- Author:
- Guido van Rossum <guido at python.org>,
Barry Warsaw <barry at python.org>,
Nick Coghlan <ncoghlan at gmail.com> - Status:
- Active
- Type:
- Process
- Created:
- 05-Jul-2001
- Post-History:
- 05-Jul-2001, 01-Aug-2013
- Introduction
- A Foolish Consistency is the Hobgoblin of Little Minds
- Code Lay-out
- Indentation
- Tabs or Spaces?
- Maximum Line Length
- Should a Line Break Before or After a Binary Operator?
- Blank Lines
- Source File Encoding
- Imports
- Module Level Dunder Names
- String Quotes
- Whitespace in Expressions and Statements
- Pet Peeves
- Other Recommendations
- When to Use Trailing Commas
- Comments
- Block Comments
- Inline Comments
- Documentation Strings
- Naming Conventions
- Overriding Principle
- Descriptive: Naming Styles
- Prescriptive: Naming Conventions
- Names to Avoid
- ASCII Compatibility
- Package and Module Names
- Class Names
- Type Variable Names
- Exception Names
- Global Variable Names
- Function and Variable Names
- Function and Method Arguments
- Method Names and Instance Variables
- Constants
- Designing for Inheritance
- Public and Internal Interfaces
- Programming Recommendations
- Function Annotations
- Variable Annotations
- References
- Copyright
Introduction
This document gives coding conventions for the Python code comprising
the standard library in the main Python distribution. Please see the
companion informational PEP describing style guidelines for the C code
in the C implementation of Python.
This document and PEP 257 (Docstring Conventions) were adapted from
Guido’s original Python Style Guide essay, with some additions from
Barry’s style guide [2].
This style guide evolves over time as additional conventions are
identified and past conventions are rendered obsolete by changes in
the language itself.
Many projects have their own coding style guidelines. In the event of any
conflicts, such project-specific guides take precedence for that project.
A Foolish Consistency is the Hobgoblin of Little Minds
One of Guido’s key insights is that code is read much more often than
it is written. The guidelines provided here are intended to improve
the readability of code and make it consistent across the wide
spectrum of Python code. As PEP 20 says, “Readability counts”.
A style guide is about consistency. Consistency with this style guide
is important. Consistency within a project is more important.
Consistency within one module or function is the most important.
However, know when to be inconsistent – sometimes style guide
recommendations just aren’t applicable. When in doubt, use your best
judgment. Look at other examples and decide what looks best. And
don’t hesitate to ask!
In particular: do not break backwards compatibility just to comply with
this PEP!
Some other good reasons to ignore a particular guideline:
- When applying the guideline would make the code less readable, even
for someone who is used to reading code that follows this PEP. - To be consistent with surrounding code that also breaks it (maybe
for historic reasons) – although this is also an opportunity to
clean up someone else’s mess (in true XP style). - Because the code in question predates the introduction of the
guideline and there is no other reason to be modifying that code. - When the code needs to remain compatible with older versions of
Python that don’t support the feature recommended by the style guide.
Code Lay-out
Indentation
Use 4 spaces per indentation level.
Continuation lines should align wrapped elements either vertically
using Python’s implicit line joining inside parentheses, brackets and
braces, or using a hanging indent [1]. When using a hanging
indent the following should be considered; there should be no
arguments on the first line and further indentation should be used to
clearly distinguish itself as a continuation line:
# Correct: # Aligned with opening delimiter. foo = long_function_name(var_one, var_two, var_three, var_four) # Add 4 spaces (an extra level of indentation) to distinguish arguments from the rest. def long_function_name( var_one, var_two, var_three, var_four): print(var_one) # Hanging indents should add a level. foo = long_function_name( var_one, var_two, var_three, var_four)
# Wrong: # Arguments on first line forbidden when not using vertical alignment. foo = long_function_name(var_one, var_two, var_three, var_four) # Further indentation required as indentation is not distinguishable. def long_function_name( var_one, var_two, var_three, var_four): print(var_one)
The 4-space rule is optional for continuation lines.
Optional:
# Hanging indents *may* be indented to other than 4 spaces. foo = long_function_name( var_one, var_two, var_three, var_four)
When the conditional part of an if
-statement is long enough to require
that it be written across multiple lines, it’s worth noting that the
combination of a two character keyword (i.e. if
), plus a single space,
plus an opening parenthesis creates a natural 4-space indent for the
subsequent lines of the multiline conditional. This can produce a visual
conflict with the indented suite of code nested inside the if
-statement,
which would also naturally be indented to 4 spaces. This PEP takes no
explicit position on how (or whether) to further visually distinguish such
conditional lines from the nested suite inside the if
-statement.
