide contents is shown in the adjacent table.
Transport in the blood
CO2 is carried in blood in three different ways. (Exact percentages vary between arterial and venous blood).
- Majority (about 70% to 80%) is converted to bicarbonate ions HCO−3 by the enzyme carbonic anhydrase in the red blood cells,[68] by the reaction CO2 + H2O → H2CO3 → H+ + HCO−3.
- 5–10% is dissolved in blood plasma[68]
- 5–10% is bound to hemoglobin as carbamino compounds[68]
Hemoglobin, the main oxygen-carrying molecule in red blood cells, carries both oxygen and carbon dioxide. However, the CO2 bound to hemoglobin does not bind to the same site as oxygen. Instead, it combines with the N-terminal groups on the four globin chains. However, because of allosteric effects on the hemoglobin molecule, the binding of CO2 decreases the amount of oxygen that is bound for a given partial pressure of oxygen. This is known as the Haldane Effect, and is important in the transport of carbon dioxide from the tissues to the lungs. Conversely, a rise in the partial pressure of CO2 or a lower pH will cause offloading of oxygen from hemoglobin, which is known as the Bohr effect.
Regulation of respiration
Carbon dioxide is one of the mediators of local autoregulation of blood supply. If its concentration is high, the capillaries expand to allow a greater blood flow to that tissue.[69]
Bicarbonate ions are crucial for regulating blood pH. A person’s breathing rate influences the level of CO2 in their blood. Breathing that is too slow or shallow causes respiratory acidosis, while breathing that is too rapid leads to hyperventilation, which can cause respiratory alkalosis.[70]
Although the body requires oxygen for metabolism, low oxygen levels normally do not stimulate breathing. Rather, breathing is stimulated by higher carbon dioxide levels. As a result, breathing low-pressure air or a gas mixture with no oxygen at all (such as pure nitrogen) can lead to loss of consciousness without ever experiencing air hunger. This is especially perilous for high-altitude fighter pilots. It is also why flight attendants instruct passengers, in case of loss of cabin pressure, to apply the oxygen mask to themselves first before helping others; otherwise, one risks losing consciousness.[68]
The respiratory centers try to maintain an arterial CO2 pressure of 40 mm Hg. With intentional hyperventilation, the CO2 content of arterial blood may be lowered to 10–20 mm Hg (the oxygen content of the blood is little affected), and the respiratory drive is diminished. This is why one can hold one’s breath longer after hyperventilating than without hyperventilating. This carries the risk that unconsciousness may result before the need to breathe becomes overwhelming, which is why hyperventilation is particularly dangerous before free diving.[71]
Concentrations and role in the environment
Atmosphere
Atmospheric CO2 concentrations measured at Mauna Loa Observatory from 1958 to 2022 (also called the Keeling Curve). Carbon dioxide concentrations have varied widely over the Earth’s 4.54 billion year history. However, in 2013 the daily mean concentration of CO2 in the atmosphere surpassed 400 parts per million (ppmv)[72] — this level has never been reached since the mid-Pliocene, 2 to 4 million years ago.[73]
Carbon dioxide in Earth’s atmosphere is a trace gas that plays an integral part in the greenhouse effect, carbon cycle, photosynthesis and oceanic carbon cycle. It is one of several greenhouse gases in Earth’s atmosphere that are contributing to climate change due to increasing emissions of greenhouse gases from human activities. The current global average concentration of CO2 in the atmosphere is 421 ppm as of May 2022.[74] This is an increase of 50% since the start of the Industrial Revolution, up from 280 ppm during the 10,000 years prior to the mid-18th century.[75][74][76] The increase is due to human activity.[77] Burning fossil fuels is the main cause of these increased CO2 concentrations and also the main cause of climate change.[78] Other large anthropogenic sources include cement production, deforestation, and biomass burning.
While transparent to visible light, carbon dioxide is a greenhouse gas, absorbing and emitting infrared radiation at its two infrared-active vibrational frequencies. CO2 absorbs and emits infrared radiation at wavelengths of 4.26 μm (2,347 cm−1) (asymmetric stretching vibrational mode) and 14.99 μm (667 cm−1) (bending vibrational mode). It plays a significant role in influencing Earth’s surface temperature through the greenhouse effect.[79] Light emission from the Earth’s surface is most intense in the infrared region between 200 and 2500 cm−1,[80] as opposed to light emission from the much hotter Sun which is most intense in the visible region. Absorption of infrared light at the vibrational frequencies of atmospheric CO2 traps energy near the surface, warming the surface and the lower atmosphere. Less energy reaches the upper atmosphere, which is therefore cooler because of this absorption.[81]
Increases in atmospheric concentrations of CO2 and other long-lived greenhouse gases such as methane, nitrous oxide and ozone increase the absorption and emission of infrared radiation by the atmosphere, causing the observed rise in average global temperature and ocean acidification. Another direct effect is the CO2 fertilization effect. These changes cause a range of indirect effects of climate change on the physical environment, ecosystems and human societies. Carbon dioxide exerts a larger overall warming influence than all of the other greenhouse gases combined.[76] It has an atmospheric lifetime that increases with the cumulative amount of fossil carbon extracted and burned, due to the imbalance that this activity has imposed on Earth’s fast carbon cycle.[82] This means that some fraction (a projected 20-35%) of the fossil carbon transferred thus far will persist in the atmosphere as elevated CO2 levels for many thousands of years after these carbon transfer activities begin to subside.[83][84][85] The carbon cycle is a biogeochemical cycle in which carbon is exchanged between the Earth’s oceans, soil, rocks and the biosphere. Plants and other photoautotrophs use solar energy to produce carbohydrate from atmospheric carbon dioxide and water by photosynthesis. Almost all other organisms depend on carbohydrate derived from photosynthesis as their primary source of energy and carbon compounds.
The present atmospheric concentration of CO2 is the highest for 14 million years.[86] Concentrations of CO2 in the atmosphere were as high as 4,000 ppm during the Cambrian period about 500 million years ago, when the concentration was 20 times greater than today, and as low as 180 ppm during the Quaternary glaciation of the last two million years.[75] Reconstructed temperature records for the last 420 million years indicate that atmospheric CO2 concentrations peaked at ~2,000 ppm during the Devonian (~400 Ma) period, and again in the Triassic (220–200 Ma) period and was four times current levels during the Jurassic period (201-145 Ma).[87][88]
Annual CO2 flows from anthropogenic sources (left) into Earth’s atmosphere, land, and ocean sinks (right) since the 1960s. Units in equivalent gigatonnes carbon per year.[89]
Oceans
Ocean acidification
Carbon dioxide dissolves in the ocean to form carbonic acid (H2CO3), bicarbonate (HCO3−) and carbonate (CO32−). There is about fifty times as much carbon dioxide dissolved in the oceans as exists in the atmosphere. The oceans act as an enormous carbon sink, and have taken up about a third of CO2 emitted by human activity.[90]
Pterapod shell dissolved in seawater adjusted to an ocean chemistry projected for the year 2100
Changes in ocean chemistry can have extensive direct and indirect effects on organisms and their habitats. One of the most important repercussions of increasing ocean acidity relates to the production of shells out of calcium carbonate (CaCO
3).[92] This process is called calcification and is important to the biology and survival of a wide range of marine organisms. Calcification involves the precipitation of dissolved ions into solid CaCO
3 structures, structures for many marine organisms, such as coccolithophores, foraminifera, crustaceans, mollusks, etc. After they are formed, these CaCO
3 structures are vulnerable to dissolution unless the surrounding seawater contains saturating concentrations of carbonate ions (CO32−).
Given the current pH of the ocean (around 8.14), of the extra carbon dioxide added into the ocean, very little remains as dissolved carbon dioxide. The majority dissociates into additional bicarbonate and free hydrogen ions. The increase in hydrogen is larger than the increase in bicarbonate,[93] creating an imbalance in the reaction HCO3− ⇌ CO32− + H+. To maintain chemical equilibrium, some of the carbonate ions already in the ocean combine with some of the hydrogen ions to make further bicarbonate. Thus the ocean’s concentration of carbonate ions is reduced, removing an essential building block for marine organisms to build shells, or calcify: Ca2+ + CO32− ⇌ CaCO3.
Hydrothermal vents
Carbon dioxide is also introduced into the oceans through hydrothermal vents. The Champagne hydrothermal vent, found at the Northwest Eifuku volcano in the Mariana Trench, produces almost pure liquid carbon dioxide, one of only two known sites in the world as of 2004, the other being in the Okinawa Trough.[94] The finding of a submarine lake of liquid carbon dioxide in the Okinawa Trough was reported in 2006.[95]
Production
Biological processes
Carbon dioxide is a by-product of the fermentation of sugar in the brewing of beer, whisky and other alcoholic beverages and in the production of bioethanol. Yeast metabolizes sugar to produce CO2 and ethanol, also known as alcohol, as follows:
All aerobic organisms produce CO2 when they oxidize carbohydrates, fatty acids, and proteins. The large number of reactions involved are exceedingly complex and not described easily. Refer to (cellular respiration, anaerobic respiration and photosynthesis). The equation for the respiration of glucose and other monosaccharides is:
Anaerobic organisms decompose organic material producing methane and carbon dioxide together with traces of other compounds.[96] Regardless of the type of organic material, the production of gases follows well defined kinetic pattern. Carbon dioxide comprises about 40–45% of the gas that emanates from decomposition in landfills (termed «landfill gas»). Most of the remaining 50–55% is methane.[97]
Industrial processes
Carbon dioxide can be obtained by distillation from air, but the method is inefficient. Industrially, carbon dioxide is predominantly an unrecovered waste product, produced by several methods which may be practiced at various scales.[98]
Combustion
The combustion of all carbon-based fuels, such as methane (natural gas), petroleum distillates (gasoline, diesel, kerosene, propane), coal, wood and generic organic matter produces carbon dioxide and, except in the case of pure carbon, water. As an example, the chemical reaction between methane and oxygen:
Iron is reduced from its oxides with coke in a blast furnace, producing pig iron and carbon dioxide:[99]
By-product from hydrogen production
Carbon dioxide is a byproduct of the industrial production of hydrogen by steam reforming and the water gas shift reaction in ammonia production. These processes begin with the reaction of water and natural gas (mainly methane).[100] This is a major source of food-grade carbon dioxide for use in carbonation of beer and soft drinks, and is also used for stunning animals such as poultry. In the summer of 2018 a shortage of carbon dioxide for these purposes arose in Europe due to the temporary shut-down of several ammonia plants for maintenance.[101]
Thermal decomposition of limestone
It is produced by thermal decomposition of limestone, CaCO3 by heating (calcining) at about 850 °C (1,560 °F), in the manufacture of quicklime (calcium oxide, CaO), a compound that has many industrial uses:
Acids liberate CO2 from most metal carbonates. Consequently, it may be obtained directly from natural carbon dioxide springs, where it is produced by the action of acidified water on limestone or dolomite. The reaction between hydrochloric acid and calcium carbonate (limestone or chalk) is shown below:
The carbonic acid (H2CO3) then decomposes to water and CO2:
Such reactions are accompanied by foaming or bubbling, or both, as the gas is released. They have widespread uses in industry because they can be used to neutralize waste acid streams.
Commercial uses
Carbon dioxide is used by the food industry, the oil industry, and the chemical industry.[98]
The compound has varied commercial uses but one of its greatest uses as a chemical is in the production of carbonated beverages; it provides the sparkle in carbonated beverages such as soda water, beer and sparkling wine.
Precursor to chemicals
This section needs expansion. You can help by adding to it. (July 2014) |
In the chemical industry, carbon dioxide is mainly consumed as an ingredient in the production of urea, with a smaller fraction being used to produce methanol and a range of other products.[102] Some carboxylic acid derivatives such as sodium salicylate are prepared using CO2 by the Kolbe–Schmitt reaction.[103]
In addition to conventional processes using CO2 for chemical production, electrochemical methods are also being explored at a research level. In particular, the use of renewable energy for production of fuels from CO2 (such as methanol) is attractive as this could result in fuels that could be easily transported and used within conventional combustion technologies but have no net CO2 emissions.[104]
Agriculture
Plants require carbon dioxide to conduct photosynthesis. The atmospheres of greenhouses may (if of large size, must) be enriched with additional CO2 to sustain and increase the rate of plant growth.[105][106] At very high concentrations (100 times atmospheric concentration, or greater), carbon dioxide can be toxic to animal life, so raising the concentration to 10,000 ppm (1%) or higher for several hours will eliminate pests such as whiteflies and spider mites in a greenhouse.[107]
Foods
Carbon dioxide bubbles in a soft drink
Carbon dioxide is a food additive used as a propellant and acidity regulator in the food industry. It is approved for usage in the EU[108] (listed as E number E290), US[109] and Australia and New Zealand[110] (listed by its INS number 290).
A candy called Pop Rocks is pressurized with carbon dioxide gas[111] at about 4,000 kPa (40 bar; 580 psi). When placed in the mouth, it dissolves (just like other hard candy) and releases the gas bubbles with an audible pop.
Leavening agents cause dough to rise by producing carbon dioxide.[112] Baker’s yeast produces carbon dioxide by fermentation of sugars within the dough, while chemical leaveners such as baking powder and baking soda release carbon dioxide when heated or if exposed to acids.
Beverages
Carbon dioxide is used to produce carbonated soft drinks and soda water. Traditionally, the carbonation of beer and sparkling wine came about through natural fermentation, but many manufacturers carbonate these drinks with carbon dioxide recovered from the fermentation process. In the case of bottled and kegged beer, the most common method used is carbonation with recycled carbon dioxide. With the exception of British real ale, draught beer is usually transferred from kegs in a cold room or cellar to dispensing taps on the bar using pressurized carbon dioxide, sometimes mixed with nitrogen.
The taste of soda water (and related taste sensations in other carbonated beverages) is an effect of the dissolved carbon dioxide rather than the bursting bubbles of the gas. Carbonic anhydrase 4 converts to carbonic acid leading to a sour taste, and also the dissolved carbon dioxide induces a somatosensory response.[113]
Winemaking
Dry ice used to preserve grapes after harvest
Carbon dioxide in the form of dry ice is often used during the cold soak phase in winemaking to cool clusters of grapes quickly after picking to help prevent spontaneous fermentation by wild yeast. The main advantage of using dry ice over water ice is that it cools the grapes without adding any additional water that might decrease the sugar concentration in the grape must, and thus the alcohol concentration in the finished wine. Carbon dioxide is also used to create a hypoxic environment for carbonic maceration, the process used to produce Beaujolais wine.
Carbon dioxide is sometimes used to top up wine bottles or other storage vessels such as barrels to prevent oxidation, though it has the problem that it can dissolve into the wine, making a previously still wine slightly fizzy. For this reason, other gases such as nitrogen or argon are preferred for this process by professional wine makers.
Stunning animals
Carbon dioxide is often used to «stun» animals before slaughter.[114] «Stunning» may be a misnomer, as the animals are not knocked out immediately and may suffer distress.[115][116]
Inert gas
Carbon dioxide is one of the most commonly used compressed gases for pneumatic (pressurized gas) systems in portable pressure tools. Carbon dioxide is also used as an atmosphere for welding, although in the welding arc, it reacts to oxidize most metals. Use in the automotive industry is common despite significant evidence that welds made in carbon dioxide are more brittle than those made in more inert atmospheres.[citation needed] When used for MIG welding, CO2 use is sometimes referred to as MAG welding, for Metal Active Gas, as CO2 can react at these high temperatures. It tends to produce a hotter puddle than truly inert atmospheres, improving the flow characteristics. Although, this may be due to atmospheric reactions occurring at the puddle site. This is usually the opposite of the desired effect when welding, as it tends to embrittle the site, but may not be a problem for general mild steel welding, where ultimate ductility is not a major concern.
Carbon dioxide is used in many consumer products that require pressurized gas because it is inexpensive and nonflammable, and because it undergoes a phase transition from gas to liquid at room temperature at an attainable pressure of approximately 60 bar (870 psi; 59 atm), allowing far more carbon dioxide to fit in a given container than otherwise would. Life jackets often contain canisters of pressured carbon dioxide for quick inflation. Aluminium capsules of CO2 are also sold as supplies of compressed gas for air guns, paintball markers/guns, inflating bicycle tires, and for making carbonated water. High concentrations of carbon dioxide can also be used to kill pests. Liquid carbon dioxide is used in supercritical drying of some food products and technological materials, in the preparation of specimens for scanning electron microscopy[117] and in the decaffeination of coffee beans.
Fire extinguisher
Use of a CO2 fire extinguisher
Carbon dioxide can be used to extinguish flames by flooding the environment around the flame with the gas. It does not itself react to extinguish the flame, but starves the flame of oxygen by displacing it. Some fire extinguishers, especially those designed for electrical fires, contain liquid carbon dioxide under pressure. Carbon dioxide extinguishers work well on small flammable liquid and electrical fires, but not on ordinary combustible fires, because they do not cool the burning substances significantly, and when the carbon dioxide disperses, they can catch fire upon exposure to atmospheric oxygen. They are mainly used in server rooms.[118]
Carbon dioxide has also been widely used as an extinguishing agent in fixed fire-protection systems for local application of specific hazards and total flooding of a protected space.[119] International Maritime Organization standards recognize carbon-dioxide systems for fire protection of ship holds and engine rooms. Carbon-dioxide-based fire-protection systems have been linked to several deaths, because it can cause suffocation in sufficiently high concentrations. A review of CO2 systems identified 51 incidents between 1975 and the date of the report (2000), causing 72 deaths and 145 injuries.[120]
Supercritical CO2 as solvent
Liquid carbon dioxide is a good solvent for many lipophilic organic compounds and is used to remove caffeine from coffee.[17] Carbon dioxide has attracted attention in the pharmaceutical and other chemical processing industries as a less toxic alternative to more traditional solvents such as organochlorides. It is also used by some dry cleaners for this reason. It is used in the preparation of some aerogels because of the properties of supercritical carbon dioxide.
