Как пишется знак кратности

Оператор троеточие

Значение символа

Математический оператор кратности, деления без остатка.

Символ «Оператор троеточие» был утвержден как часть Юникода версии 3.2 в 2002 г.

Синонимы

кратно, делится на.

Версия 3.2
Блок Дополнительные математические операторы
Тип парной зеркальной скобки (bidi) Нет
Композиционное исключение Нет
Изменение регистра 2AF6
Простое изменение регистра 2AF6
Кодировка hex dec (bytes) dec binary
UTF-8 E2 AB B6 226 171 182 14855094 11100010 10101011 10110110
UTF-16BE 2A F6 42 246 10998 00101010 11110110
UTF-16LE F6 2A 246 42 63018 11110110 00101010
UTF-32BE 00 00 2A F6 0 0 42 246 10998 00000000 00000000 00101010 11110110
UTF-32LE F6 2A 00 00 246 42 0 0 4129947648 11110110 00101010 00000000 00000000

Что такое кратное число

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. В этой статье мы расскажем, что такое КРАТНЫЕ ЧИСЛА.

Эту тему каждый школьник в России проходит в 6 классе, когда подробно изучают деление.

Цифры

Хотя с самой этой математической функцией дети знакомятся гораздо раньше – уже во 2 классе.

Кратное число — это …

Деление – это математическая операция, благодаря которой можно узнать, сколько частей чего-то одного содержится в другом. Или, другими словами, заменяет многократное вычитание из одного числа другое.

Операция деления в математике может обозначаться разными значками. Это двоеточие (:), косая черта (/), горизонтальная черта (-) или специальным значком под названием «обелюс» (÷).

А у чисел, которые участвуют в делении, есть определенные названия:

  1. Делимое – то число, которое собираются делить;
  2. Делитель – число, на которое будут делить делимое. Соответственно, делитель чаще всего меньше делимого. Хотя не исключен и другой вариант. Единственное число, которое не может быть делителем, это ноль.
  3. Частное – результат деления, то есть число, которое получается в результате выполнения математического действия.

Частное, которое получается полным или не полным. Первый вариант, это когда число-делимое, было полностью поделено на делитель. Например, 12 / 3 = 4. Но бывают варианты и с неполным частным, когда появляется некий остаток. Например, 14 / 3 = 4 (2), где 4 – это неполное частное, а 2 – остаток.

Деление

Почему мы так подробно рассказали о делении? Это имеет непосредственное отношение к теме статьи.

Одно число называется кратным другому, если его можно на него поделить без остатка.

Примеры

Но речь идет только о натуральных числах. То есть тех, которые мы используем для счета в обычной жизни. Например, 1, 2, 5, 10, 35, 100 и так далее. При этом дробные числа (например, 2/5 или 0,5) к натуральным не относятся, а значит, в отношении них понятие «кратности» не применяется.

Например, возьмем число 12. Оно может быть кратно сразу нескольким числам.

12 / 3 = 4
12 / 4 = 3
12 / 6 = 2
12 / 2 = 6

Таким образом, можно сказать, что 12 – кратное число 2, 3, 4 и 6. И точно так же можно разложить по кратности любое число.

Внимательный читатель мог бы возразить, что есть еще два числа, на которые можно поделить 12 без остатка. Во-первых, это само 12. А во-вторых, это единица. Что ж, это абсолютная правда, и ее можно даже записать в одном математическом правиле:

Любое натуральное число всегда кратно само себе и единице. В первом случае получается единица, а во втором само число.

Таблицы чисел кратных 2,3,4,5,6,7,9

В первую очередь рассмотрим самый простой вариант. Это числа, которые являются кратными двум. Определить их совсем просто, так как к ним относятся все четные числа. Вот, например, как выглядит таблица от 1 до 100.

Кратные двум

А вот так будет выглядеть таблица чисел кратных трем. Обратите внимание, что все они в результате располагаются по диагонали. Получается весьма красиво.

Кратные трем

Теперь покажем таблицу чисел, которые можно поделить без остатка на 4. Как можно заметить, это только четные цифры.

Кратные четырем

А вот так выглядит таблица чисел, которые кратны пяти. Запомнить их очень просто. Числа, кратные пяти, должны оканчиваться или на 5, или на 0. Других вариантов быть просто не может.

Кратные пяти

А если взглянуть на таблицу чисел, которые кратны числу 6, то можно сделать интересный вывод. Есть числа, которые никогда не попадут в эту категорию. Они оканчиваются на 1, 3, 5, 7 и 9. Другими словами, только четные числа могут быть кратными 6. Но при этом не все четные числа таковыми являются.

Кратные шести

Интересно будет посмотреть и таблицу чисел, которые являются кратными 7. Чтобы определить их, нужно ходить по таблице вниз, как ходить шахматная фигура «конь». В народе это называется «буквой Г», в нашем случае это «шаг влево и два шага вниз».