Acceptable options in this situation include, but are not limited to:
# No extra indentation. if (this_is_one_thing and that_is_another_thing): do_something() # Add a comment, which will provide some distinction in editors # supporting syntax highlighting. if (this_is_one_thing and that_is_another_thing): # Since both conditions are true, we can frobnicate. do_something() # Add some extra indentation on the conditional continuation line. if (this_is_one_thing and that_is_another_thing): do_something()
(Also see the discussion of whether to break before or after binary
operators below.)
The closing brace/bracket/parenthesis on multiline constructs may
either line up under the first non-whitespace character of the last
line of list, as in:
my_list = [ 1, 2, 3, 4, 5, 6, ] result = some_function_that_takes_arguments( 'a', 'b', 'c', 'd', 'e', 'f', )
or it may be lined up under the first character of the line that
starts the multiline construct, as in:
my_list = [ 1, 2, 3, 4, 5, 6, ] result = some_function_that_takes_arguments( 'a', 'b', 'c', 'd', 'e', 'f', )
Tabs or Spaces?
Spaces are the preferred indentation method.
Tabs should be used solely to remain consistent with code that is
already indented with tabs.
Python disallows mixing tabs and spaces for indentation.
Maximum Line Length
Limit all lines to a maximum of 79 characters.
For flowing long blocks of text with fewer structural restrictions
(docstrings or comments), the line length should be limited to 72
characters.
Limiting the required editor window width makes it possible to have
several files open side by side, and works well when using code
review tools that present the two versions in adjacent columns.
The default wrapping in most tools disrupts the visual structure of the
code, making it more difficult to understand. The limits are chosen to
avoid wrapping in editors with the window width set to 80, even
if the tool places a marker glyph in the final column when wrapping
lines. Some web based tools may not offer dynamic line wrapping at all.
Some teams strongly prefer a longer line length. For code maintained
exclusively or primarily by a team that can reach agreement on this
issue, it is okay to increase the line length limit up to 99 characters,
provided that comments and docstrings are still wrapped at 72
characters.
The Python standard library is conservative and requires limiting
lines to 79 characters (and docstrings/comments to 72).
The preferred way of wrapping long lines is by using Python’s implied
line continuation inside parentheses, brackets and braces. Long lines
can be broken over multiple lines by wrapping expressions in
parentheses. These should be used in preference to using a backslash
for line continuation.
Backslashes may still be appropriate at times. For example, long,
multiple with
-statements could not use implicit continuation
before Python 3.10, so backslashes were acceptable for that case:
with open('/path/to/some/file/you/want/to/read') as file_1, open('/path/to/some/file/being/written', 'w') as file_2: file_2.write(file_1.read())
(See the previous discussion on multiline if-statements for further
thoughts on the indentation of such multiline with
-statements.)
Another such case is with assert
statements.
Make sure to indent the continued line appropriately.
Should a Line Break Before or After a Binary Operator?
For decades the recommended style was to break after binary operators.
But this can hurt readability in two ways: the operators tend to get
scattered across different columns on the screen, and each operator is
moved away from its operand and onto the previous line. Here, the eye
has to do extra work to tell which items are added and which are
subtracted:
# Wrong: # operators sit far away from their operands income = (gross_wages + taxable_interest + (dividends - qualified_dividends) - ira_deduction - student_loan_interest)
To solve this readability problem, mathematicians and their publishers
follow the opposite convention. Donald Knuth explains the traditional
rule in his Computers and Typesetting series: “Although formulas
within a paragraph always break after binary operations and relations,
displayed formulas always break before binary operations” [3].
Following the tradition from mathematics usually results in more
readable code:
# Correct: # easy to match operators with operands income = (gross_wages + taxable_interest + (dividends - qualified_dividends) - ira_deduction - student_loan_interest)
In Python code, it is permissible to break before or after a binary
operator, as long as the convention is consistent locally. For new
code Knuth’s style is suggested.
Blank Lines
Surround top-level function and class definitions with two blank
lines.
Method definitions inside a class are surrounded by a single blank
line.