Medical and pharmacological uses
In medicine, up to 5% carbon dioxide (130 times atmospheric concentration) is added to oxygen for stimulation of breathing after apnea and to stabilize the O2/CO2 balance in blood.
Carbon dioxide can be mixed with up to 50% oxygen, forming an inhalable gas; this is known as Carbogen and has a variety of medical and research uses.
Another medical use are the mofette, dry spas that use carbon dioxide from post-volcanic discharge for therapeutic purposes.
Energy
Supercritical CO2 is used as the working fluid in the Allam power cycle engine.
Fossil fuel recovery
Carbon dioxide is used in enhanced oil recovery where it is injected into or adjacent to producing oil wells, usually under supercritical conditions, when it becomes miscible with the oil. This approach can increase original oil recovery by reducing residual oil saturation by 7–23% additional to primary extraction.[121] It acts as both a pressurizing agent and, when dissolved into the underground crude oil, significantly reduces its viscosity, and changing surface chemistry enabling the oil to flow more rapidly through the reservoir to the removal well.[122] In mature oil fields, extensive pipe networks are used to carry the carbon dioxide to the injection points.
In enhanced coal bed methane recovery, carbon dioxide would be pumped into the coal seam to displace methane, as opposed to current methods which primarily rely on the removal of water (to reduce pressure) to make the coal seam release its trapped methane.[123]
Bio transformation into fuel
It has been proposed that CO2 from power generation be bubbled into ponds to stimulate growth of algae that could then be converted into biodiesel fuel.[124] A strain of the cyanobacterium Synechococcus elongatus has been genetically engineered to produce the fuels isobutyraldehyde and isobutanol from CO2 using photosynthesis.[125]
Researchers have developed a process called electrolysis, using enzymes isolated from bacteria to power the chemical reactions which convert CO2 into fuels.[126][127][128]
Refrigerant
Comparison of the pressure–temperature phase diagrams of carbon dioxide (red) and water (blue) as a log-lin chart with phase transitions points at 1 atmosphere
Liquid and solid carbon dioxide are important refrigerants, especially in the food industry, where they are employed during the transportation and storage of ice cream and other frozen foods. Solid carbon dioxide is called «dry ice» and is used for small shipments where refrigeration equipment is not practical. Solid carbon dioxide is always below −78.5 °C (−109.3 °F) at regular atmospheric pressure, regardless of the air temperature.
Liquid carbon dioxide (industry nomenclature R744 or R-744) was used as a refrigerant prior to the use[citation needed] of dichlorodifluoromethane (R12, a chlorofluorocarbon (CFC) compound). CO2 might enjoy a renaissance because one of the main substitutes to CFCs, 1,1,1,2-tetrafluoroethane (R134a, a hydrofluorocarbon (HFC) compound) contributes to climate change more than CO2 does. CO2 physical properties are highly favorable for cooling, refrigeration, and heating purposes, having a high volumetric cooling capacity. Due to the need to operate at pressures of up to 130 bars (1,900 psi; 13,000 kPa), CO2 systems require highly mechanically resistant reservoirs and components that have already been developed for mass production in many sectors. In automobile air conditioning, in more than 90% of all driving conditions for latitudes higher than 50°, CO2 (R744) operates more efficiently than systems using HFCs (e.g., R134a). Its environmental advantages (GWP of 1, non-ozone depleting, non-toxic, non-flammable) could make it the future working fluid to replace current HFCs in cars, supermarkets, and heat pump water heaters, among others. Coca-Cola has fielded CO2-based beverage coolers and the U.S. Army is interested in CO2 refrigeration and heating technology.[129][130]
Minor uses
Carbon dioxide is the lasing medium in a carbon-dioxide laser, which is one of the earliest type of lasers.
Carbon dioxide can be used as a means of controlling the pH of swimming pools,[131] by continuously adding gas to the water, thus keeping the pH from rising. Among the advantages of this is the avoidance of handling (more hazardous) acids. Similarly, it is also used in the maintaining reef aquaria, where it is commonly used in calcium reactors to temporarily lower the pH of water being passed over calcium carbonate in order to allow the calcium carbonate to dissolve into the water more freely, where it is used by some corals to build their skeleton.
Used as the primary coolant in the British advanced gas-cooled reactor for nuclear power generation.
Carbon dioxide induction is commonly used for the euthanasia of laboratory research animals. Methods to administer CO2 include placing animals directly into a closed, prefilled chamber containing CO2, or exposure to a gradually increasing concentration of CO2. The American Veterinary Medical Association’s 2020 guidelines for carbon dioxide induction state that a displacement rate of 30–70% of the chamber or cage volume per minute is optimal for the humane euthanasia of small rodents.[132]: 5, 31 Percentages of CO2 vary for different species, based on identified optimal percentages to minimize distress.[132]: 22
Carbon dioxide is also used in several related cleaning and surface-preparation techniques.
History of discovery
Carbon dioxide was the first gas to be described as a discrete substance. In about 1640,[133] the Flemish chemist Jan Baptist van Helmont observed that when he burned charcoal in a closed vessel, the mass of the resulting ash was much less than that of the original charcoal. His interpretation was that the rest of the charcoal had been transmuted into an invisible substance he termed a «gas» or «wild spirit» (spiritus sylvestris).[134]
The properties of carbon dioxide were further studied in the 1750s by the Scottish physician Joseph Black. He found that limestone (calcium carbonate) could be heated or treated with acids to yield a gas he called «fixed air». He observed that the fixed air was denser than air and supported neither flame nor animal life. Black also found that when bubbled through limewater (a saturated aqueous solution of calcium hydroxide), it would precipitate calcium carbonate. He used this phenomenon to illustrate that carbon dioxide is produced by animal respiration and microbial fermentation. In 1772, English chemist Joseph Priestley published a paper entitled Impregnating Water with Fixed Air in which he described a process of dripping sulfuric acid (or oil of vitriol as Priestley knew it) on chalk in order to produce carbon dioxide, and forcing the gas to dissolve by agitating a bowl of water in contact with the gas.[135]
Carbon dioxide was first liquefied (at elevated pressures) in 1823 by Humphry Davy and Michael Faraday.[136] The earliest description of solid carbon dioxide (dry ice) was given by the French inventor Adrien-Jean-Pierre Thilorier, who in 1835 opened a pressurized container of liquid carbon dioxide, only to find that the cooling produced by the rapid evaporation of the liquid yielded a «snow» of solid CO2.[137][138]
See also
- Arterial blood gas – A test of blood taken from an artery that measures the amounts of certain dissolved gases
- Bosch reaction – forms elemental carbon from CO2 and hydrogen using a metallic catalyst
- Carbon dioxide removal – Removal of atmospheric carbon dioxide (from the atmosphere)
- List of least carbon efficient power stations
- List of countries by carbon dioxide emissions
- Meromictic lake – Permanently stratified lake with layers of water that do not intermix
- Gilbert Plass – Canadian physicist (early work on CO2 and climate change)
- Sabatier reaction – Methanation process of carbon dioxide with hydrogen
- NASA’s Orbiting Carbon Observatory 2 – NASA climate satellite
- Greenhouse Gases Observing Satellite – Earth observation satellite
- Soil gas – soil -exchange of gases between plant roots and the atmosphere
References
- ^ a b c «Carbon Dioxide» (PDF). Air Products. Archived from the original (PDF) on 29 July 2020. Retrieved 28 April 2017.
- ^ a b c d e f g h i Span R, Wagner W (1 November 1996). «A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa». Journal of Physical and Chemical Reference Data. 25 (6): 1519. Bibcode:1996JPCRD..25.1509S. doi:10.1063/1.555991.
- ^ Touloukian YS, Liley PE, Saxena SC (1970). «Thermophysical properties of matter — the TPRC data series». Thermal Conductivity — Nonmetallic Liquids and Gases. Data book. 3.
- ^ Schäfer M, Richter M, Span R (2015). «Measurements of the viscosity of carbon dioxide at temperatures from (253.15 to 473.15) K with pressures up to 1.2 MPa». The Journal of Chemical Thermodynamics. 89: 7–15. doi:10.1016/j.jct.2015.04.015.
- ^ a b c NIOSH Pocket Guide to Chemical Hazards. «#0103». National Institute for Occupational Safety and Health (NIOSH).
- ^ «Carbon dioxide». Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
- ^ «Safety Data Sheet – Carbon Dioxide Gas – version 0.03 11/11» (PDF). AirGas.com. 12 February 2018. Archived (PDF) from the original on 4 August 2018. Retrieved 4 August 2018.
- ^ «Carbon dioxide, refrigerated liquid» (PDF). Praxair. p. 9. Archived from the original (PDF) on 29 July 2018. Retrieved 26 July 2018.
- ^ Eggleton T (2013). A Short Introduction to Climate Change. Cambridge University Press. p. 52. ISBN 9781107618763. Archived from the original on 23 July 2021. Retrieved 9 November 2020.
- ^ «Carbon dioxide now more than 50% higher than pre-industrial levels | National Oceanic and Atmospheric Administration». www.noaa.gov. Retrieved 14 June 2022.
- ^ IPCC (2022) Summary for policy makers in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
- ^ Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean. Washington, DC: National Academies Press. 22 April 2010. pp. 23–24. doi:10.17226/12904. ISBN 978-0-309-15359-1. Archived from the original on 5 February 2016. Retrieved 29 February 2016.
- ^ Kaufman DG, Franz CM (1996). Biosphere 2000: protecting our global environment. Kendall/Hunt Pub. Co. ISBN 978-0-7872-0460-0.
- ^ «Food Factories». www.legacyproject.org. Archived from the original on 12 August 2017. Retrieved 10 October 2011.
- ^ IPCC (2021). «Summary for Policymakers» (PDF). Climate Change 2021: The Physical Science Basis. p. 20. Archived (PDF) from the original on 10 October 2022.
- ^ Myles, Allen (September 2020). «The Oxford Principles for Net Zero Aligned Carbon Offsetting» (PDF). Archived (PDF) from the original on 2 October 2020. Retrieved 10 December 2021.
- ^ a b Tsotsas E, Mujumdar AS (2011). Modern drying technology. Vol. 3: Product quality and formulation. John Wiley & Sons. ISBN 978-3-527-31558-1. Archived from the original on 21 March 2020. Retrieved 3 December 2019.
- ^ Spritzler F (3 November 2019). «Carbonated (Sparkling) Water: Good or Bad?». healthline.com. Archived from the original on 10 May 2020.
- ^ a b Greenwood NN, Earnshaw A (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 305–314. ISBN 978-0-08-037941-8.
- ^ Atkins P, de Paula J (2006). Physical Chemistry (8th ed.). W.H. Freeman. pp. 461, 464. ISBN 978-0-7167-8759-4.
- ^ Siegmann B, Werner U, Lutz HO, Mann R (2002). «Complete Coulomb fragmentation of CO2 in collisions with 5.9 MeV u−1 Xe18+ and Xe43+«. J Phys B Atom Mol Opt Phys. 35 (17): 3755. Bibcode:2002JPhB…35.3755S. doi:10.1088/0953-4075/35/17/311. S2CID 250782825.
- ^ a b
Jensen P, Spanner M, Bunker PR (2020). «The CO2 molecule is never linear−». J Mol Struct. 1212: 128087. Bibcode:2020JMoSt121228087J. doi:10.1016/j.molstruc.2020.128087. hdl:2142/107329. S2CID 216318907. - ^ Jolly WL (1984). Modern Inorganic Chemistry. McGraw-Hill. p. 196. ISBN 978-0-07-032760-3.
- ^ Li Z, Mayer RJ, Ofial AR, Mayr H (May 2020). «From Carbodiimides to Carbon Dioxide: Quantification of the Electrophilic Reactivities of Heteroallenes». Journal of the American Chemical Society. 142 (18): 8383–8402. doi:10.1021/jacs.0c01960. PMID 32338511. S2CID 216557447.
- ^ Aresta M, ed. (2010). Carbon Dioxide as a Chemical Feedstock. Weinheim: Wiley-VCH. ISBN 978-3-527-32475-0.
- ^ Finn C, Schnittger S, Yellowlees LJ, Love JB (February 2012). «Molecular approaches to the electrochemical reduction of carbon dioxide» (PDF). Chemical Communications. 48 (10): 1392–1399. doi:10.1039/c1cc15393e. hdl:20.500.11820/b530915d-451c-493c-8251-da2ea2f50912. PMID 22116300. S2CID 14356014. Archived (PDF) from the original on 19 April 2021. Retrieved 6 December 2019.
- ^ «Gases – Densities». Engineering Toolbox. Archived from the original on 2 March 2006. Retrieved 21 November 2020.
- ^ Santoro M, Gorelli FA, Bini R, Ruocco G, Scandolo S, Crichton WA (June 2006). «Amorphous silica-like carbon dioxide». Nature. 441 (7095): 857–860. Bibcode:2006Natur.441..857S. doi:10.1038/nature04879. PMID 16778885. S2CID 4363092.
- ^ a b Holman, Jack P. (2002). Heat Transfer (9th ed.). New York, NY: McGraw-Hill Companies, Inc. pp. 600–606. ISBN 9780072406559.
- ^ a b Incropera 1 Dewitt 2 Bergman 3 Lavigne 4, Frank P. 1 David P. 2 Theodore L. 3 Adrienne S. 4 (2007). Fundamentals of Heat and Mass Transfer (6th ed.). Hoboken, NJ: John Wiley and Sons, Inc. pp. 941–950. ISBN 9780471457282.
- ^ Dhingra A, Portis AR, Daniell H (April 2004). «Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants». Proceedings of the National Academy of Sciences of the United States of America. 101 (16): 6315–6320. Bibcode:2004PNAS..101.6315D. doi:10.1073/pnas.0400981101. PMC 395966. PMID 15067115.
(Rubisco) is the most prevalent enzyme on this planet, accounting for 30–50% of total soluble protein in the chloroplast
- ^ Falkowski P, Knoll AH (1 January 2007). Evolution of primary producers in the sea. Elsevier, Academic Press. ISBN 978-0-12-370518-1. OCLC 845654016.
- ^ Blom TJ, Straver WA, Ingratta FJ, Khosla S, Brown W (December 2002). «Carbon Dioxide In Greenhouses». Archived from the original on 29 April 2019. Retrieved 12 June 2007.
- ^ Ainsworth EA (2008). «Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration» (PDF). Global Change Biology. 14 (7): 1642–1650. Bibcode:2008GCBio..14.1642A. doi:10.1111/j.1365-2486.2008.01594.x. S2CID 19200429. Archived from the original (PDF) on 19 July 2011.
- ^ Long SP, Ainsworth EA, Leakey AD, Nösberger J, Ort DR (June 2006). «Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations» (PDF). Science. 312 (5782): 1918–1921. Bibcode:2006Sci…312.1918L. CiteSeerX 10.1.1.542.5784. doi:10.1126/science.1114722. PMID 16809532. S2CID 2232629. Archived (PDF) from the original on 20 October 2016. Retrieved 27 October 2017.
- ^ Woodward F, Kelly C (1995). «The influence of CO2 concentration on stomatal density». New Phytologist. 131 (3): 311–327. doi:10.1111/j.1469-8137.1995.tb03067.x.
- ^ Drake BG, Gonzalez-Meler MA, Long SP (June 1997). «More Efficient Plants: A Consequence of Rising Atmospheric CO2?». Annual Review of Plant Physiology and Plant Molecular Biology. 48 (1): 609–639. doi:10.1146/annurev.arplant.48.1.609. PMID 15012276. S2CID 33415877.
- ^ Loladze I (2002). «Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry?». Trends in Ecology & Evolution. 17 (10): 457–461. doi:10.1016/S0169-5347(02)02587-9. S2CID 16074723.
- ^ Coviella CE, Trumble JT (1999). «Effects of Elevated Atmospheric Carbon Dioxide on Insect-Plant Interactions». Conservation Biology. 13 (4): 700–712. doi:10.1046/j.1523-1739.1999.98267.x. JSTOR 2641685. S2CID 52262618.
- ^ Davey MP, Harmens H, Ashenden TW, Edwards R, Baxter R (2007). «Species-specific effects of elevated CO2 on resource allocation in Plantago maritima and Armeria maritima«. Biochemical Systematics and Ecology. 35 (3): 121–129. doi:10.1016/j.bse.2006.09.004.
- ^ Davey MP, Bryant DN, Cummins I, Ashenden TW, Gates P, Baxter R, Edwards R (August 2004). «Effects of elevated CO2 on the vasculature and phenolic secondary metabolism of Plantago maritima». Phytochemistry. 65 (15): 2197–2204. doi:10.1016/j.phytochem.2004.06.016. PMID 15587703.