Кратные семи

И наконец, интересно рассмотреть числа, которые кратны 9. Их очень легко определить, это своеобразный математический лайфхак.

Надо просто сложить все цифры в числе, и если в сумме получится 9, то тогда число кратно девятке.

Числа, кратные 9 27 198 5 877 3 816 117 72
Сумма 9 18 27 18 9 9

Да, тут указаны еще и числа 18 и 27. Но они при повторном сложении также дадут девятку.

Вместо заключения

А знаете, что есть число, которое можно назвать кратным всем другим натуральным числам? Это ноль. Ведь если ноль поделить на любое число, то получится опять же ноль. И никакого остатка. А значит, это утверждение верно.

Вот и все, что мы хотели рассказать о КРАТНЫХ ЧИСЛАХ.

{} набор набор элементов A = {3,7,9,14},
B = {9,14,28} А ∩ Б пересечение объекты, принадлежащие множеству A и множеству B A ∩ B = {9,14} А ∪ Б союз объекты, принадлежащие множеству A или множеству B A ∪ B = {3,7,9,14,28} А ⊆ Б подмножество A является подмножеством B. множество A включено в набор B. {9,14,28} ⊆ {9,14,28} A ⊂ B правильное подмножество / строгое подмножество A является подмножеством B, но A не равно B. {9,14} ⊂ {9,14,28} А ⊄ Б не подмножество множество A не является подмножеством множества B {9,66} ⊄ {9,14,28} А ⊇ Б суперсет A является надмножеством B. множество A включает множество B {9,14,28} ⊇ {9,14,28} А ⊃ Б правильный суперсет / строгий суперсет A является надмножеством B, но B не равно A. {9,14,28} ⊃ {9,14} А ⊅ Б не суперсет множество A не является надмножеством множества B {9,14,28} ⊅ {9,66} 2 А набор мощности все подмножества A    mathcal {P} (А) набор мощности все подмножества A   А = В равенство оба набора имеют одинаковые элементы A = {3,9,14},
B = {3,9,14},
A = B А в дополнять все объекты, не принадлежащие множеству A   А Б относительное дополнение объекты, принадлежащие A, а не B A = {3,9,14},
B = {1,2,3},
AB = {9,14} А — Б относительное дополнение объекты, принадлежащие A, а не B A = {3,9,14},
B = {1,2,3},
AB = {9,14} A ∆ B симметричная разница объекты, принадлежащие A или B, но не их пересечение A = {3,9,14},
B = {1,2,3},
A ∆ B = {1,2,9,14} А ⊖ Б симметричная разница объекты, принадлежащие A или B, но не их пересечение A = {3,9,14},
B = {1,2,3},
A ⊖ B = {1,2,9,14} a ∈A элемент,
принадлежит установить членство A = {3,9,14}, 3 ∈ A x ∉A не элемент нет установленного членства A = {3,9,14}, 1 ∉ A ( а , б ) упорядоченная пара сборник из 2-х элементов   A × B декартово произведение множество всех упорядоченных пар из A и B   | A | мощность количество элементов множества A A = {3,9,14}, | A | = 3 #A мощность количество элементов множества A A = {3,9,14}, # A = 3 | вертикальная полоса такой, что А = {х | 3 <х <14} алеф-нуль бесконечная мощность множества натуральных чисел   алеф-он мощность множества счетных порядковых чисел   Ø пустой набор Ø = {} C = {Ø}  mathbb {U} универсальный набор набор всех возможных значений    mathbb {N}0 набор натуральных / целых чисел (с нулем)  mathbb {N}0 = {0,1,2,3,4, …} 0 ∈  mathbb {N}0  mathbb {N}1 набор натуральных / целых чисел (без нуля)  mathbb {N}1 = {1,2,3,4,5, …} 6 ∈  mathbb {N}1  mathbb {Z} набор целых чисел  mathbb {Z} = {…- 3, -2, -1,0,1,2,3, …} -6 ∈ mathbb {Z}  mathbb {Q} набор рациональных чисел  mathbb {Q} = { x | x = a / b , a , b mathbb {Z}} 2/6 ∈ mathbb {Q}  mathbb {R} набор реальных чисел  mathbb {R} = { x | -∞ < х <∞} 6.343434∈ mathbb {R}  mathbb {C} набор комплексных чисел  mathbb {C} = { z | z = a + bi , -∞ < a <∞, -∞ < b <∞} 6 + 2 i mathbb {C}

Понравилась статья? Поделить с друзьями:
  • Как пишется знак корень
  • Как пишется знак кислорода
  • Как пишется знак интеграла
  • Как пишется знаки дорожного движения
  • Как пишется знак зодиака телец