Extra blank lines may be used (sparingly) to separate groups of
related functions. Blank lines may be omitted between a bunch of
related one-liners (e.g. a set of dummy implementations).
Use blank lines in functions, sparingly, to indicate logical sections.
Python accepts the control-L (i.e. ^L) form feed character as
whitespace; many tools treat these characters as page separators, so
you may use them to separate pages of related sections of your file.
Note, some editors and web-based code viewers may not recognize
control-L as a form feed and will show another glyph in its place.
Source File Encoding
Code in the core Python distribution should always use UTF-8, and should not
have an encoding declaration.
In the standard library, non-UTF-8 encodings should be used only for
test purposes. Use non-ASCII characters sparingly, preferably only to
denote places and human names. If using non-ASCII characters as data,
avoid noisy Unicode characters like z̯̯͡a̧͎̺l̡͓̫g̹̲o̡̼̘ and byte order
marks.
All identifiers in the Python standard library MUST use ASCII-only
identifiers, and SHOULD use English words wherever feasible (in many
cases, abbreviations and technical terms are used which aren’t
English).
Open source projects with a global audience are encouraged to adopt a
similar policy.
Imports
- Imports should usually be on separate lines:
# Correct: import os import sys
It’s okay to say this though:
# Correct: from subprocess import Popen, PIPE
- Imports are always put at the top of the file, just after any module
comments and docstrings, and before module globals and constants.Imports should be grouped in the following order:
- Standard library imports.
- Related third party imports.
- Local application/library specific imports.
You should put a blank line between each group of imports.
- Absolute imports are recommended, as they are usually more readable
and tend to be better behaved (or at least give better error
messages) if the import system is incorrectly configured (such as
when a directory inside a package ends up onsys.path
):import mypkg.sibling from mypkg import sibling from mypkg.sibling import example
However, explicit relative imports are an acceptable alternative to
absolute imports, especially when dealing with complex package layouts
where using absolute imports would be unnecessarily verbose:from . import sibling from .sibling import example
Standard library code should avoid complex package layouts and always
use absolute imports. - When importing a class from a class-containing module, it’s usually
okay to spell this:from myclass import MyClass from foo.bar.yourclass import YourClass
If this spelling causes local name clashes, then spell them explicitly:
import myclass import foo.bar.yourclass
and use “myclass.MyClass” and “foo.bar.yourclass.YourClass”.
- Wildcard imports (
from <module> import *
) should be avoided, as
they make it unclear which names are present in the namespace,
confusing both readers and many automated tools. There is one
defensible use case for a wildcard import, which is to republish an
internal interface as part of a public API (for example, overwriting
a pure Python implementation of an interface with the definitions
from an optional accelerator module and exactly which definitions
will be overwritten isn’t known in advance).When republishing names this way, the guidelines below regarding
public and internal interfaces still apply.
Module Level Dunder Names
Module level “dunders” (i.e. names with two leading and two trailing
underscores) such as __all__
, __author__
, __version__
,
etc. should be placed after the module docstring but before any import
statements except from __future__
imports. Python mandates that
future-imports must appear in the module before any other code except
docstrings:
"""This is the example module. This module does stuff. """ from __future__ import barry_as_FLUFL __all__ = ['a', 'b', 'c'] __version__ = '0.1' __author__ = 'Cardinal Biggles' import os import sys
String Quotes
In Python, single-quoted strings and double-quoted strings are the
same. This PEP does not make a recommendation for this. Pick a rule
and stick to it. When a string contains single or double quote
characters, however, use the other one to avoid backslashes in the
string. It improves readability.
For triple-quoted strings, always use double quote characters to be
consistent with the docstring convention in PEP 257.