- ^ «Global Environment Division Greenhouse Gas Assessment Handbook – A Practical Guidance Document for the Assessment of Project-level Greenhouse Gas Emissions». World Bank. Archived from the original on 3 June 2016. Retrieved 10 November 2007.
- ^ Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, et al. (September 2008). «Old-growth forests as global carbon sinks» (PDF). Nature. 455 (7210): 213–215. Bibcode:2008Natur.455..213L. doi:10.1038/nature07276. PMID 18784722. S2CID 4424430.
- ^ Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, et al. (October 2000). «The global carbon cycle: a test of our knowledge of earth as a system». Science. 290 (5490): 291–296. Bibcode:2000Sci…290..291F. doi:10.1126/science.290.5490.291. PMID 11030643. S2CID 1779934.
- ^ a b Friedman D. «Toxicity of Carbon Dioxide Gas Exposure, CO2 Poisoning Symptoms, Carbon Dioxide Exposure Limits, and Links to Toxic Gas Testing Procedures». InspectAPedia. Archived from the original on 28 September 2009.
- ^ «CarbonTracker CT2011_oi (Graphical map of CO2)». esrl.noaa.gov. Archived from the original on 13 February 2021. Retrieved 20 April 2007.
- ^ «Carbon Dioxide as a Fire Suppressant: Examining the Risks». U.S. Environmental Protection Agency. Archived from the original on 2 October 2015.
- ^ «Volcano Under the City». A NOVA Production by Bonne Pioche and Greenspace for WGBH/Boston. Public Broadcasting System. 1 November 2005. Archived from the original on 5 April 2011..
- ^ Glatte Jr HA, Motsay GJ, Welch BE (1967). Carbon Dioxide Tolerance Studies (Report). Brooks AFB, TX School of Aerospace Medicine Technical Report. SAM-TR-67-77. Archived from the original on 9 May 2008. Retrieved 2 May 2008.
{{cite report}}
: CS1 maint: unfit URL (link) - ^ Lambertsen CJ (1971). Carbon Dioxide Tolerance and Toxicity (Report). IFEM Report. Environmental Biomedical Stress Data Center, Institute for Environmental Medicine, University of Pennsylvania Medical Center. No. 2-71. Archived from the original on 24 July 2011. Retrieved 2 May 2008.
{{cite report}}
: CS1 maint: unfit URL (link) - ^ a b Satish U, Mendell MJ, Shekhar K, Hotchi T, Sullivan D, Streufert S, Fisk WJ (December 2012). «Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance» (PDF). Environmental Health Perspectives. 120 (12): 1671–1677. doi:10.1289/ehp.1104789. PMC 3548274. PMID 23008272. Archived from the original (PDF) on 5 March 2016. Retrieved 11 December 2014.
- ^ a b Allen JG, MacNaughton P, Satish U, Santanam S, Vallarino J, Spengler JD (June 2016). «Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments». Environmental Health Perspectives. 124 (6): 805–812. doi:10.1289/ehp.1510037. PMC 4892924. PMID 26502459.
- ^ «Exposure Limits for Carbon Dioxide Gas – CO2 Limits». InspectAPedia.com. Archived from the original on 16 September 2018. Retrieved 19 October 2014.
- ^ Law J, Watkins S, Alexander D (2010). In-Flight Carbon Dioxide Exposures and Related Symptoms: Associations, Susceptibility and Operational Implications (PDF) (Report). NASA Technical Report. TP–2010–216126. Archived from the original (PDF) on 27 June 2011. Retrieved 26 August 2014.
- ^ Schaefer KE, Douglas WH, Messier AA, Shea ML, Gohman PA (1979). «Effect of prolonged exposure to 0.5% CO2 on kidney calcification and ultrastructure of lungs». Undersea Biomedical Research. 6 (Suppl): S155–S161. PMID 505623. Archived from the original on 19 October 2014. Retrieved 19 October 2014.
- ^ Du B, Tandoc MC, Mack ML, Siegel JA (November 2020). «Indoor CO2 concentrations and cognitive function: A critical review». Indoor Air. 30 (6): 1067–1082. doi:10.1111/ina.12706. PMID 32557862. S2CID 219915861.
- ^ Kaplan L (4 June 2019). «Ask the doc: Does my helmet make me stupid? — RevZilla». www.revzilla.com. Archived from the original on 22 May 2021. Retrieved 22 May 2021.
- ^ Brühwiler PA, Stämpfli R, Huber R, Camenzind M (September 2005). «CO2 and O2 concentrations in integral motorcycle helmets». Applied Ergonomics. 36 (5): 625–633. doi:10.1016/j.apergo.2005.01.018. PMID 15893291.
- ^ Allen JG, MacNaughton P, Satish U, Santanam S, Vallarino J, Spengler JD (June 2016). «Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments». Environmental Health Perspectives. 124 (6): 805–812. doi:10.1289/ehp.1510037. PMC 4892924. PMID 26502459.
- ^ Romm J (26 October 2015). «Exclusive: Elevated CO2 Levels Directly Affect Human Cognition, New Harvard Study Shows». ThinkProgress. Archived from the original on 9 October 2019. Retrieved 14 October 2019.
- ^ «Three die in dry-ice incident at Moscow pool party». BBC News. 29 February 2020. Archived from the original on 29 February 2020.
The victims were connected to Instagram influencer Yekaterina Didenko.
- ^ Rettner R (2 August 2018). «A Woman Died from Dry Ice Fumes. Here’s How It Can Happen». livescience.com. Archived from the original on 22 May 2021. Retrieved 22 May 2021.
- ^ van Gardingen PR, Grace J, Jeffree CE, Byari SH, Miglietta F, Raschi A, Bettarini I (1997). «Long-term effects of enhanced CO2 concentrations on leaf gas exchange: research opportunities using CO2 springs». In Raschi A, Miglietta F, Tognetti R, van Gardingen PR (eds.). Plant responses to elevated CO2: Evidence from natural springs. Cambridge: Cambridge University Press. pp. 69–86. ISBN 978-0-521-58203-2.
- ^ Martini M (1997). «CO2 emissions in volcanic areas: case histories and hazards». In Raschi A, Miglietta F, Tognetti R, van Gardingen PR (eds.). Plant responses to elevated CO2: Evidence from natural springs. Cambridge: Cambridge University Press. pp. 69–86. ISBN 978-0-521-58203-2.
- ^ a b c d «ABG (Arterial Blood Gas)». Brookside Associates. Archived from the original on 12 August 2017. Retrieved 2 January 2017.
- ^ «How much carbon dioxide do humans contribute through breathing?». EPA.gov. Archived from the original on 2 February 2011. Retrieved 30 April 2009.
- ^ Henrickson C (2005). Chemistry. Cliffs Notes. ISBN 978-0-7645-7419-1.
- ^ a b c d «Carbon dioxide». solarnavigator.net. Archived from the original on 14 September 2008. Retrieved 12 October 2007.
- ^ Battisti-Charbonney, A.; Fisher, J.; Duffin, J. (15 June 2011). «The cerebrovascular response to carbon dioxide in humans». J. Physiol. 589 (12): 3039–3048. doi:10.1113/jphysiol.2011.206052. PMC 3139085. PMID 21521758.
- ^ Patel, S.; Miao, J.H.; Yetiskul, E.; Anokhin, A.; Majmunder, S.H. (2022). «Physiology, Carbon Dioxide Retention». National Library of Medicine. National Center for Biotechnology Information, NIH. PMID 29494063. Retrieved 20 August 2022.
- ^ Wilmshurst, Peter (1998). «ABC of oxygen». BMJ. 317 (7164): 996–999. doi:10.1136/bmj.317.7164.996. PMC 1114047. PMID 9765173.
- ^ Showstack, Randy (2013). «Carbon dioxide tops 400 ppm at Mauna Loa, Hawaii». Eos, Transactions American Geophysical Union. 94 (21): 192. Bibcode:2013EOSTr..94Q.192S. doi:10.1002/2013eo210004. ISSN 0096-3941.
- ^ Montaigne, Fen. «Son of Climate Science Pioneer Ponders A Sobering Milestone». Yale Environment 360. Yale School of Forestry & Environmental Studies. Archived from the original on 8 June 2013. Retrieved 14 May 2013.
- ^ a b «Carbon dioxide now more than 50% higher than pre-industrial levels | National Oceanic and Atmospheric Administration». www.noaa.gov. Retrieved 14 June 2022.
- ^ a b Eggleton, Tony (2013). A Short Introduction to Climate Change. Cambridge University Press. p. 52. ISBN 9781107618763.
- ^ a b «The NOAA Annual Greenhouse Gas Index (AGGI) – An Introduction». NOAA Global Monitoring Laboratory/Earth System Research Laboratories. Archived from the original on 27 November 2020. Retrieved 18 December 2020.
- ^ Etheridge, D.M.; L.P. Steele; R.L. Langenfelds; R.J. Francey; J.-M. Barnola; V.I. Morgan (1996). «Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn». Journal of Geophysical Research. 101 (D2): 4115–28. Bibcode:1996JGR…101.4115E. doi:10.1029/95JD03410. ISSN 0148-0227.
- ^ IPCC (2022) Summary for policy makers in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
- ^ Petty, G.W. (2004). «A First Course in Atmospheric Radiation». Eos Transactions. 85 (36): 229–51. Bibcode:2004EOSTr..85..341P. doi:10.1029/2004EO360007.
- ^ Atkins P, de Paula J (2006). Atkins’ Physical Chemistry (8th ed.). W. H. Freeman. p. 462. ISBN 978-0-7167-8759-4.
- ^ «Carbon Dioxide Absorbs and Re-emits Infrared Radiation». UCAR Center for Science Education. 2012. Archived from the original on 21 September 2017. Retrieved 9 September 2017.
- ^ Archer D (15 March 2005). «How long will global warming last?». RealClimate. Archived from the original on 4 March 2021. Retrieved 5 March 2021.
- ^ Archer D (2009). «Atmospheric lifetime of fossil fuel carbon dioxide». Annual Review of Earth and Planetary Sciences. 37 (1): 117–34. Bibcode:2009AREPS..37..117A. doi:10.1146/annurev.earth.031208.100206. hdl:2268/12933. Archived from the original on 24 February 2021. Retrieved 7 March 2021.
- ^ Joos F, Roth R, Fuglestvedt JS, Peters GP, Enting IG, Von Bloh W, et al. (2013). «Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis». Atmospheric Chemistry and Physics. 13 (5): 2793–2825. doi:10.5194/acpd-12-19799-2012. Archived from the original on 22 July 2020. Retrieved 7 March 2021.
- ^ «Figure 8.SM.4» (PDF). Intergovernmental Panel on Climate Change Fifth Assessment Report. p. 8SM-16. Archived (PDF) from the original on 24 March 2021. Retrieved 7 March 2021.
- ^ Zhang, Yi Ge; et al. (28 October 2013). «A 40-million-year history of atmospheric CO2«. Philosophical Transactions of the Royal Society A. 371 (2001): 20130096. Bibcode:2013RSPTA.37130096Z. doi:10.1098/rsta.2013.0096. PMID 24043869.
- ^ «Climate and CO2 in the Atmosphere». Archived from the original on 6 October 2018. Retrieved 10 October 2007.
- ^ Berner RA, Kothavala Z (2001). «GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic Time» (PDF). American Journal of Science. 301 (2): 182–204. Bibcode:2001AmJS..301..182B. CiteSeerX 10.1.1.393.582. doi:10.2475/ajs.301.2.182. Archived (PDF) from the original on 4 September 2011. Retrieved 15 February 2008.
- ^ Friedlingstein P, Jones MW, O’sullivan M, Andrew RM, Hauck J, Peters GP, et al. (2019). «Global Carbon Budget 2019». Earth System Science Data. 11 (4): 1783–1838. Bibcode:2019ESSD…11.1783F. doi:10.5194/essd-11-1783-2019..
- ^ Doney SC, Levine NM (29 November 2006). «How Long Can the Ocean Slow Global Warming?». Oceanus. Archived from the original on 4 January 2008. Retrieved 21 November 2007.
- ^ Jacobson, M. Z. (2005). «Studying ocean acidification with conservative, stable numerical schemes for nonequilibrium air-ocean exchange and ocean equilibrium chemistry». Journal of Geophysical Research: Atmospheres. 110: D07302. Bibcode:2005JGRD..11007302J. doi:10.1029/2004JD005220.
- ^ a b «Ocean acidification due to increasing atmospheric carbon dioxide». The Royal Society.
- ^ Mitchell, Mark J.; Jensen, Oliver E.; Cliffe, K. Andrew; Maroto-Valer, M. Mercedes (8 May 2010). «A model of carbon dioxide dissolution and mineral carbonation kinetics». Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 466 (2117): 1265–1290. doi:10.1098/rspa.2009.0349.
- ^ Lupton J, Lilley M, Butterfield D, Evans L, Embley R, Olson E, et al. (2004). «Liquid Carbon Dioxide Venting at the Champagne Hydrothermal Site, NW Eifuku Volcano, Mariana Arc». American Geophysical Union. 2004 (Fall Meeting). V43F–08. Bibcode:2004AGUFM.V43F..08L.
- ^ Inagaki F, Kuypers MM, Tsunogai U, Ishibashi J, Nakamura K, Treude T, et al. (September 2006). «Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system». Proceedings of the National Academy of Sciences of the United States of America. 103 (38): 14164–14169. Bibcode:2006PNAS..10314164I. doi:10.1073/pnas.0606083103. PMC 1599929. PMID 16959888. Videos can be downloaded at «Supporting Information». Archived from the original on 19 October 2018.
- ^ «Collecting and using biogas from landfills». U.S. Energy Information Administration. 11 January 2017. Archived from the original on 11 July 2018. Retrieved 22 November 2015.
- ^ «Facts About Landfill Gas» (PDF). U.S. Environmental Protection Agency. January 2000. Archived (PDF) from the original on 23 September 2015. Retrieved 4 September 2015.
- ^ a b Pierantozzi R (2001). «Carbon Dioxide». Kirk-Othmer Encyclopedia of Chemical Technology. Wiley. doi:10.1002/0471238961.0301180216090518.a01.pub2. ISBN 978-0-471-23896-6.
- ^
Strassburger J (1969). Blast Furnace Theory and Practice. New York: American Institute of Mining, Metallurgical, and Petroleum Engineers. ISBN 978-0-677-10420-1. - ^ Topham S (2000). «Carbon Dioxide». Ullmann’s Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a05_165. ISBN 3527306730.
- ^ «CO2 shortage: Food industry calls for government action». BBC. 21 June 2018. Archived from the original on 23 May 2021. Retrieved 24 June 2018.
- ^ «IPCC Special Report on Carbon dioxide Capture and Storage» (PDF). The Intergovernmental Panel on Climate Change. Archived from the original (PDF) on 24 September 2015. Retrieved 4 September 2015.
- ^ Morrison RT, Boyd RN (1983). Organic Chemistry (4th ed.). Allyn and Bacon. pp. 976–977. ISBN 978-0-205-05838-9.
- ^ Badwal SP, Giddey SS, Munnings C, Bhatt AI, Hollenkamp AF (24 September 2014). «Emerging electrochemical energy conversion and storage technologies». Frontiers in Chemistry. 2: 79. Bibcode:2014FrCh….2…79B. doi:10.3389/fchem.2014.00079. PMC 4174133. PMID 25309898.
- ^ Whiting D, Roll M, Vickerman L (August 2010). «Plant Growth Factors: Photosynthesis, Respiration, and Transpiration». CMG GardenNotes. Colorado Master Gardener Program. Archived from the original on 2 September 2014. Retrieved 10 October 2011.
- ^ Waggoner PE (February 1994). «Carbon dioxide». How Much Land Can Ten Billion People Spare for Nature?. Archived from the original on 12 October 2011. Retrieved 10 October 2011.
- ^ Stafford N (August 2007). «Future crops: the other greenhouse effect». Nature. 448 (7153): 526–528. Bibcode:2007Natur.448..526S. doi:10.1038/448526a. PMID 17671477. S2CID 9845813.
- ^ UK Food Standards Agency: «Current EU approved additives and their E Numbers». Archived from the original on 7 October 2010. Retrieved 27 October 2011.
- ^ US Food and Drug Administration: «Food Additive Status List». Food and Drug Administration. Archived from the original on 4 November 2017. Retrieved 13 June 2015.
- ^ Australia New Zealand Food Standards Code«Standard 1.2.4 – Labelling of ingredients». Archived from the original on 19 January 2012. Retrieved 27 October 2011.
- ^ Futurific Leading Indicators Magazine. Vol. 1. CRAES LLC. ISBN 978-0-9847670-1-4. Archived from the original on 15 August 2021. Retrieved 9 November 2020.
- ^ Vijay GP (25 September 2015). Indian Breads: A Comprehensive Guide to Traditional and Innovative Indian Breads. Westland. ISBN 978-93-85724-46-6.
- ^ «Scientists Discover Protein Receptor For Carbonation Taste». ScienceDaily. 16 October 2009. Archived from the original on 29 March 2020. Retrieved 29 March 2020.
- ^ Coghlan A (3 February 2018). «A more humane way of slaughtering chickens might get EU approval». New Scientist. Archived from the original on 24 June 2018. Retrieved 24 June 2018.
- ^ «What is CO2 stunning?». RSPCA. Archived from the original on 9 April 2014.
- ^ Campbell A (10 March 2018). «Humane execution and the fear of the tumbril». New Scientist. Archived from the original on 24 June 2018. Retrieved 24 June 2018.
- ^ Nordestgaard BG, Rostgaard J (February 1985). «Critical-point drying versus freeze drying for scanning electron microscopy: a quantitative and qualitative study on isolated hepatocytes». Journal of Microscopy. 137 (Pt 2): 189–207. doi:10.1111/j.1365-2818.1985.tb02577.x. PMID 3989858. S2CID 32065173.
- ^ «Types of Fire Extinguishers». The Fire Safety Advice Centre. Archived from the original on 28 June 2021. Retrieved 28 June 2021.
- ^ National Fire Protection Association Code 12.
- ^ Carbon Dioxide as a Fire Suppressant: Examining the Risks, US EPA. 2000.
- ^ «Appendix A: CO2 for use in enhanced oil recovery (EOR)». Accelerating the uptake of CCS: industrial use of captured carbon dioxide. Global CCS Institute. 20 December 2011. Archived from the original on 28 April 2017. Retrieved 2 January 2017.
- ^ Austell JM (2005). «CO2 for Enhanced Oil Recovery Needs – Enhanced Fiscal Incentives». Exploration & Production: The Oil & Gas Review. Archived from the original on 7 February 2012. Retrieved 28 September 2007.
- ^ «Enhanced coal bed methane recovery». ETH Zurich. 31 August 2006. Archived from the original on 6 July 2011.
- ^ Clayton M (11 January 2006). «Algae – like a breath mint for smokestacks». The Christian Science Monitor. Archived from the original on 14 September 2008. Retrieved 11 October 2007.
- ^ Atsumi S, Higashide W, Liao JC (December 2009). «Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde». Nature Biotechnology. 27 (12): 1177–1180. doi:10.1038/nbt.1586. PMID 19915552. S2CID 1492698.
- ^ Cobb S, Badiani V, Dharani A, Wagner A, Zacarias S, Oliveira AR, et al. (28 February 2022). «Fast CO2 hydration kinetics impair heterogeneous but improve enzymatic CO2 reduction catalysis». Nature Chemistry. 14 (4): 417–424. Bibcode:2022NatCh..14..417C. doi:10.1038/s41557-021-00880-2. ISSN 1755-4349. PMC 7612589. PMID 35228690. S2CID 247160910.
- ^ Edwardes Moore E, Cobb SJ, Coito AM, Oliveira AR, Pereira IA, Reisner E (January 2022). «Understanding the local chemical environment of bioelectrocatalysis». Proceedings of the National Academy of Sciences of the United States of America. 119 (4): e2114097119. Bibcode:2022PNAS..11914097E. doi:10.1073/pnas.2114097119. PMC 8795565. PMID 35058361.
- ^ «Clean Way To Turn CO2 Into Fuel Inspired by Nature». Applied Sciences from Technology Networks. 1 March 2022. Retrieved 2 March 2022.
- ^ «The Coca-Cola Company Announces Adoption of HFC-Free Insulation in Refrigeration Units to Combat Global Warming». The Coca-Cola Company. 5 June 2006. Archived from the original on 1 November 2013. Retrieved 11 October 2007.
- ^ «Modine reinforces its CO2 research efforts». R744.com. 28 June 2007. Archived from the original on 10 February 2008.
- ^ TCE, the Chemical Engineer. Institution of Chemical Engineers. 1990. Archived from the original on 17 August 2021. Retrieved 2 June 2020.
- ^ a b «AVMA guidelines for the euthanasia of animals: 2020 Edition» (PDF). American Veterinary Medical Association. 2020. Archived (PDF) from the original on 1 February 2014. Retrieved 13 August 2021.
- ^ Harris D (September 1910). «The Pioneer in the Hygiene of Ventilation». The Lancet. 176 (4542): 906–908. doi:10.1016/S0140-6736(00)52420-9. Archived from the original on 17 March 2020. Retrieved 6 December 2019.
- ^ Almqvist E (2003). History of industrial gases. Springer. p. 93. ISBN 978-0-306-47277-0.
- ^ Priestley J, Hey W (1772). «Observations on Different Kinds of Air». Philosophical Transactions. 62: 147–264. doi:10.1098/rstl.1772.0021. S2CID 186210131. Archived from the original on 7 June 2010. Retrieved 11 October 2007.
- ^ Davy H (1823). «On the Application of Liquids Formed by the Condensation of Gases as Mechanical Agents». Philosophical Transactions. 113: 199–205. doi:10.1098/rstl.1823.0020. JSTOR 107649.
- ^ Thilorier AJ (1835). «Solidification de l’Acide carbonique». Comptes Rendus. 1: 194–196. Archived from the original on 2 September 2017. Retrieved 1 September 2017.
- ^ Thilorier AJ (1836). «Solidification of carbonic acid». The London and Edinburgh Philosophical Magazine. 8 (48): 446–447. doi:10.1080/14786443608648911. Archived from the original on 2 May 2016. Retrieved 15 November 2015.
External links
- Current global map of carbon dioxide concentration
- CDC – NIOSH Pocket Guide to Chemical Hazards – Carbon Dioxide
- Trends in Atmospheric Carbon Dioxide (NOAA)
|
||
Names | ||
---|---|---|
Other names
|
||
Identifiers | ||
CAS Number |
|
|
3D model (JSmol) |
|
|
3DMet |
|
|
Beilstein Reference |
1900390 | |
ChEBI |
|
|
ChEMBL |
|
|
ChemSpider |
|
|
ECHA InfoCard | 100.004.271 | |
EC Number |
|
|
E number | E290 (preservatives) | |
Gmelin Reference |
989 | |
KEGG |
|
|
MeSH | Carbon+dioxide | |
PubChem CID |
|
|
RTECS number |
|
|
UNII |
|
|
UN number | 1013 (gas), 1845 (solid) | |
CompTox Dashboard (EPA) |
|
|
InChI
|
||
SMILES
|
||
Properties | ||
Chemical formula |
CO2 | |
Molar mass | 44.009 g·mol−1 | |
Appearance | Colorless gas | |
Odor |
|
|
Density |
|
|
Critical point (T, P) | 304.128(15) K[2] (30.978(15) °C), 7.3773(30) MPa[2] (72.808(30) atm) | |
Sublimation |
194.6855(30) K (−78.4645(30) °C) at 1 atm (0.101325 MPa) | |
Solubility in water |
1.45 g/L at 25 °C (77 °F), 100 kPa (0.99 atm) | |
Vapor pressure | 5.7292(30) MPa, 56.54(30) atm (20 °C (293.15 K)) | |
Acidity (pKa) | 6.35, 10.33 | |
Magnetic susceptibility (χ) |
−20.5·10−6 cm3/mol | |
Thermal conductivity | 0.01662 W·m−1·K−1 (300 K (27 °C; 80 °F))[3] | |
Refractive index (nD) |
1.00045 | |
Viscosity |
|
|
Dipole moment |
0 D | |
Structure | ||
Crystal structure |
Trigonal | |
Molecular shape |
Linear | |
Thermochemistry | ||
Heat capacity (C) |
37.135 J/K·mol | |
Std molar |
214 J·mol−1·K−1 | |
Std enthalpy of |
−393.5 kJ·mol−1 | |
Pharmacology | ||
ATC code |
V03AN02 (WHO) | |
Hazards | ||
NFPA 704 (fire diamond) |
[7][8] 2 0 0 SA |
|
Lethal dose or concentration (LD, LC): | ||
LCLo (lowest published) |
90,000 ppm (human, 5 min)[6] | |
NIOSH (US health exposure limits): | ||
PEL (Permissible) |
TWA 5000 ppm (9000 mg/m3)[5] | |
REL (Recommended) |
TWA 5000 ppm (9000 mg/m3), ST 30,000 ppm (54,000 mg/m3)[5] | |
IDLH (Immediate danger) |
40,000 ppm[5] | |
Safety data sheet (SDS) | Sigma-Aldrich | |
Related compounds | ||
Other anions |
|
|
Other cations |
|
|
Related carbon oxides |
|
|
Related compounds |
|
|
Supplementary data page | ||
Carbon dioxide (data page) | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). verify (what is ?) Infobox references |
Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth’s atmosphere at 421 parts per million (ppm), or about 0.04% by volume (as of May 2022), having risen from pre-industrial levels of 280 ppm.[9][10] Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of climate change.[11] Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water, it forms carbonate and mainly bicarbonate (HCO−
3), which causes ocean acidification as atmospheric CO2 levels increase.[12]
As the source of available carbon in the carbon cycle, atmospheric CO2 is the primary carbon source for life on Earth. Its concentration in Earth’s pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product.[13] In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration.[14] CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth.
Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks.[15] These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere.[16] CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids.
CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying.[17] It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth,[18] but at normally encountered concentrations it is odorless.[1]
Chemical and physical properties
Structure, bonding and molecular vibrations
The symmetry of a carbon dioxide molecule is linear and centrosymmetric at its equilibrium geometry. The length of the carbon-oxygen bond in carbon dioxide is 116.3 pm, noticeably shorter than the roughly 140-pm length of a typical single C–O bond, and shorter than most other C–O multiply-bonded functional groups such as carbonyls.[19] Since it is centrosymmetric, the molecule has no electric dipole moment.
Stretching and bending oscillations of the CO2 carbon dioxide molecule. Upper left: symmetric stretching. Upper right: antisymmetric stretching. Lower line: degenerate pair of bending modes.
As a linear triatomic molecule, CO2 has four vibrational modes as shown in the diagram. In the symmetric and the antisymmetric stretching modes, the atoms move along the axis of the molecule. There are two bending modes, which are degenerate, meaning that they have the same frequency and same energy, because of the symmetry of the molecule. When a molecule touches a surface or touches another molecule, the two bending modes can differ in frequency because the interaction is different for the two modes. Some of the vibrational modes are observed in the infrared (IR) spectrum: the antisymmetric stretching mode at wavenumber 2349 cm−1 (wavelength 4.25 μm) and the degenerate pair of bending modes at 667 cm−1 (wavelength 15 μm). The symmetric stretching mode does not create an electric dipole so is not observed in IR spectroscopy, but it is detected in by Raman spectroscopy at 1388 cm−1 (wavelength 7.2 μm).[20]
In the gas phase, carbon dioxide molecules undergo significant vibrational motions and do not keep a fixed structure. However, in a Coulomb explosion imaging experiment, an instantaneous image of the molecular structure can be deduced. Such an experiment[21] has been performed for carbon dioxide.
The result of this experiment, and the conclusion of theoretical calculations[22] based on an ab initio potential energy surface of the molecule, is that none of the
molecules in the gas phase are ever exactly linear. This counter-intuitive result is trivially due to
the fact that the nuclear motion volume element vanishes for linear geometries.[22]
This is so for all molecules (except diatomics!).
In aqueous solution
Carbon dioxide is soluble in water, in which it reversibly forms H2CO3 (carbonic acid), which is a weak acid since its ionization in water is incomplete.
The hydration equilibrium constant of carbonic acid is, at 25 °C:
Hence, the majority of the carbon dioxide is not converted into carbonic acid, but remains as CO2 molecules, not affecting the pH.
The relative concentrations of CO2, H2CO3, and the deprotonated forms HCO−3 (bicarbonate) and CO2−3(carbonate) depend on the pH. As shown in a Bjerrum plot, in neutral or slightly alkaline water (pH > 6.5), the bicarbonate form predominates (>50%) becoming the most prevalent (>95%) at the pH of seawater. In very alkaline water (pH > 10.4), the predominant (>50%) form is carbonate. The oceans, being mildly alkaline with typical pH = 8.2–8.5, contain about 120 mg of bicarbonate per liter.
Being diprotic, carbonic acid has two acid dissociation constants, the first one for the dissociation into the bicarbonate (also called hydrogen carbonate) ion (HCO−3):
- Ka1 = 2.5×10−4 mol/L; pKa1 = 3.6 at 25 °C.[19]
This is the true first acid dissociation constant, defined as
where the denominator includes only covalently bound H2CO3 and does not include hydrated CO2(aq). The much smaller and often-quoted value near 4.16×10−7 is an apparent value calculated on the (incorrect) assumption that all dissolved CO2 is present as carbonic acid, so that
Since most of the dissolved CO2remains as CO2 molecules, Ka1(apparent) has a much larger denominator and a much smaller value than the true Ka1.[23]
The bicarbonate ion is an amphoteric species that can act as an acid or as a base, depending on pH of the solution. At high pH, it dissociates significantly into the carbonate ion (CO2−3):
- Ka2 = 4.69×10−11 mol/L; pKa2 = 10.329
In organisms carbonic acid production is catalysed by the enzyme, carbonic anhydrase.
Chemical reactions of CO2
CO2 is a potent electrophile having an electrophilic reactivity that is comparable to benzaldehyde or strong α,β-unsaturated carbonyl compounds. However, unlike electrophiles of similar reactivity, the reactions of nucleophiles with CO2 are thermodynamically less favored and are often found to be highly reversible.[24] Only very strong nucleophiles, like the carbanions provided by Grignard reagents and organolithium compounds react with CO2 to give carboxylates:
- where M = Li or Mg Br and R = alkyl or aryl.
In metal carbon dioxide complexes, CO2 serves as a ligand, which can facilitate the conversion of CO2 to other chemicals.[25]
The reduction of CO2 to CO is ordinarily a difficult and slow reaction:
Photoautotrophs (i.e. plants and cyanobacteria) use the energy contained in sunlight to photosynthesize simple sugars from CO2 absorbed from the air and water:
The redox potential for this reaction near pH 7 is about −0.53 V versus the standard hydrogen electrode. The nickel-containing enzyme carbon monoxide dehydrogenase catalyses this process.[26]
Physical properties
Pellets of «dry ice», a common form of solid carbon dioxide
Carbon dioxide is colorless. At low concentrations the gas is odorless; however, at sufficiently high concentrations, it has a sharp, acidic odor.[1] At standard temperature and pressure, the density of carbon dioxide is around 1.98 kg/m3, about 1.53 times that of air.[27]
Carbon dioxide has no liquid state at pressures below 0.51795(10) MPa[2] (5.11177(99) atm). At a pressure of 1 atm (0.101325 MPa), the gas deposits directly to a solid at temperatures below 194.6855(30) K[2] (−78.4645(30) °C) and the solid sublimes directly to a gas above this temperature. In its solid state, carbon dioxide is commonly called dry ice.
Pressure–temperature phase diagram of carbon dioxide. Note that it is a log-lin chart.
Liquid carbon dioxide forms only at pressures above 0.51795(10) MPa[2] (5.11177(99) atm); the triple point of carbon dioxide is 216.592(3) K[2] (−56.558(3) °C) at 0.51795(10) MPa[2] (5.11177(99) atm) (see phase diagram). The critical point is 304.128(15) K[2] (30.978(15) °C) at 7.3773(30) MPa[2] (72.808(30) atm). Another form of solid carbon dioxide observed at high pressure is an amorphous glass-like solid.[28] This form of glass, called carbonia, is produced by supercooling heated CO2 at extreme pressures (40–48 GPa, or about 400,000 atmospheres) in a diamond anvil. This discovery confirmed the theory that carbon dioxide could exist in a glass state similar to other members of its elemental family, like silicon dioxide (silica glass) and germanium dioxide. Unlike silica and germania glasses, however, carbonia glass is not stable at normal pressures and reverts to gas when pressure is released.
At temperatures and pressures above the critical point, carbon dioxide behaves as a supercritical fluid known as supercritical carbon dioxide.