Whitespace in Expressions and Statements
Pet Peeves
Avoid extraneous whitespace in the following situations:
- Immediately inside parentheses, brackets or braces:
# Correct: spam(ham[1], {eggs: 2})
# Wrong: spam( ham[ 1 ], { eggs: 2 } )
- Between a trailing comma and a following close parenthesis:
- Immediately before a comma, semicolon, or colon:
# Correct: if x == 4: print(x, y); x, y = y, x
# Wrong: if x == 4 : print(x , y) ; x , y = y , x
- However, in a slice the colon acts like a binary operator, and
should have equal amounts on either side (treating it as the
operator with the lowest priority). In an extended slice, both
colons must have the same amount of spacing applied. Exception:
when a slice parameter is omitted, the space is omitted:# Correct: ham[1:9], ham[1:9:3], ham[:9:3], ham[1::3], ham[1:9:] ham[lower:upper], ham[lower:upper:], ham[lower::step] ham[lower+offset : upper+offset] ham[: upper_fn(x) : step_fn(x)], ham[:: step_fn(x)] ham[lower + offset : upper + offset]
# Wrong: ham[lower + offset:upper + offset] ham[1: 9], ham[1 :9], ham[1:9 :3] ham[lower : : upper] ham[ : upper]
- Immediately before the open parenthesis that starts the argument
list of a function call: - Immediately before the open parenthesis that starts an indexing or
slicing:# Correct: dct['key'] = lst[index]
# Wrong: dct ['key'] = lst [index]
- More than one space around an assignment (or other) operator to
align it with another:# Correct: x = 1 y = 2 long_variable = 3
# Wrong: x = 1 y = 2 long_variable = 3
Other Recommendations
- Avoid trailing whitespace anywhere. Because it’s usually invisible,
it can be confusing: e.g. a backslash followed by a space and a
newline does not count as a line continuation marker. Some editors
don’t preserve it and many projects (like CPython itself) have
pre-commit hooks that reject it. - Always surround these binary operators with a single space on either
side: assignment (=
), augmented assignment (+=
,-=
etc.), comparisons (==
,<
,>
,!=
,<>
,<=
,
>=
,in
,not in
,is
,is not
), Booleans (and
,
or
,not
). - If operators with different priorities are used, consider adding
whitespace around the operators with the lowest priority(ies). Use
your own judgment; however, never use more than one space, and
always have the same amount of whitespace on both sides of a binary
operator:# Correct: i = i + 1 submitted += 1 x = x*2 - 1 hypot2 = x*x + y*y c = (a+b) * (a-b)
# Wrong: i=i+1 submitted +=1 x = x * 2 - 1 hypot2 = x * x + y * y c = (a + b) * (a - b)
- Function annotations should use the normal rules for colons and
always have spaces around the->
arrow if present. (See
Function Annotations below for more about function annotations.):# Correct: def munge(input: AnyStr): ... def munge() -> PosInt: ...
# Wrong: def munge(input:AnyStr): ... def munge()->PosInt: ...
- Don’t use spaces around the
=
sign when used to indicate a
keyword argument, or when used to indicate a default value for an
unannotated function parameter:# Correct: def complex(real, imag=0.0): return magic(r=real, i=imag)
# Wrong: def complex(real, imag = 0.0): return magic(r = real, i = imag)
When combining an argument annotation with a default value, however, do use
spaces around the=
sign:# Correct: def munge(sep: AnyStr = None): ... def munge(input: AnyStr, sep: AnyStr = None, limit=1000): ...
# Wrong: def munge(input: AnyStr=None): ... def munge(input: AnyStr, limit = 1000): ...
- Compound statements (multiple statements on the same line) are
generally discouraged:# Correct: if foo == 'blah': do_blah_thing() do_one() do_two() do_three()
Rather not:
# Wrong: if foo == 'blah': do_blah_thing() do_one(); do_two(); do_three()
- While sometimes it’s okay to put an if/for/while with a small body
on the same line, never do this for multi-clause statements. Also
avoid folding such long lines!Rather not:
# Wrong: if foo == 'blah': do_blah_thing() for x in lst: total += x while t < 10: t = delay()
Definitely not:
# Wrong: if foo == 'blah': do_blah_thing() else: do_non_blah_thing() try: something() finally: cleanup() do_one(); do_two(); do_three(long, argument, list, like, this) if foo == 'blah': one(); two(); three()
When to Use Trailing Commas
Trailing commas are usually optional, except they are mandatory when
making a tuple of one element. For clarity, it is recommended to
surround the latter in (technically redundant) parentheses:
# Correct: FILES = ('setup.cfg',)
# Wrong: FILES = 'setup.cfg',
When trailing commas are redundant, they are often helpful when a
version control system is used, when a list of values, arguments or
imported items is expected to be extended over time. The pattern is
to put each value (etc.) on a line by itself, always adding a trailing
comma, and add the close parenthesis/bracket/brace on the next line.