Table of thermal and physical properties of saturated liquid carbon dioxide:[29][30]
Temperature (°C) | Density (kg/m^3) | Specific heat (kJ/kg K) | Kinematic viscosity (m^2/s) | Conductivity (W/m K) | Thermal diffusivity (m^2/s) | Prandtl Number | Bulk modulus (K^-1) |
-50 | 1156.34 | 1.84 | 1.19E-07 | 0.0855 | 4.02E-08 | 2.96 | — |
-40 | 1117.77 | 1.88 | 1.18E-07 | 0.1011 | 4.81E-08 | 2.46 | — |
-30 | 1076.76 | 1.97 | 1.17E-07 | 0.1116 | 5.27E-08 | 2.22 | — |
-20 | 1032.39 | 2.05 | 1.15E-07 | 0.1151 | 5.45E-08 | 2.12 | — |
-10 | 983.38 | 2.18 | 1.13E-07 | 0.1099 | 5.13E-08 | 2.2 | — |
0 | 926.99 | 2.47 | 1.08E-07 | 0.1045 | 4.58E-08 | 2.38 | — |
10 | 860.03 | 3.14 | 1.01E-07 | 0.0971 | 3.61E-08 | 2.8 | — |
20 | 772.57 | 5 | 9.10E-08 | 0.0872 | 2.22E-08 | 4.1 | 1.40E-02 |
30 | 597.81 | 36.4 | 8.00E-08 | 0.0703 | 0.279E-08 | 28.7 | — |
Table of thermal and physical properties of carbon dioxide (CO2) at atmospheric pressure:[29][30]
Temperature (K) | Density (kg/m^3) | Specific heat (kJ/kg °C) | Dynamic viscosity (kg/m s) | Kinematic viscosity (m^2/s) | Thermal conductivity (W/m °C) | Thermal diffusivity (m^2/s) | Prandtl Number |
220 | 2.4733 | 0.783 | 1.11E-05 | 4.49E-06 | 0.010805 | 5.92E-06 | 0.818 |
250 | 2.1657 | 0.804 | 1.26E-05 | 5.81E-06 | 0.012884 | 7.40E-06 | 0.793 |
300 | 1.7973 | 0.871 | 1.50E-05 | 8.32E-06 | 0.016572 | 1.06E-05 | 0.77 |
350 | 1.5362 | 0.9 | 1.72E-05 | 1.12E-05 | 0.02047 | 1.48E-05 | 0.755 |
400 | 1.3424 | 0.942 | 1.93E-05 | 1.44E-05 | 0.02461 | 1.95E-05 | 0.738 |
450 | 1.1918 | 0.98 | 2.13E-05 | 1.79E-05 | 0.02897 | 2.48E-05 | 0.721 |
500 | 1.0732 | 1.013 | 2.33E-05 | 2.17E-05 | 0.03352 | 3.08E-05 | 0.702 |
550 | 0.9739 | 1.047 | 2.51E-05 | 2.57E-05 | 0.03821 | 3.75E-05 | 0.685 |
600 | 0.8938 | 1.076 | 2.68E-05 | 3.00E-05 | 0.04311 | 4.48E-05 | 0.668 |
650 | 0.8143 | 1.1 | 2.88E-05 | 3.54E-05 | 0.0445 | 4.97E-05 | 0.712 |
700 | 0.7564 | 1.13E+00 | 3.05E-05 | 4.03E-05 | 0.0481 | 5.63E-05 | 0.717 |
750 | 0.7057 | 1.15 | 3.21E-05 | 4.55E-05 | 0.0517 | 6.37E-05 | 0.714 |
800 | 0.6614 | 1.17E+00 | 3.37E-05 | 5.10E-05 | 0.0551 | 7.12E-05 | 0.716 |
Biological role
Carbon dioxide is an end product of cellular respiration in organisms that obtain energy by breaking down sugars, fats and amino acids with oxygen as part of their metabolism. This includes all plants, algae and animals and aerobic fungi and bacteria. In vertebrates, the carbon dioxide travels in the blood from the body’s tissues to the skin (e.g., amphibians) or the gills (e.g., fish), from where it dissolves in the water, or to the lungs from where it is exhaled. During active photosynthesis, plants can absorb more carbon dioxide from the atmosphere than they release in respiration.
Photosynthesis and carbon fixation
Carbon fixation is a biochemical process by which atmospheric carbon dioxide is incorporated by plants, algae and (cyanobacteria) into energy-rich organic molecules such as glucose, thus creating their own food by photosynthesis. Photosynthesis uses carbon dioxide and water to produce sugars from which other organic compounds can be constructed, and oxygen is produced as a by-product.
Ribulose-1,5-bisphosphate carboxylase oxygenase, commonly abbreviated to RuBisCO, is the enzyme involved in the first major step of carbon fixation, the production of two molecules of 3-phosphoglycerate from CO2 and ribulose bisphosphate, as shown in the diagram at left.
RuBisCO is thought to be the single most abundant protein on Earth.[31]
Phototrophs use the products of their photosynthesis as internal food sources and as raw material for the biosynthesis of more complex organic molecules, such as polysaccharides, nucleic acids and proteins. These are used for their own growth, and also as the basis of the food chains and webs that feed other organisms, including animals such as ourselves. Some important phototrophs, the coccolithophores synthesise hard calcium carbonate scales.[32] A globally significant species of coccolithophore is Emiliania huxleyi whose calcite scales have formed the basis of many sedimentary rocks such as limestone, where what was previously atmospheric carbon can remain fixed for geological timescales.
Overview of photosynthesis and respiration. Carbon dioxide (at right), together with water, form oxygen and organic compounds (at left) by photosynthesis, which can be respired to water and (CO2).
Plants can grow as much as 50 percent faster in concentrations of 1,000 ppm CO2 when compared with ambient conditions, though this assumes no change in climate and no limitation on other nutrients.[33] Elevated CO2 levels cause increased growth reflected in the harvestable yield of crops, with wheat, rice and soybean all showing increases in yield of 12–14% under elevated CO2 in FACE experiments.[34][35]
Increased atmospheric CO2 concentrations result in fewer stomata developing on plants[36] which leads to reduced water usage and increased water-use efficiency.[37] Studies using FACE have shown that CO2 enrichment leads to decreased concentrations of micronutrients in crop plants.[38] This may have knock-on effects on other parts of ecosystems as herbivores will need to eat more food to gain the same amount of protein.[39]
The concentration of secondary metabolites such as phenylpropanoids and flavonoids can also be altered in plants exposed to high concentrations of CO2.[40][41]
Plants also emit CO2 during respiration, and so the majority of plants and algae, which use C3 photosynthesis, are only net absorbers during the day. Though a growing forest will absorb many tons of CO2 each year, a mature forest will produce as much CO2 from respiration and decomposition of dead specimens (e.g., fallen branches) as is used in photosynthesis in growing plants.[42] Contrary to the long-standing view that they are carbon neutral, mature forests can continue to accumulate carbon[43] and remain valuable carbon sinks, helping to maintain the carbon balance of Earth’s atmosphere. Additionally, and crucially to life on earth, photosynthesis by phytoplankton consumes dissolved CO2 in the upper ocean and thereby promotes the absorption of CO2 from the atmosphere.[44]
Toxicity
Symptoms of carbon dioxide toxicity, by increasing volume percent in air[45]
Carbon dioxide content in fresh air (averaged between sea-level and 10 kPa level, i.e., about 30 km (19 mi) altitude) varies between 0.036% (360 ppm) and 0.041% (412 ppm), depending on the location.[46][clarification needed]
CO2 is an asphyxiant gas and not classified as toxic or harmful in accordance with Globally Harmonized System of Classification and Labelling of Chemicals standards of United Nations Economic Commission for Europe by using the OECD Guidelines for the Testing of Chemicals. In concentrations up to 1% (10,000 ppm), it will make some people feel drowsy and give the lungs a stuffy feeling.[45] Concentrations of 7% to 10% (70,000 to 100,000 ppm) may cause suffocation, even in the presence of sufficient oxygen, manifesting as dizziness, headache, visual and hearing dysfunction, and unconsciousness within a few minutes to an hour.[47] The physiological effects of acute carbon dioxide exposure are grouped together under the term hypercapnia, a subset of asphyxiation.
Because it is heavier than air, in locations where the gas seeps from the ground (due to sub-surface volcanic or geothermal activity) in relatively high concentrations, without the dispersing effects of wind, it can collect in sheltered/pocketed locations below average ground level, causing animals located therein to be suffocated. Carrion feeders attracted to the carcasses are then also killed. Children have been killed in the same way near the city of Goma by CO2 emissions from the nearby volcano Mount Nyiragongo.[48] The Swahili term for this phenomenon is mazuku.
Adaptation to increased concentrations of CO2 occurs in humans, including modified breathing and kidney bicarbonate production, in order to balance the effects of blood acidification (acidosis). Several studies suggested that 2.0 percent inspired concentrations could be used for closed air spaces (e.g. a submarine) since the adaptation is physiological and reversible, as deterioration in performance or in normal physical activity does not happen at this level of exposure for five days.[49][50] Yet, other studies show a decrease in cognitive function even at much lower levels.[51][52] Also, with ongoing respiratory acidosis, adaptation or compensatory mechanisms will be unable to reverse such condition.
Below 1%
There are few studies of the health effects of long-term continuous CO2 exposure on humans and animals at levels below 1%. Occupational CO2 exposure limits have been set in the United States at 0.5% (5000 ppm) for an eight-hour period.[53] At this CO2 concentration, International Space Station crew experienced headaches, lethargy, mental slowness, emotional irritation, and sleep disruption.[54] Studies in animals at 0.5% CO2 have demonstrated kidney calcification and bone loss after eight weeks of exposure.[55] A study of humans exposed in 2.5 hour sessions demonstrated significant negative effects on cognitive abilities at concentrations as low as 0.1% (1000 ppm) CO2 likely due to CO2 induced increases in cerebral blood flow.[51] Another study observed a decline in basic activity level and information usage at 1000 ppm, when compared to 500 ppm.[52] However a review of the literature found that most studies on the phenomenon of carbon dioxide induced cognitive impairment to have a small effect on high-level decision making and most of the studies were confounded by inadequate study designs, environmental comfort, uncertainties in exposure doses and differing cognitive assessments used.[56] Similarly a study on the effects of the concentration of CO2 in motorcycle helmets has been criticized for having dubious methodology in not noting the self-reports of motorcycle riders and taking measurements using mannequins. Further when normal motorcycle conditions were achieved (such as highway or city speeds) or the visor was raised the concentration of CO2 declined to safe levels (0.2%).[57][58]
Ventilation
Poor ventilation is one of the main causes of excessive CO2 concentrations in closed spaces, leading to poor indoor air quality. Carbon dioxide differential above outdoor concentrations at steady state conditions (when the occupancy and ventilation system operation are sufficiently long that CO2 concentration has stabilized) are sometimes used to estimate ventilation rates per person.[citation needed] Higher CO2 concentrations are associated with occupant health, comfort and performance degradation.[59][60] ASHRAE Standard 62.1–2007 ventilation rates may result in indoor concentrations up to 2,100 ppm above ambient outdoor conditions. Thus if the outdoor concentration is 400 ppm, indoor concentrations may reach 2,500 ppm with ventilation rates that meet this industry consensus standard. Concentrations in poorly ventilated spaces can be found even higher than this (range of 3,000 or 4,000 ppm).
Miners, who are particularly vulnerable to gas exposure due to insufficient ventilation, referred to mixtures of carbon dioxide and nitrogen as «blackdamp», «choke damp» or «stythe». Before more effective technologies were developed, miners would frequently monitor for dangerous levels of blackdamp and other gases in mine shafts by bringing a caged canary with them as they worked. The canary is more sensitive to asphyxiant gases than humans, and as it became unconscious would stop singing and fall off its perch. The Davy lamp could also detect high levels of blackdamp (which sinks, and collects near the floor) by burning less brightly, while methane, another suffocating gas and explosion risk, would make the lamp burn more brightly.
In February 2020, three people died from suffocation at a party in Moscow when dry ice (frozen CO2) was added to a swimming pool to cool it down.[61] A similar accident occurred in 2018 when a woman died from CO2 fumes emanating from the large amount of dry ice she was transporting in her car.[62]
Outdoor areas with elevated concentrations
Local concentrations of carbon dioxide can reach high values near strong sources, especially those that are isolated by surrounding terrain. At the Bossoleto hot spring near Rapolano Terme in Tuscany, Italy, situated in a bowl-shaped depression about 100 m (330 ft) in diameter, concentrations of CO2 rise to above 75% overnight, sufficient to kill insects and small animals. After sunrise the gas is dispersed by convection.[63] High concentrations of CO2 produced by disturbance of deep lake water saturated with CO2 are thought to have caused 37 fatalities at Lake Monoun, Cameroon in 1984 and 1700 casualties at Lake Nyos, Cameroon in 1986.[64]
Human physiology
Content
Blood compartment | (kPa) | (mm Hg) | |
---|---|---|---|
Venous blood carbon dioxide | 5.5–6.8 | 41–51[65] | 41–51[65] |
Alveolar pulmonary gas pressures |
4.8 | 36 | 36 |
Arterial blood carbon dioxide | 4.7–6.0 | 35–45[65] | 35–45[65] |
The body produces approximately 2.3 pounds (1.0 kg) of carbon dioxide per day per person,[66] containing 0.63 pounds (290 g) of carbon. In humans, this carbon dioxide is carried through the venous system and is breathed out through the lungs, resulting in lower concentrations in the arteries. The carbon dioxide content of the blood is often given as the partial pressure, which is the pressure which carbon dioxide would have had if it alone occupied the volume.[67] In humans, the blood carbon dioxide contents is shown in the adjacent table.
Transport in the blood
CO2 is carried in blood in three different ways. (Exact percentages vary between arterial and venous blood).
- Majority (about 70% to 80%) is converted to bicarbonate ions HCO−3 by the enzyme carbonic anhydrase in the red blood cells,[68] by the reaction CO2 + H2O → H2CO3 → H+ + HCO−3.
- 5–10% is dissolved in blood plasma[68]
- 5–10% is bound to hemoglobin as carbamino compounds[68]
Hemoglobin, the main oxygen-carrying molecule in red blood cells, carries both oxygen and carbon dioxide. However, the CO2 bound to hemoglobin does not bind to the same site as oxygen. Instead, it combines with the N-terminal groups on the four globin chains. However, because of allosteric effects on the hemoglobin molecule, the binding of CO2 decreases the amount of oxygen that is bound for a given partial pressure of oxygen. This is known as the Haldane Effect, and is important in the transport of carbon dioxide from the tissues to the lungs. Conversely, a rise in the partial pressure of CO2 or a lower pH will cause offloading of oxygen from hemoglobin, which is known as the Bohr effect.
Regulation of respiration
Carbon dioxide is one of the mediators of local autoregulation of blood supply. If its concentration is high, the capillaries expand to allow a greater blood flow to that tissue.[69]
Bicarbonate ions are crucial for regulating blood pH. A person’s breathing rate influences the level of CO2 in their blood. Breathing that is too slow or shallow causes respiratory acidosis, while breathing that is too rapid leads to hyperventilation, which can cause respiratory alkalosis.[70]
Although the body requires oxygen for metabolism, low oxygen levels normally do not stimulate breathing. Rather, breathing is stimulated by higher carbon dioxide levels. As a result, breathing low-pressure air or a gas mixture with no oxygen at all (such as pure nitrogen) can lead to loss of consciousness without ever experiencing air hunger. This is especially perilous for high-altitude fighter pilots. It is also why flight attendants instruct passengers, in case of loss of cabin pressure, to apply the oxygen mask to themselves first before helping others; otherwise, one risks losing consciousness.[68]
The respiratory centers try to maintain an arterial CO2 pressure of 40 mm Hg. With intentional hyperventilation, the CO2 content of arterial blood may be lowered to 10–20 mm Hg (the oxygen content of the blood is little affected), and the respiratory drive is diminished. This is why one can hold one’s breath longer after hyperventilating than without hyperventilating. This carries the risk that unconsciousness may result before the need to breathe becomes overwhelming, which is why hyperventilation is particularly dangerous before free diving.[71]
Concentrations and role in the environment
Atmosphere
Atmospheric CO2 concentrations measured at Mauna Loa Observatory from 1958 to 2022 (also called the Keeling Curve). Carbon dioxide concentrations have varied widely over the Earth’s 4.54 billion year history. However, in 2013 the daily mean concentration of CO2 in the atmosphere surpassed 400 parts per million (ppmv)[72] — this level has never been reached since the mid-Pliocene, 2 to 4 million years ago.[73]
Carbon dioxide in Earth’s atmosphere is a trace gas that plays an integral part in the greenhouse effect, carbon cycle, photosynthesis and oceanic carbon cycle. It is one of several greenhouse gases in Earth’s atmosphere that are contributing to climate change due to increasing emissions of greenhouse gases from human activities. The current global average concentration of CO2 in the atmosphere is 421 ppm as of May 2022.[74] This is an increase of 50% since the start of the Industrial Revolution, up from 280 ppm during the 10,000 years prior to the mid-18th century.[75][74][76] The increase is due to human activity.[77] Burning fossil fuels is the main cause of these increased CO2 concentrations and also the main cause of climate change.[78] Other large anthropogenic sources include cement production, deforestation, and biomass burning.
While transparent to visible light, carbon dioxide is a greenhouse gas, absorbing and emitting infrared radiation at its two infrared-active vibrational frequencies. CO2 absorbs and emits infrared radiation at wavelengths of 4.26 μm (2,347 cm−1) (asymmetric stretching vibrational mode) and 14.99 μm (667 cm−1) (bending vibrational mode). It plays a significant role in influencing Earth’s surface temperature through the greenhouse effect.[79] Light emission from the Earth’s surface is most intense in the infrared region between 200 and 2500 cm−1,[80] as opposed to light emission from the much hotter Sun which is most intense in the visible region. Absorption of infrared light at the vibrational frequencies of atmospheric CO2 traps energy near the surface, warming the surface and the lower atmosphere. Less energy reaches the upper atmosphere, which is therefore cooler because of this absorption.[81]
Increases in atmospheric concentrations of CO2 and other long-lived greenhouse gases such as methane, nitrous oxide and ozone increase the absorption and emission of infrared radiation by the atmosphere, causing the observed rise in average global temperature and ocean acidification. Another direct effect is the CO2 fertilization effect. These changes cause a range of indirect effects of climate change on the physical environment, ecosystems and human societies. Carbon dioxide exerts a larger overall warming influence than all of the other greenhouse gases combined.[76] It has an atmospheric lifetime that increases with the cumulative amount of fossil carbon extracted and burned, due to the imbalance that this activity has imposed on Earth’s fast carbon cycle.[82] This means that some fraction (a projected 20-35%) of the fossil carbon transferred thus far will persist in the atmosphere as elevated CO2 levels for many thousands of years after these carbon transfer activities begin to subside.[83][84][85] The carbon cycle is a biogeochemical cycle in which carbon is exchanged between the Earth’s oceans, soil, rocks and the biosphere. Plants and other photoautotrophs use solar energy to produce carbohydrate from atmospheric carbon dioxide and water by photosynthesis. Almost all other organisms depend on carbohydrate derived from photosynthesis as their primary source of energy and carbon compounds.