However it does not make sense to have a trailing comma on the same
line as the closing delimiter (except in the above case of singleton
tuples):
# Correct: FILES = [ 'setup.cfg', 'tox.ini', ] initialize(FILES, error=True, )
# Wrong: FILES = ['setup.cfg', 'tox.ini',] initialize(FILES, error=True,)
Naming Conventions
The naming conventions of Python’s library are a bit of a mess, so
we’ll never get this completely consistent – nevertheless, here are
the currently recommended naming standards. New modules and packages
(including third party frameworks) should be written to these
standards, but where an existing library has a different style,
internal consistency is preferred.
Overriding Principle
Names that are visible to the user as public parts of the API should
follow conventions that reflect usage rather than implementation.
Descriptive: Naming Styles
There are a lot of different naming styles. It helps to be able to
recognize what naming style is being used, independently from what
they are used for.
The following naming styles are commonly distinguished:
b
(single lowercase letter)B
(single uppercase letter)lowercase
lower_case_with_underscores
UPPERCASE
UPPER_CASE_WITH_UNDERSCORES
CapitalizedWords
(or CapWords, or CamelCase – so named because
of the bumpy look of its letters [4]). This is also sometimes known
as StudlyCaps.Note: When using acronyms in CapWords, capitalize all the
letters of the acronym. Thus HTTPServerError is better than
HttpServerError.mixedCase
(differs from CapitalizedWords by initial lowercase
character!)Capitalized_Words_With_Underscores
(ugly!)
There’s also the style of using a short unique prefix to group related
names together. This is not used much in Python, but it is mentioned
for completeness. For example, the os.stat()
function returns a
tuple whose items traditionally have names like st_mode
,
st_size
, st_mtime
and so on. (This is done to emphasize the
correspondence with the fields of the POSIX system call struct, which
helps programmers familiar with that.)
The X11 library uses a leading X for all its public functions. In
Python, this style is generally deemed unnecessary because attribute
and method names are prefixed with an object, and function names are
prefixed with a module name.
In addition, the following special forms using leading or trailing
underscores are recognized (these can generally be combined with any
case convention):
_single_leading_underscore
: weak “internal use” indicator.
E.g.from M import *
does not import objects whose names start
with an underscore.single_trailing_underscore_
: used by convention to avoid
conflicts with Python keyword, e.g.tkinter.Toplevel(master, class_='ClassName')
__double_leading_underscore
: when naming a class attribute,
invokes name mangling (inside class FooBar,__boo
becomes
_FooBar__boo
; see below).__double_leading_and_trailing_underscore__
: “magic” objects or
attributes that live in user-controlled namespaces.
E.g.__init__
,__import__
or__file__
. Never invent
such names; only use them as documented.
Prescriptive: Naming Conventions
Names to Avoid
Never use the characters ‘l’ (lowercase letter el), ‘O’ (uppercase
letter oh), or ‘I’ (uppercase letter eye) as single character variable
names.
In some fonts, these characters are indistinguishable from the
numerals one and zero. When tempted to use ‘l’, use ‘L’ instead.
ASCII Compatibility
Identifiers used in the standard library must be ASCII compatible
as described in the
policy section
of PEP 3131.
Package and Module Names
Modules should have short, all-lowercase names. Underscores can be
used in the module name if it improves readability. Python packages
should also have short, all-lowercase names, although the use of
underscores is discouraged.
When an extension module written in C or C++ has an accompanying
Python module that provides a higher level (e.g. more object oriented)
interface, the C/C++ module has a leading underscore
(e.g. _socket
).
Class Names
Class names should normally use the CapWords convention.
The naming convention for functions may be used instead in cases where
the interface is documented and used primarily as a callable.
Note that there is a separate convention for builtin names: most builtin
names are single words (or two words run together), with the CapWords
convention used only for exception names and builtin constants.
Type Variable Names
Names of type variables introduced in PEP 484 should normally use CapWords
preferring short names: T
, AnyStr
, Num
. It is recommended to add
suffixes _co
or _contra
to the variables used to declare covariant
or contravariant behavior correspondingly:
from typing import TypeVar VT_co = TypeVar('VT_co', covariant=True) KT_contra = TypeVar('KT_contra', contravariant=True)
Exception Names
Because exceptions should be classes, the class naming convention
applies here. However, you should use the suffix “Error” on your
exception names (if the exception actually is an error).
Global Variable Names
(Let’s hope that these variables are meant for use inside one module
only.) The conventions are about the same as those for functions.
Modules that are designed for use via from M import *
should use
the __all__
mechanism to prevent exporting globals, or use the
older convention of prefixing such globals with an underscore (which
you might want to do to indicate these globals are “module
non-public”).
Function and Variable Names
Function names should be lowercase, with words separated by
underscores as necessary to improve readability.
Variable names follow the same convention as function names.
mixedCase is allowed only in contexts where that’s already the
prevailing style (e.g. threading.py), to retain backwards
compatibility.
Function and Method Arguments
Always use self
for the first argument to instance methods.
Always use cls
for the first argument to class methods.
If a function argument’s name clashes with a reserved keyword, it is
generally better to append a single trailing underscore rather than
use an abbreviation or spelling corruption. Thus class_
is better
than clss
. (Perhaps better is to avoid such clashes by using a
synonym.)
Method Names and Instance Variables
Use the function naming rules: lowercase with words separated by
underscores as necessary to improve readability.
Use one leading underscore only for non-public methods and instance
variables.
To avoid name clashes with subclasses, use two leading underscores to
invoke Python’s name mangling rules.
Python mangles these names with the class name: if class Foo has an
attribute named __a
, it cannot be accessed by Foo.__a
. (An
insistent user could still gain access by calling Foo._Foo__a
.)
Generally, double leading underscores should be used only to avoid
name conflicts with attributes in classes designed to be subclassed.
Note: there is some controversy about the use of __names (see below).
Constants
Constants are usually defined on a module level and written in all
capital letters with underscores separating words. Examples include
MAX_OVERFLOW
and TOTAL
.
Designing for Inheritance
Always decide whether a class’s methods and instance variables
(collectively: “attributes”) should be public or non-public. If in
doubt, choose non-public; it’s easier to make it public later than to
make a public attribute non-public.
Public attributes are those that you expect unrelated clients of your
class to use, with your commitment to avoid backwards incompatible
changes. Non-public attributes are those that are not intended to be
used by third parties; you make no guarantees that non-public
attributes won’t change or even be removed.
We don’t use the term “private” here, since no attribute is really
private in Python (without a generally unnecessary amount of work).
Another category of attributes are those that are part of the
“subclass API” (often called “protected” in other languages). Some
classes are designed to be inherited from, either to extend or modify
aspects of the class’s behavior. When designing such a class, take
care to make explicit decisions about which attributes are public,
which are part of the subclass API, and which are truly only to be
used by your base class.
With this in mind, here are the Pythonic guidelines:
- Public attributes should have no leading underscores.
- If your public attribute name collides with a reserved keyword,
append a single trailing underscore to your attribute name. This is
preferable to an abbreviation or corrupted spelling. (However,
notwithstanding this rule, ‘cls’ is the preferred spelling for any
variable or argument which is known to be a class, especially the
first argument to a class method.)Note 1: See the argument name recommendation above for class methods.
- For simple public data attributes, it is best to expose just the
attribute name, without complicated accessor/mutator methods. Keep
in mind that Python provides an easy path to future enhancement,
should you find that a simple data attribute needs to grow
functional behavior. In that case, use properties to hide
functional implementation behind simple data attribute access
syntax.Note 1: Try to keep the functional behavior side-effect free,
although side-effects such as caching are generally fine.Note 2: Avoid using properties for computationally expensive
operations; the attribute notation makes the caller believe that
access is (relatively) cheap. - If your class is intended to be subclassed, and you have attributes
that you do not want subclasses to use, consider naming them with
double leading underscores and no trailing underscores. This
invokes Python’s name mangling algorithm, where the name of the
class is mangled into the attribute name. This helps avoid
attribute name collisions should subclasses inadvertently contain
attributes with the same name.Note 1: Note that only the simple class name is used in the mangled
name, so if a subclass chooses both the same class name and attribute
name, you can still get name collisions.Note 2: Name mangling can make certain uses, such as debugging and
__getattr__()
, less convenient. However the name mangling
algorithm is well documented and easy to perform manually.Note 3: Not everyone likes name mangling. Try to balance the
need to avoid accidental name clashes with potential use by
advanced callers.
Public and Internal Interfaces
Any backwards compatibility guarantees apply only to public interfaces.
Accordingly, it is important that users be able to clearly distinguish
between public and internal interfaces.
Documented interfaces are considered public, unless the documentation
explicitly declares them to be provisional or internal interfaces exempt
from the usual backwards compatibility guarantees. All undocumented
interfaces should be assumed to be internal.