The present atmospheric concentration of CO2 is the highest for 14 million years.[86] Concentrations of CO2 in the atmosphere were as high as 4,000 ppm during the Cambrian period about 500 million years ago, when the concentration was 20 times greater than today, and as low as 180 ppm during the Quaternary glaciation of the last two million years.[75] Reconstructed temperature records for the last 420 million years indicate that atmospheric CO2 concentrations peaked at ~2,000 ppm during the Devonian (~400 Ma) period, and again in the Triassic (220–200 Ma) period and was four times current levels during the Jurassic period (201-145 Ma).[87][88]
Annual CO2 flows from anthropogenic sources (left) into Earth’s atmosphere, land, and ocean sinks (right) since the 1960s. Units in equivalent gigatonnes carbon per year.[89]
Oceans
Ocean acidification
Carbon dioxide dissolves in the ocean to form carbonic acid (H2CO3), bicarbonate (HCO3−) and carbonate (CO32−). There is about fifty times as much carbon dioxide dissolved in the oceans as exists in the atmosphere. The oceans act as an enormous carbon sink, and have taken up about a third of CO2 emitted by human activity.[90]
Pterapod shell dissolved in seawater adjusted to an ocean chemistry projected for the year 2100
Changes in ocean chemistry can have extensive direct and indirect effects on organisms and their habitats. One of the most important repercussions of increasing ocean acidity relates to the production of shells out of calcium carbonate (CaCO
3).[92] This process is called calcification and is important to the biology and survival of a wide range of marine organisms. Calcification involves the precipitation of dissolved ions into solid CaCO
3 structures, structures for many marine organisms, such as coccolithophores, foraminifera, crustaceans, mollusks, etc. After they are formed, these CaCO
3 structures are vulnerable to dissolution unless the surrounding seawater contains saturating concentrations of carbonate ions (CO32−).
Given the current pH of the ocean (around 8.14), of the extra carbon dioxide added into the ocean, very little remains as dissolved carbon dioxide. The majority dissociates into additional bicarbonate and free hydrogen ions. The increase in hydrogen is larger than the increase in bicarbonate,[93] creating an imbalance in the reaction HCO3− ⇌ CO32− + H+. To maintain chemical equilibrium, some of the carbonate ions already in the ocean combine with some of the hydrogen ions to make further bicarbonate. Thus the ocean’s concentration of carbonate ions is reduced, removing an essential building block for marine organisms to build shells, or calcify: Ca2+ + CO32− ⇌ CaCO3.
Hydrothermal vents
Carbon dioxide is also introduced into the oceans through hydrothermal vents. The Champagne hydrothermal vent, found at the Northwest Eifuku volcano in the Mariana Trench, produces almost pure liquid carbon dioxide, one of only two known sites in the world as of 2004, the other being in the Okinawa Trough.[94] The finding of a submarine lake of liquid carbon dioxide in the Okinawa Trough was reported in 2006.[95]
Production
Biological processes
Carbon dioxide is a by-product of the fermentation of sugar in the brewing of beer, whisky and other alcoholic beverages and in the production of bioethanol. Yeast metabolizes sugar to produce CO2 and ethanol, also known as alcohol, as follows:
All aerobic organisms produce CO2 when they oxidize carbohydrates, fatty acids, and proteins. The large number of reactions involved are exceedingly complex and not described easily. Refer to (cellular respiration, anaerobic respiration and photosynthesis). The equation for the respiration of glucose and other monosaccharides is:
Anaerobic organisms decompose organic material producing methane and carbon dioxide together with traces of other compounds.[96] Regardless of the type of organic material, the production of gases follows well defined kinetic pattern. Carbon dioxide comprises about 40–45% of the gas that emanates from decomposition in landfills (termed «landfill gas»). Most of the remaining 50–55% is methane.[97]
Industrial processes
Carbon dioxide can be obtained by distillation from air, but the method is inefficient. Industrially, carbon dioxide is predominantly an unrecovered waste product, produced by several methods which may be practiced at various scales.[98]
Combustion
The combustion of all carbon-based fuels, such as methane (natural gas), petroleum distillates (gasoline, diesel, kerosene, propane), coal, wood and generic organic matter produces carbon dioxide and, except in the case of pure carbon, water. As an example, the chemical reaction between methane and oxygen:
Iron is reduced from its oxides with coke in a blast furnace, producing pig iron and carbon dioxide:[99]
By-product from hydrogen production
Carbon dioxide is a byproduct of the industrial production of hydrogen by steam reforming and the water gas shift reaction in ammonia production. These processes begin with the reaction of water and natural gas (mainly methane).[100] This is a major source of food-grade carbon dioxide for use in carbonation of beer and soft drinks, and is also used for stunning animals such as poultry. In the summer of 2018 a shortage of carbon dioxide for these purposes arose in Europe due to the temporary shut-down of several ammonia plants for maintenance.[101]
Thermal decomposition of limestone
It is produced by thermal decomposition of limestone, CaCO3 by heating (calcining) at about 850 °C (1,560 °F), in the manufacture of quicklime (calcium oxide, CaO), a compound that has many industrial uses:
Acids liberate CO2 from most metal carbonates. Consequently, it may be obtained directly from natural carbon dioxide springs, where it is produced by the action of acidified water on limestone or dolomite. The reaction between hydrochloric acid and calcium carbonate (limestone or chalk) is shown below:
The carbonic acid (H2CO3) then decomposes to water and CO2:
Such reactions are accompanied by foaming or bubbling, or both, as the gas is released. They have widespread uses in industry because they can be used to neutralize waste acid streams.
Commercial uses
Carbon dioxide is used by the food industry, the oil industry, and the chemical industry.[98]
The compound has varied commercial uses but one of its greatest uses as a chemical is in the production of carbonated beverages; it provides the sparkle in carbonated beverages such as soda water, beer and sparkling wine.
Precursor to chemicals
This section needs expansion. You can help by adding to it. (July 2014) |
In the chemical industry, carbon dioxide is mainly consumed as an ingredient in the production of urea, with a smaller fraction being used to produce methanol and a range of other products.[102] Some carboxylic acid derivatives such as sodium salicylate are prepared using CO2 by the Kolbe–Schmitt reaction.[103]
In addition to conventional processes using CO2 for chemical production, electrochemical methods are also being explored at a research level. In particular, the use of renewable energy for production of fuels from CO2 (such as methanol) is attractive as this could result in fuels that could be easily transported and used within conventional combustion technologies but have no net CO2 emissions.[104]
Agriculture
Plants require carbon dioxide to conduct photosynthesis. The atmospheres of greenhouses may (if of large size, must) be enriched with additional CO2 to sustain and increase the rate of plant growth.[105][106] At very high concentrations (100 times atmospheric concentration, or greater), carbon dioxide can be toxic to animal life, so raising the concentration to 10,000 ppm (1%) or higher for several hours will eliminate pests such as whiteflies and spider mites in a greenhouse.[107]
Foods
Carbon dioxide bubbles in a soft drink
Carbon dioxide is a food additive used as a propellant and acidity regulator in the food industry. It is approved for usage in the EU[108] (listed as E number E290), US[109] and Australia and New Zealand[110] (listed by its INS number 290).
A candy called Pop Rocks is pressurized with carbon dioxide gas[111] at about 4,000 kPa (40 bar; 580 psi). When placed in the mouth, it dissolves (just like other hard candy) and releases the gas bubbles with an audible pop.
Leavening agents cause dough to rise by producing carbon dioxide.[112] Baker’s yeast produces carbon dioxide by fermentation of sugars within the dough, while chemical leaveners such as baking powder and baking soda release carbon dioxide when heated or if exposed to acids.
Beverages
Carbon dioxide is used to produce carbonated soft drinks and soda water. Traditionally, the carbonation of beer and sparkling wine came about through natural fermentation, but many manufacturers carbonate these drinks with carbon dioxide recovered from the fermentation process. In the case of bottled and kegged beer, the most common method used is carbonation with recycled carbon dioxide. With the exception of British real ale, draught beer is usually transferred from kegs in a cold room or cellar to dispensing taps on the bar using pressurized carbon dioxide, sometimes mixed with nitrogen.
The taste of soda water (and related taste sensations in other carbonated beverages) is an effect of the dissolved carbon dioxide rather than the bursting bubbles of the gas. Carbonic anhydrase 4 converts to carbonic acid leading to a sour taste, and also the dissolved carbon dioxide induces a somatosensory response.[113]
Winemaking
Dry ice used to preserve grapes after harvest
Carbon dioxide in the form of dry ice is often used during the cold soak phase in winemaking to cool clusters of grapes quickly after picking to help prevent spontaneous fermentation by wild yeast. The main advantage of using dry ice over water ice is that it cools the grapes without adding any additional water that might decrease the sugar concentration in the grape must, and thus the alcohol concentration in the finished wine. Carbon dioxide is also used to create a hypoxic environment for carbonic maceration, the process used to produce Beaujolais wine.
Carbon dioxide is sometimes used to top up wine bottles or other storage vessels such as barrels to prevent oxidation, though it has the problem that it can dissolve into the wine, making a previously still wine slightly fizzy. For this reason, other gases such as nitrogen or argon are preferred for this process by professional wine makers.
Stunning animals
Carbon dioxide is often used to «stun» animals before slaughter.[114] «Stunning» may be a misnomer, as the animals are not knocked out immediately and may suffer distress.[115][116]
Inert gas
Carbon dioxide is one of the most commonly used compressed gases for pneumatic (pressurized gas) systems in portable pressure tools. Carbon dioxide is also used as an atmosphere for welding, although in the welding arc, it reacts to oxidize most metals. Use in the automotive industry is common despite significant evidence that welds made in carbon dioxide are more brittle than those made in more inert atmospheres.[citation needed] When used for MIG welding, CO2 use is sometimes referred to as MAG welding, for Metal Active Gas, as CO2 can react at these high temperatures. It tends to produce a hotter puddle than truly inert atmospheres, improving the flow characteristics. Although, this may be due to atmospheric reactions occurring at the puddle site. This is usually the opposite of the desired effect when welding, as it tends to embrittle the site, but may not be a problem for general mild steel welding, where ultimate ductility is not a major concern.
Carbon dioxide is used in many consumer products that require pressurized gas because it is inexpensive and nonflammable, and because it undergoes a phase transition from gas to liquid at room temperature at an attainable pressure of approximately 60 bar (870 psi; 59 atm), allowing far more carbon dioxide to fit in a given container than otherwise would. Life jackets often contain canisters of pressured carbon dioxide for quick inflation. Aluminium capsules of CO2 are also sold as supplies of compressed gas for air guns, paintball markers/guns, inflating bicycle tires, and for making carbonated water. High concentrations of carbon dioxide can also be used to kill pests. Liquid carbon dioxide is used in supercritical drying of some food products and technological materials, in the preparation of specimens for scanning electron microscopy[117] and in the decaffeination of coffee beans.
Fire extinguisher
Use of a CO2 fire extinguisher
Carbon dioxide can be used to extinguish flames by flooding the environment around the flame with the gas. It does not itself react to extinguish the flame, but starves the flame of oxygen by displacing it. Some fire extinguishers, especially those designed for electrical fires, contain liquid carbon dioxide under pressure. Carbon dioxide extinguishers work well on small flammable liquid and electrical fires, but not on ordinary combustible fires, because they do not cool the burning substances significantly, and when the carbon dioxide disperses, they can catch fire upon exposure to atmospheric oxygen. They are mainly used in server rooms.[118]
Carbon dioxide has also been widely used as an extinguishing agent in fixed fire-protection systems for local application of specific hazards and total flooding of a protected space.[119] International Maritime Organization standards recognize carbon-dioxide systems for fire protection of ship holds and engine rooms. Carbon-dioxide-based fire-protection systems have been linked to several deaths, because it can cause suffocation in sufficiently high concentrations. A review of CO2 systems identified 51 incidents between 1975 and the date of the report (2000), causing 72 deaths and 145 injuries.[120]
Supercritical CO2 as solvent
Liquid carbon dioxide is a good solvent for many lipophilic organic compounds and is used to remove caffeine from coffee.[17] Carbon dioxide has attracted attention in the pharmaceutical and other chemical processing industries as a less toxic alternative to more traditional solvents such as organochlorides. It is also used by some dry cleaners for this reason. It is used in the preparation of some aerogels because of the properties of supercritical carbon dioxide.
Medical and pharmacological uses
In medicine, up to 5% carbon dioxide (130 times atmospheric concentration) is added to oxygen for stimulation of breathing after apnea and to stabilize the O2/CO2 balance in blood.
Carbon dioxide can be mixed with up to 50% oxygen, forming an inhalable gas; this is known as Carbogen and has a variety of medical and research uses.
Another medical use are the mofette, dry spas that use carbon dioxide from post-volcanic discharge for therapeutic purposes.
Energy
Supercritical CO2 is used as the working fluid in the Allam power cycle engine.
Fossil fuel recovery
Carbon dioxide is used in enhanced oil recovery where it is injected into or adjacent to producing oil wells, usually under supercritical conditions, when it becomes miscible with the oil. This approach can increase original oil recovery by reducing residual oil saturation by 7–23% additional to primary extraction.[121] It acts as both a pressurizing agent and, when dissolved into the underground crude oil, significantly reduces its viscosity, and changing surface chemistry enabling the oil to flow more rapidly through the reservoir to the removal well.[122] In mature oil fields, extensive pipe networks are used to carry the carbon dioxide to the injection points.
In enhanced coal bed methane recovery, carbon dioxide would be pumped into the coal seam to displace methane, as opposed to current methods which primarily rely on the removal of water (to reduce pressure) to make the coal seam release its trapped methane.[123]
Bio transformation into fuel
It has been proposed that CO2 from power generation be bubbled into ponds to stimulate growth of algae that could then be converted into biodiesel fuel.[124] A strain of the cyanobacterium Synechococcus elongatus has been genetically engineered to produce the fuels isobutyraldehyde and isobutanol from CO2 using photosynthesis.[125]
Researchers have developed a process called electrolysis, using enzymes isolated from bacteria to power the chemical reactions which convert CO2 into fuels.[126][127][128]
Refrigerant
Comparison of the pressure–temperature phase diagrams of carbon dioxide (red) and water (blue) as a log-lin chart with phase transitions points at 1 atmosphere
Liquid and solid carbon dioxide are important refrigerants, especially in the food industry, where they are employed during the transportation and storage of ice cream and other frozen foods. Solid carbon dioxide is called «dry ice» and is used for small shipments where refrigeration equipment is not practical. Solid carbon dioxide is always below −78.5 °C (−109.3 °F) at regular atmospheric pressure, regardless of the air temperature.
Liquid carbon dioxide (industry nomenclature R744 or R-744) was used as a refrigerant prior to the use[citation needed] of dichlorodifluoromethane (R12, a chlorofluorocarbon (CFC) compound). CO2 might enjoy a renaissance because one of the main substitutes to CFCs, 1,1,1,2-tetrafluoroethane (R134a, a hydrofluorocarbon (HFC) compound) contributes to climate change more than CO2 does. CO2 physical properties are highly favorable for cooling, refrigeration, and heating purposes, having a high volumetric cooling capacity. Due to the need to operate at pressures of up to 130 bars (1,900 psi; 13,000 kPa), CO2 systems require highly mechanically resistant reservoirs and components that have already been developed for mass production in many sectors. In automobile air conditioning, in more than 90% of all driving conditions for latitudes higher than 50°, CO2 (R744) operates more efficiently than systems using HFCs (e.g., R134a). Its environmental advantages (GWP of 1, non-ozone depleting, non-toxic, non-flammable) could make it the future working fluid to replace current HFCs in cars, supermarkets, and heat pump water heaters, among others. Coca-Cola has fielded CO2-based beverage coolers and the U.S. Army is interested in CO2 refrigeration and heating technology.[129][130]
Minor uses
Carbon dioxide is the lasing medium in a carbon-dioxide laser, which is one of the earliest type of lasers.
Carbon dioxide can be used as a means of controlling the pH of swimming pools,[131] by continuously adding gas to the water, thus keeping the pH from rising. Among the advantages of this is the avoidance of handling (more hazardous) acids. Similarly, it is also used in the maintaining reef aquaria, where it is commonly used in calcium reactors to temporarily lower the pH of water being passed over calcium carbonate in order to allow the calcium carbonate to dissolve into the water more freely, where it is used by some corals to build their skeleton.
Used as the primary coolant in the British advanced gas-cooled reactor for nuclear power generation.
Carbon dioxide induction is commonly used for the euthanasia of laboratory research animals. Methods to administer CO2 include placing animals directly into a closed, prefilled chamber containing CO2, or exposure to a gradually increasing concentration of CO2. The American Veterinary Medical Association’s 2020 guidelines for carbon dioxide induction state that a displacement rate of 30–70% of the chamber or cage volume per minute is optimal for the humane euthanasia of small rodents.[132]: 5, 31 Percentages of CO2 vary for different species, based on identified optimal percentages to minimize distress.[132]: 22
Carbon dioxide is also used in several related cleaning and surface-preparation techniques.
History of discovery
Carbon dioxide was the first gas to be described as a discrete substance. In about 1640,[133] the Flemish chemist Jan Baptist van Helmont observed that when he burned charcoal in a closed vessel, the mass of the resulting ash was much less than that of the original charcoal. His interpretation was that the rest of the charcoal had been transmuted into an invisible substance he termed a «gas» or «wild spirit» (spiritus sylvestris).[134]
The properties of carbon dioxide were further studied in the 1750s by the Scottish physician Joseph Black. He found that limestone (calcium carbonate) could be heated or treated with acids to yield a gas he called «fixed air». He observed that the fixed air was denser than air and supported neither flame nor animal life. Black also found that when bubbled through limewater (a saturated aqueous solution of calcium hydroxide), it would precipitate calcium carbonate. He used this phenomenon to illustrate that carbon dioxide is produced by animal respiration and microbial fermentation. In 1772, English chemist Joseph Priestley published a paper entitled Impregnating Water with Fixed Air in which he described a process of dripping sulfuric acid (or oil of vitriol as Priestley knew it) on chalk in order to produce carbon dioxide, and forcing the gas to dissolve by agitating a bowl of water in contact with the gas.[135]
Carbon dioxide was first liquefied (at elevated pressures) in 1823 by Humphry Davy and Michael Faraday.[136] The earliest description of solid carbon dioxide (dry ice) was given by the French inventor Adrien-Jean-Pierre Thilorier, who in 1835 opened a pressurized container of liquid carbon dioxide, only to find that the cooling produced by the rapid evaporation of the liquid yielded a «snow» of solid CO2.[137][138]
See also
- Arterial blood gas – A test of blood taken from an artery that measures the amounts of certain dissolved gases
- Bosch reaction – forms elemental carbon from CO2 and hydrogen using a metallic catalyst
- Carbon dioxide removal – Removal of atmospheric carbon dioxide (from the atmosphere)
- List of least carbon efficient power stations
- List of countries by carbon dioxide emissions
- Meromictic lake – Permanently stratified lake with layers of water that do not intermix
- Gilbert Plass – Canadian physicist (early work on CO2 and climate change)
- Sabatier reaction – Methanation process of carbon dioxide with hydrogen
- NASA’s Orbiting Carbon Observatory 2 – NASA climate satellite
- Greenhouse Gases Observing Satellite – Earth observation satellite
- Soil gas – soil -exchange of gases between plant roots and the atmosphere
References
- ^ a b c «Carbon Dioxide» (PDF). Air Products. Archived from the original (PDF) on 29 July 2020. Retrieved 28 April 2017.
- ^ a b c d e f g h i Span R, Wagner W (1 November 1996). «A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa». Journal of Physical and Chemical Reference Data. 25 (6): 1519. Bibcode:1996JPCRD..25.1509S. doi:10.1063/1.555991.
- ^ Touloukian YS, Liley PE, Saxena SC (1970). «Thermophysical properties of matter — the TPRC data series». Thermal Conductivity — Nonmetallic Liquids and Gases. Data book. 3.
- ^ Schäfer M, Richter M, Span R (2015). «Measurements of the viscosity of carbon dioxide at temperatures from (253.15 to 473.15) K with pressures up to 1.2 MPa». The Journal of Chemical Thermodynamics. 89: 7–15. doi:10.1016/j.jct.2015.04.015.
- ^ a b c NIOSH Pocket Guide to Chemical Hazards. «#0103». National Institute for Occupational Safety and Health (NIOSH).
- ^ «Carbon dioxide». Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
- ^ «Safety Data Sheet – Carbon Dioxide Gas – version 0.03 11/11» (PDF). AirGas.com. 12 February 2018. Archived (PDF) from the original on 4 August 2018. Retrieved 4 August 2018.
- ^ «Carbon dioxide, refrigerated liquid» (PDF). Praxair. p. 9. Archived from the original (PDF) on 29 July 2018. Retrieved 26 July 2018.
- ^ Eggleton T (2013). A Short Introduction to Climate Change. Cambridge University Press. p. 52. ISBN 9781107618763. Archived from the original on 23 July 2021. Retrieved 9 November 2020.
- ^ «Carbon dioxide now more than 50% higher than pre-industrial levels | National Oceanic and Atmospheric Administration». www.noaa.gov. Retrieved 14 June 2022.
- ^ IPCC (2022) Summary for policy makers in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
- ^ Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean. Washington, DC: National Academies Press. 22 April 2010. pp. 23–24. doi:10.17226/12904. ISBN 978-0-309-15359-1. Archived from the original on 5 February 2016. Retrieved 29 February 2016.
- ^ Kaufman DG, Franz CM (1996). Biosphere 2000: protecting our global environment. Kendall/Hunt Pub. Co. ISBN 978-0-7872-0460-0.
- ^ «Food Factories». www.legacyproject.org. Archived from the original on 12 August 2017. Retrieved 10 October 2011.
- ^ IPCC (2021). «Summary for Policymakers» (PDF). Climate Change 2021: The Physical Science Basis. p. 20. Archived (PDF) from the original on 10 October 2022.
- ^ Myles, Allen (September 2020). «The Oxford Principles for Net Zero Aligned Carbon Offsetting» (PDF). Archived (PDF) from the original on 2 October 2020. Retrieved 10 December 2021.
- ^ a b Tsotsas E, Mujumdar AS (2011). Modern drying technology. Vol. 3: Product quality and formulation. John Wiley & Sons. ISBN 978-3-527-31558-1. Archived from the original on 21 March 2020. Retrieved 3 December 2019.
- ^ Spritzler F (3 November 2019). «Carbonated (Sparkling) Water: Good or Bad?». healthline.com. Archived from the original on 10 May 2020.
- ^ a b Greenwood NN, Earnshaw A (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 305–314. ISBN 978-0-08-037941-8.
- ^ Atkins P, de Paula J (2006). Physical Chemistry (8th ed.). W.H. Freeman. pp. 461, 464. ISBN 978-0-7167-8759-4.
- ^ Siegmann B, Werner U, Lutz HO, Mann R (2002). «Complete Coulomb fragmentation of CO2 in collisions with 5.9 MeV u−1 Xe18+ and Xe43+«. J Phys B Atom Mol Opt Phys. 35 (17): 3755. Bibcode:2002JPhB…35.3755S. doi:10.1088/0953-4075/35/17/311. S2CID 250782825.
- ^ a b
Jensen P, Spanner M, Bunker PR (2020). «The CO2 molecule is never linear−». J Mol Struct. 1212: 128087. Bibcode:2020JMoSt121228087J. doi:10.1016/j.molstruc.2020.128087. hdl:2142/107329. S2CID 216318907. - ^ Jolly WL (1984). Modern Inorganic Chemistry. McGraw-Hill. p. 196. ISBN 978-0-07-032760-3.
- ^ Li Z, Mayer RJ, Ofial AR, Mayr H (May 2020). «From Carbodiimides to Carbon Dioxide: Quantification of the Electrophilic Reactivities of Heteroallenes». Journal of the American Chemical Society. 142 (18): 8383–8402. doi:10.1021/jacs.0c01960. PMID 32338511. S2CID 216557447.
- ^ Aresta M, ed. (2010). Carbon Dioxide as a Chemical Feedstock. Weinheim: Wiley-VCH. ISBN 978-3-527-32475-0.
- ^ Finn C, Schnittger S, Yellowlees LJ, Love JB (February 2012). «Molecular approaches to the electrochemical reduction of carbon dioxide» (PDF). Chemical Communications. 48 (10): 1392–1399. doi:10.1039/c1cc15393e. hdl:20.500.11820/b530915d-451c-493c-8251-da2ea2f50912. PMID 22116300. S2CID 14356014. Archived (PDF) from the original on 19 April 2021. Retrieved 6 December 2019.
- ^ «Gases – Densities». Engineering Toolbox. Archived from the original on 2 March 2006. Retrieved 21 November 2020.
- ^ Santoro M, Gorelli FA, Bini R, Ruocco G, Scandolo S, Crichton WA (June 2006). «Amorphous silica-like carbon dioxide». Nature. 441 (7095): 857–860. Bibcode:2006Natur.441..857S. doi:10.1038/nature04879. PMID 16778885. S2CID 4363092.
- ^ a b Holman, Jack P. (2002). Heat Transfer (9th ed.). New York, NY: McGraw-Hill Companies, Inc. pp. 600–606. ISBN 9780072406559.
- ^ a b Incropera 1 Dewitt 2 Bergman 3 Lavigne 4, Frank P. 1 David P. 2 Theodore L. 3 Adrienne S. 4 (2007). Fundamentals of Heat and Mass Transfer (6th ed.). Hoboken, NJ: John Wiley and Sons, Inc. pp. 941–950. ISBN 9780471457282.
- ^ Dhingra A, Portis AR, Daniell H (April 2004). «Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants». Proceedings of the National Academy of Sciences of the United States of America. 101 (16): 6315–6320. Bibcode:2004PNAS..101.6315D. doi:10.1073/pnas.0400981101. PMC 395966. PMID 15067115.
(Rubisco) is the most prevalent enzyme on this planet, accounting for 30–50% of total soluble protein in the chloroplast
- ^ Falkowski P, Knoll AH (1 January 2007). Evolution of primary producers in the sea. Elsevier, Academic Press. ISBN 978-0-12-370518-1. OCLC 845654016.
- ^ Blom TJ, Straver WA, Ingratta FJ, Khosla S, Brown W (December 2002). «Carbon Dioxide In Greenhouses». Archived from the original on 29 April 2019. Retrieved 12 June 2007.
- ^ Ainsworth EA (2008). «Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration» (PDF). Global Change Biology. 14 (7): 1642–1650. Bibcode:2008GCBio..14.1642A. doi:10.1111/j.1365-2486.2008.01594.x. S2CID 19200429. Archived from the original (PDF) on 19 July 2011.
- ^ Long SP, Ainsworth EA, Leakey AD, Nösberger J, Ort DR (June 2006). «Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations» (PDF). Science. 312 (5782): 1918–1921. Bibcode:2006Sci…312.1918L. CiteSeerX 10.1.1.542.5784. doi:10.1126/science.1114722. PMID 16809532. S2CID 2232629. Archived (PDF) from the original on 20 October 2016. Retrieved 27 October 2017.
- ^ Woodward F, Kelly C (1995). «The influence of CO2 concentration on stomatal density». New Phytologist. 131 (3): 311–327. doi:10.1111/j.1469-8137.1995.tb03067.x.
- ^ Drake BG, Gonzalez-Meler MA, Long SP (June 1997). «More Efficient Plants: A Consequence of Rising Atmospheric CO2?». Annual Review of Plant Physiology and Plant Molecular Biology. 48 (1): 609–639. doi:10.1146/annurev.arplant.48.1.609. PMID 15012276. S2CID 33415877.
- ^ Loladze I (2002). «Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry?». Trends in Ecology & Evolution. 17 (10): 457–461. doi:10.1016/S0169-5347(02)02587-9. S2CID 16074723.
- ^ Coviella CE, Trumble JT (1999). «Effects of Elevated Atmospheric Carbon Dioxide on Insect-Plant Interactions». Conservation Biology. 13 (4): 700–712. doi:10.1046/j.1523-1739.1999.98267.x. JSTOR 2641685. S2CID 52262618.
- ^ Davey MP, Harmens H, Ashenden TW, Edwards R, Baxter R (2007). «Species-specific effects of elevated CO2 on resource allocation in Plantago maritima and Armeria maritima«. Biochemical Systematics and Ecology. 35 (3): 121–129. doi:10.1016/j.bse.2006.09.004.
- ^ Davey MP, Bryant DN, Cummins I, Ashenden TW, Gates P, Baxter R, Edwards R (August 2004). «Effects of elevated CO2 on the vasculature and phenolic secondary metabolism of Plantago maritima». Phytochemistry. 65 (15): 2197–2204. doi:10.1016/j.phytochem.2004.06.016. PMID 15587703.
- ^ «Global Environment Division Greenhouse Gas Assessment Handbook – A Practical Guidance Document for the Assessment of Project-level Greenhouse Gas Emissions». World Bank. Archived from the original on 3 June 2016. Retrieved 10 November 2007.
- ^ Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, et al. (September 2008). «Old-growth forests as global carbon sinks» (PDF). Nature. 455 (7210): 213–215. Bibcode:2008Natur.455..213L. doi:10.1038/nature07276. PMID 18784722. S2CID 4424430.
- ^ Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, et al. (October 2000). «The global carbon cycle: a test of our knowledge of earth as a system». Science. 290 (5490): 291–296. Bibcode:2000Sci…290..291F. doi:10.1126/science.290.5490.291. PMID 11030643. S2CID 1779934.
- ^ a b Friedman D. «Toxicity of Carbon Dioxide Gas Exposure, CO2 Poisoning Symptoms, Carbon Dioxide Exposure Limits, and Links to Toxic Gas Testing Procedures». InspectAPedia. Archived from the original on 28 September 2009.
- ^ «CarbonTracker CT2011_oi (Graphical map of CO2)». esrl.noaa.gov. Archived from the original on 13 February 2021. Retrieved 20 April 2007.
- ^ «Carbon Dioxide as a Fire Suppressant: Examining the Risks». U.S. Environmental Protection Agency. Archived from the original on 2 October 2015.
- ^ «Volcano Under the City». A NOVA Production by Bonne Pioche and Greenspace for WGBH/Boston. Public Broadcasting System. 1 November 2005. Archived from the original on 5 April 2011..
- ^ Glatte Jr HA, Motsay GJ, Welch BE (1967). Carbon Dioxide Tolerance Studies (Report). Brooks AFB, TX School of Aerospace Medicine Technical Report. SAM-TR-67-77. Archived from the original on 9 May 2008. Retrieved 2 May 2008.
{{cite report}}
: CS1 maint: unfit URL (link) - ^ Lambertsen CJ (1971). Carbon Dioxide Tolerance and Toxicity (Report). IFEM Report. Environmental Biomedical Stress Data Center, Institute for Environmental Medicine, University of Pennsylvania Medical Center. No. 2-71. Archived from the original on 24 July 2011. Retrieved 2 May 2008.
{{cite report}}
: CS1 maint: unfit URL (link) - ^ a b Satish U, Mendell MJ, Shekhar K, Hotchi T, Sullivan D, Streufert S, Fisk WJ (December 2012). «Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance» (PDF). Environmental Health Perspectives. 120 (12): 1671–1677. doi:10.1289/ehp.1104789. PMC 3548274. PMID 23008272. Archived from the original (PDF) on 5 March 2016. Retrieved 11 December 2014.
- ^ a b Allen JG, MacNaughton P, Satish U, Santanam S, Vallarino J, Spengler JD (June 2016). «Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments». Environmental Health Perspectives. 124 (6): 805–812. doi:10.1289/ehp.1510037. PMC 4892924. PMID 26502459.
- ^ «Exposure Limits for Carbon Dioxide Gas – CO2 Limits». InspectAPedia.com. Archived from the original on 16 September 2018. Retrieved 19 October 2014.
- ^ Law J, Watkins S, Alexander D (2010). In-Flight Carbon Dioxide Exposures and Related Symptoms: Associations, Susceptibility and Operational Implications (PDF) (Report). NASA Technical Report. TP–2010–216126. Archived from the original (PDF) on 27 June 2011. Retrieved 26 August 2014.
- ^ Schaefer KE, Douglas WH, Messier AA, Shea ML, Gohman PA (1979). «Effect of prolonged exposure to 0.5% CO2 on kidney calcification and ultrastructure of lungs». Undersea Biomedical Research. 6 (Suppl): S155–S161. PMID 505623. Archived from the original on 19 October 2014. Retrieved 19 October 2014.
- ^ Du B, Tandoc MC, Mack ML, Siegel JA (November 2020). «Indoor CO2 concentrations and cognitive function: A critical review». Indoor Air. 30 (6): 1067–1082. doi:10.1111/ina.12706. PMID 32557862. S2CID 219915861.
- ^ Kaplan L (4 June 2019). «Ask the doc: Does my helmet make me stupid? — RevZilla». www.revzilla.com. Archived from the original on 22 May 2021. Retrieved 22 May 2021.
- ^ Brühwiler PA, Stämpfli R, Huber R, Camenzind M (September 2005). «CO2 and O2 concentrations in integral motorcycle helmets». Applied Ergonomics. 36 (5): 625–633. doi:10.1016/j.apergo.2005.01.018. PMID 15893291.
- ^ Allen JG, MacNaughton P, Satish U, Santanam S, Vallarino J, Spengler JD (June 2016). «Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments». Environmental Health Perspectives. 124 (6): 805–812. doi:10.1289/ehp.1510037. PMC 4892924. PMID 26502459.
- ^ Romm J (26 October 2015). «Exclusive: Elevated CO2 Levels Directly Affect Human Cognition, New Harvard Study Shows». ThinkProgress. Archived from the original on 9 October 2019. Retrieved 14 October 2019.
- ^ «Three die in dry-ice incident at Moscow pool party». BBC News. 29 February 2020. Archived from the original on 29 February 2020.
The victims were connected to Instagram influencer Yekaterina Didenko.
- ^ Rettner R (2 August 2018). «A Woman Died from Dry Ice Fumes. Here’s How It Can Happen». livescience.com. Archived from the original on 22 May 2021. Retrieved 22 May 2021.
- ^ van Gardingen PR, Grace J, Jeffree CE, Byari SH, Miglietta F, Raschi A, Bettarini I (1997). «Long-term effects of enhanced CO2 concentrations on leaf gas exchange: research opportunities using CO2 springs». In Raschi A, Miglietta F, Tognetti R, van Gardingen PR (eds.). Plant responses to elevated CO2: Evidence from natural springs. Cambridge: Cambridge University Press. pp. 69–86. ISBN 978-0-521-58203-2.
- ^ Martini M (1997). «CO2 emissions in volcanic areas: case histories and hazards». In Raschi A, Miglietta F, Tognetti R, van Gardingen PR (eds.). Plant responses to elevated CO2: Evidence from natural springs. Cambridge: Cambridge University Press. pp. 69–86. ISBN 978-0-521-58203-2.
- ^ a b c d «ABG (Arterial Blood Gas)». Brookside Associates. Archived from the original on 12 August 2017. Retrieved 2 January 2017.
- ^ «How much carbon dioxide do humans contribute through breathing?». EPA.gov. Archived from the original on 2 February 2011. Retrieved 30 April 2009.
- ^ Henrickson C (2005). Chemistry. Cliffs Notes. ISBN 978-0-7645-7419-1.
- ^ a b c d «Carbon dioxide». solarnavigator.net. Archived from the original on 14 September 2008. Retrieved 12 October 2007.
- ^ Battisti-Charbonney, A.; Fisher, J.; Duffin, J. (15 June 2011). «The cerebrovascular response to carbon dioxide in humans». J. Physiol. 589 (12): 3039–3048. doi:10.1113/jphysiol.2011.206052. PMC 3139085. PMID 21521758.
- ^ Patel, S.; Miao, J.H.; Yetiskul, E.; Anokhin, A.; Majmunder, S.H. (2022). «Physiology, Carbon Dioxide Retention». National Library of Medicine. National Center for Biotechnology Information, NIH. PMID 29494063. Retrieved 20 August 2022.
- ^ Wilmshurst, Peter (1998). «ABC of oxygen». BMJ. 317 (7164): 996–999. doi:10.1136/bmj.317.7164.996. PMC 1114047. PMID 9765173.
- ^ Showstack, Randy (2013). «Carbon dioxide tops 400 ppm at Mauna Loa, Hawaii». Eos, Transactions American Geophysical Union. 94 (21): 192. Bibcode:2013EOSTr..94Q.192S. doi:10.1002/2013eo210004. ISSN 0096-3941.
- ^ Montaigne, Fen. «Son of Climate Science Pioneer Ponders A Sobering Milestone». Yale Environment 360. Yale School of Forestry & Environmental Studies. Archived from the original on 8 June 2013. Retrieved 14 May 2013.
- ^ a b «Carbon dioxide now more than 50% higher than pre-industrial levels | National Oceanic and Atmospheric Administration». www.noaa.gov. Retrieved 14 June 2022.
- ^ a b Eggleton, Tony (2013). A Short Introduction to Climate Change. Cambridge University Press. p. 52. ISBN 9781107618763.
- ^ a b «The NOAA Annual Greenhouse Gas Index (AGGI) – An Introduction». NOAA Global Monitoring Laboratory/Earth System Research Laboratories. Archived from the original on 27 November 2020. Retrieved 18 December 2020.
- ^ Etheridge, D.M.; L.P. Steele; R.L. Langenfelds; R.J. Francey; J.-M. Barnola; V.I. Morgan (1996). «Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn». Journal of Geophysical Research. 101 (D2): 4115–28. Bibcode:1996JGR…101.4115E. doi:10.1029/95JD03410. ISSN 0148-0227.
- ^ IPCC (2022) Summary for policy makers in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
- ^ Petty, G.W. (2004). «A First Course in Atmospheric Radiation». Eos Transactions. 85 (36): 229–51. Bibcode:2004EOSTr..85..341P. doi:10.1029/2004EO360007.
- ^ Atkins P, de Paula J (2006). Atkins’ Physical Chemistry (8th ed.). W. H. Freeman. p. 462. ISBN 978-0-7167-8759-4.
- ^ «Carbon Dioxide Absorbs and Re-emits Infrared Radiation». UCAR Center for Science Education. 2012. Archived from the original on 21 September 2017. Retrieved 9 September 2017.
- ^ Archer D (15 March 2005). «How long will global warming last?». RealClimate. Archived from the original on 4 March 2021. Retrieved 5 March 2021.
- ^ Archer D (2009). «Atmospheric lifetime of fossil fuel carbon dioxide». Annual Review of Earth and Planetary Sciences. 37 (1): 117–34. Bibcode:2009AREPS..37..117A. doi:10.1146/annurev.earth.031208.100206. hdl:2268/12933. Archived from the original on 24 February 2021. Retrieved 7 March 2021.
- ^ Joos F, Roth R, Fuglestvedt JS, Peters GP, Enting IG, Von Bloh W, et al. (2013). «Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis». Atmospheric Chemistry and Physics. 13 (5): 2793–2825. doi:10.5194/acpd-12-19799-2012. Archived from the original on 22 July 2020. Retrieved 7 March 2021.
- ^ «Figure 8.SM.4» (PDF). Intergovernmental Panel on Climate Change Fifth Assessment Report. p. 8SM-16. Archived (PDF) from the original on 24 March 2021. Retrieved 7 March 2021.
- ^ Zhang, Yi Ge; et al. (28 October 2013). «A 40-million-year history of atmospheric CO2«. Philosophical Transactions of the Royal Society A. 371 (2001): 20130096. Bibcode:2013RSPTA.37130096Z. doi:10.1098/rsta.2013.0096. PMID 24043869.
- ^ «Climate and CO2 in the Atmosphere». Archived from the original on 6 October 2018. Retrieved 10 October 2007.
- ^ Berner RA, Kothavala Z (2001). «GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic Time» (PDF). American Journal of Science. 301 (2): 182–204. Bibcode:2001AmJS..301..182B. CiteSeerX 10.1.1.393.582. doi:10.2475/ajs.301.2.182. Archived (PDF) from the original on 4 September 2011. Retrieved 15 February 2008.
- ^ Friedlingstein P, Jones MW, O’sullivan M, Andrew RM, Hauck J, Peters GP, et al. (2019). «Global Carbon Budget 2019». Earth System Science Data. 11 (4): 1783–1838. Bibcode:2019ESSD…11.1783F. doi:10.5194/essd-11-1783-2019..
- ^ Doney SC, Levine NM (29 November 2006). «How Long Can the Ocean Slow Global Warming?». Oceanus. Archived from the original on 4 January 2008. Retrieved 21 November 2007.
- ^ Jacobson, M. Z. (2005). «Studying ocean acidification with conservative, stable numerical schemes for nonequilibrium air-ocean exchange and ocean equilibrium chemistry». Journal of Geophysical Research: Atmospheres. 110: D07302. Bibcode:2005JGRD..11007302J. doi:10.1029/2004JD005220.
- ^ a b «Ocean acidification due to increasing atmospheric carbon dioxide». The Royal Society.
- ^ Mitchell, Mark J.; Jensen, Oliver E.; Cliffe, K. Andrew; Maroto-Valer, M. Mercedes (8 May 2010). «A model of carbon dioxide dissolution and mineral carbonation kinetics». Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 466 (2117): 1265–1290. doi:10.1098/rspa.2009.0349.
- ^ Lupton J, Lilley M, Butterfield D, Evans L, Embley R, Olson E, et al. (2004). «Liquid Carbon Dioxide Venting at the Champagne Hydrothermal Site, NW Eifuku Volcano, Mariana Arc». American Geophysical Union. 2004 (Fall Meeting). V43F–08. Bibcode:2004AGUFM.V43F..08L.
- ^ Inagaki F, Kuypers MM, Tsunogai U, Ishibashi J, Nakamura K, Treude T, et al. (September 2006). «Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system». Proceedings of the National Academy of Sciences of the United States of America. 103 (38): 14164–14169. Bibcode:2006PNAS..10314164I. doi:10.1073/pnas.0606083103. PMC 1599929. PMID 16959888. Videos can be downloaded at «Supporting Information». Archived from the original on 19 October 2018.
- ^ «Collecting and using biogas from landfills». U.S. Energy Information Administration. 11 January 2017. Archived from the original on 11 July 2018. Retrieved 22 November 2015.
- ^ «Facts About Landfill Gas» (PDF). U.S. Environmental Protection Agency. January 2000. Archived (PDF) from the original on 23 September 2015. Retrieved 4 September 2015.
- ^ a b Pierantozzi R (2001). «Carbon Dioxide». Kirk-Othmer Encyclopedia of Chemical Technology. Wiley. doi:10.1002/0471238961.0301180216090518.a01.pub2. ISBN 978-0-471-23896-6.
- ^
Strassburger J (1969). Blast Furnace Theory and Practice. New York: American Institute of Mining, Metallurgical, and Petroleum Engineers. ISBN 978-0-677-10420-1. - ^ Topham S (2000). «Carbon Dioxide». Ullmann’s Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a05_165. ISBN 3527306730.
- ^ «CO2 shortage: Food industry calls for government action». BBC. 21 June 2018. Archived from the original on 23 May 2021. Retrieved 24 June 2018.
- ^ «IPCC Special Report on Carbon dioxide Capture and Storage» (PDF). The Intergovernmental Panel on Climate Change. Archived from the original (PDF) on 24 September 2015. Retrieved 4 September 2015.
- ^ Morrison RT, Boyd RN (1983). Organic Chemistry (4th ed.). Allyn and Bacon. pp. 976–977. ISBN 978-0-205-05838-9.
- ^ Badwal SP, Giddey SS, Munnings C, Bhatt AI, Hollenkamp AF (24 September 2014). «Emerging electrochemical energy conversion and storage technologies». Frontiers in Chemistry. 2: 79. Bibcode:2014FrCh….2…79B. doi:10.3389/fchem.2014.00079. PMC 4174133. PMID 25309898.
- ^ Whiting D, Roll M, Vickerman L (August 2010). «Plant Growth Factors: Photosynthesis, Respiration, and Transpiration». CMG GardenNotes. Colorado Master Gardener Program. Archived from the original on 2 September 2014. Retrieved 10 October 2011.
- ^ Waggoner PE (February 1994). «Carbon dioxide». How Much Land Can Ten Billion People Spare for Nature?. Archived from the original on 12 October 2011. Retrieved 10 October 2011.
- ^ Stafford N (August 2007). «Future crops: the other greenhouse effect». Nature. 448 (7153): 526–528. Bibcode:2007Natur.448..526S. doi:10.1038/448526a. PMID 17671477. S2CID 9845813.
- ^ UK Food Standards Agency: «Current EU approved additives and their E Numbers». Archived from the original on 7 October 2010. Retrieved 27 October 2011.
- ^ US Food and Drug Administration: «Food Additive Status List». Food and Drug Administration. Archived from the original on 4 November 2017. Retrieved 13 June 2015.
- ^ Australia New Zealand Food Standards Code«Standard 1.2.4 – Labelling of ingredients». Archived from the original on 19 January 2012. Retrieved 27 October 2011.
- ^ Futurific Leading Indicators Magazine. Vol. 1. CRAES LLC. ISBN 978-0-9847670-1-4. Archived from the original on 15 August 2021. Retrieved 9 November 2020.
- ^ Vijay GP (25 September 2015). Indian Breads: A Comprehensive Guide to Traditional and Innovative Indian Breads. Westland. ISBN 978-93-85724-46-6.
- ^ «Scientists Discover Protein Receptor For Carbonation Taste». ScienceDaily. 16 October 2009. Archived from the original on 29 March 2020. Retrieved 29 March 2020.
- ^ Coghlan A (3 February 2018). «A more humane way of slaughtering chickens might get EU approval». New Scientist. Archived from the original on 24 June 2018. Retrieved 24 June 2018.
- ^ «What is CO2 stunning?». RSPCA. Archived from the original on 9 April 2014.
- ^ Campbell A (10 March 2018). «Humane execution and the fear of the tumbril». New Scientist. Archived from the original on 24 June 2018. Retrieved 24 June 2018.
- ^ Nordestgaard BG, Rostgaard J (February 1985). «Critical-point drying versus freeze drying for scanning electron microscopy: a quantitative and qualitative study on isolated hepatocytes». Journal of Microscopy. 137 (Pt 2): 189–207. doi:10.1111/j.1365-2818.1985.tb02577.x. PMID 3989858. S2CID 32065173.
- ^ «Types of Fire Extinguishers». The Fire Safety Advice Centre. Archived from the original on 28 June 2021. Retrieved 28 June 2021.
- ^ National Fire Protection Association Code 12.
- ^ Carbon Dioxide as a Fire Suppressant: Examining the Risks, US EPA. 2000.
- ^ «Appendix A: CO2 for use in enhanced oil recovery (EOR)». Accelerating the uptake of CCS: industrial use of captured carbon dioxide. Global CCS Institute. 20 December 2011. Archived from the original on 28 April 2017. Retrieved 2 January 2017.
- ^ Austell JM (2005). «CO2 for Enhanced Oil Recovery Needs – Enhanced Fiscal Incentives». Exploration & Production: The Oil & Gas Review. Archived from the original on 7 February 2012. Retrieved 28 September 2007.
- ^ «Enhanced coal bed methane recovery». ETH Zurich. 31 August 2006. Archived from the original on 6 July 2011.
- ^ Clayton M (11 January 2006). «Algae – like a breath mint for smokestacks». The Christian Science Monitor. Archived from the original on 14 September 2008. Retrieved 11 October 2007.
- ^ Atsumi S, Higashide W, Liao JC (December 2009). «Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde». Nature Biotechnology. 27 (12): 1177–1180. doi:10.1038/nbt.1586. PMID 19915552. S2CID 1492698.
- ^ Cobb S, Badiani V, Dharani A, Wagner A, Zacarias S, Oliveira AR, et al. (28 February 2022). «Fast CO2 hydration kinetics impair heterogeneous but improve enzymatic CO2 reduction catalysis». Nature Chemistry. 14 (4): 417–424. Bibcode:2022NatCh..14..417C. doi:10.1038/s41557-021-00880-2. ISSN 1755-4349. PMC 7612589. PMID 35228690. S2CID 247160910.
- ^ Edwardes Moore E, Cobb SJ, Coito AM, Oliveira AR, Pereira IA, Reisner E (January 2022). «Understanding the local chemical environment of bioelectrocatalysis». Proceedings of the National Academy of Sciences of the United States of America. 119 (4): e2114097119. Bibcode:2022PNAS..11914097E. doi:10.1073/pnas.2114097119. PMC 8795565. PMID 35058361.
- ^ «Clean Way To Turn CO2 Into Fuel Inspired by Nature». Applied Sciences from Technology Networks. 1 March 2022. Retrieved 2 March 2022.
- ^ «The Coca-Cola Company Announces Adoption of HFC-Free Insulation in Refrigeration Units to Combat Global Warming». The Coca-Cola Company. 5 June 2006. Archived from the original on 1 November 2013. Retrieved 11 October 2007.
- ^ «Modine reinforces its CO2 research efforts». R744.com. 28 June 2007. Archived from the original on 10 February 2008.
- ^ TCE, the Chemical Engineer. Institution of Chemical Engineers. 1990. Archived from the original on 17 August 2021. Retrieved 2 June 2020.
- ^ a b «AVMA guidelines for the euthanasia of animals: 2020 Edition» (PDF). American Veterinary Medical Association. 2020. Archived (PDF) from the original on 1 February 2014. Retrieved 13 August 2021.
- ^ Harris D (September 1910). «The Pioneer in the Hygiene of Ventilation». The Lancet. 176 (4542): 906–908. doi:10.1016/S0140-6736(00)52420-9. Archived from the original on 17 March 2020. Retrieved 6 December 2019.
- ^ Almqvist E (2003). History of industrial gases. Springer. p. 93. ISBN 978-0-306-47277-0.
- ^ Priestley J, Hey W (1772). «Observations on Different Kinds of Air». Philosophical Transactions. 62: 147–264. doi:10.1098/rstl.1772.0021. S2CID 186210131. Archived from the original on 7 June 2010. Retrieved 11 October 2007.
- ^ Davy H (1823). «On the Application of Liquids Formed by the Condensation of Gases as Mechanical Agents». Philosophical Transactions. 113: 199–205. doi:10.1098/rstl.1823.0020. JSTOR 107649.
- ^ Thilorier AJ (1835). «Solidification de l’Acide carbonique». Comptes Rendus. 1: 194–196. Archived from the original on 2 September 2017. Retrieved 1 September 2017.
- ^ Thilorier AJ (1836). «Solidification of carbonic acid». The London and Edinburgh Philosophical Magazine. 8 (48): 446–447. doi:10.1080/14786443608648911. Archived from the original on 2 May 2016. Retrieved 15 November 2015.
External links
- Current global map of carbon dioxide concentration
- CDC – NIOSH Pocket Guide to Chemical Hazards – Carbon Dioxide
- Trends in Atmospheric Carbon Dioxide (NOAA)