To better support introspection, modules should explicitly declare the
names in their public API using the __all__
attribute. Setting
__all__
to an empty list indicates that the module has no public API.
Even with __all__
set appropriately, internal interfaces (packages,
modules, classes, functions, attributes or other names) should still be
prefixed with a single leading underscore.
An interface is also considered internal if any containing namespace
(package, module or class) is considered internal.
Imported names should always be considered an implementation detail.
Other modules must not rely on indirect access to such imported names
unless they are an explicitly documented part of the containing module’s
API, such as os.path
or a package’s __init__
module that exposes
functionality from submodules.
Programming Recommendations
- Code should be written in a way that does not disadvantage other
implementations of Python (PyPy, Jython, IronPython, Cython, Psyco,
and such).For example, do not rely on CPython’s efficient implementation of
in-place string concatenation for statements in the forma += b
ora = a + b
. This optimization is fragile even in CPython (it
only works for some types) and isn’t present at all in implementations
that don’t use refcounting. In performance sensitive parts of the
library, the''.join()
form should be used instead. This will
ensure that concatenation occurs in linear time across various
implementations. - Comparisons to singletons like None should always be done with
is
oris not
, never the equality operators.Also, beware of writing
if x
when you really meanif x is not
– e.g. when testing whether a variable or argument that
None
defaults to None was set to some other value. The other value might
have a type (such as a container) that could be false in a boolean
context! - Use
is not
operator rather thannot ... is
. While both
expressions are functionally identical, the former is more readable
and preferred:# Correct: if foo is not None:
# Wrong: if not foo is None:
- When implementing ordering operations with rich comparisons, it is
best to implement all six operations (__eq__
,__ne__
,
__lt__
,__le__
,__gt__
,__ge__
) rather than relying
on other code to only exercise a particular comparison.To minimize the effort involved, the
functools.total_ordering()
decorator provides a tool to generate missing comparison methods.PEP 207 indicates that reflexivity rules are assumed by Python.
Thus, the interpreter may swapy > x
withx < y
,y >= x
withx <= y
, and may swap the arguments ofx == y
andx !=
. The
ysort()
andmin()
operations are guaranteed to use
the<
operator and themax()
function uses the>
operator. However, it is best to implement all six operations so
that confusion doesn’t arise in other contexts. - Always use a def statement instead of an assignment statement that binds
a lambda expression directly to an identifier:# Correct: def f(x): return 2*x
# Wrong: f = lambda x: 2*x
The first form means that the name of the resulting function object is
specifically ‘f’ instead of the generic ‘<lambda>’. This is more
useful for tracebacks and string representations in general. The use
of the assignment statement eliminates the sole benefit a lambda
expression can offer over an explicit def statement (i.e. that it can
be embedded inside a larger expression) - Derive exceptions from
Exception
rather thanBaseException
.
Direct inheritance fromBaseException
is reserved for exceptions
where catching them is almost always the wrong thing to do.Design exception hierarchies based on the distinctions that code
catching the exceptions is likely to need, rather than the locations
where the exceptions are raised. Aim to answer the question
“What went wrong?” programmatically, rather than only stating that
“A problem occurred” (see PEP 3151 for an example of this lesson being
learned for the builtin exception hierarchy)Class naming conventions apply here, although you should add the
suffix “Error” to your exception classes if the exception is an
error. Non-error exceptions that are used for non-local flow control
or other forms of signaling need no special suffix. - Use exception chaining appropriately.
raise X from Y
should be used to indicate explicit replacement without losing the
original traceback.When deliberately replacing an inner exception (using
raise X from
), ensure that relevant details are transferred to the new
None
exception (such as preserving the attribute name when converting
KeyError to AttributeError, or embedding the text of the original
exception in the new exception message). - When catching exceptions, mention specific exceptions whenever
possible instead of using a bareexcept:
clause:try: import platform_specific_module except ImportError: platform_specific_module = None
A bare
except:
clause will catch SystemExit and
KeyboardInterrupt exceptions, making it harder to interrupt a
program with Control-C, and can disguise other problems. If you
want to catch all exceptions that signal program errors, use
except Exception:
(bare except is equivalent toexcept
).
BaseException:A good rule of thumb is to limit use of bare ‘except’ clauses to two
cases:- If the exception handler will be printing out or logging the
traceback; at least the user will be aware that an error has
occurred. - If the code needs to do some cleanup work, but then lets the
exception propagate upwards withraise
.try...finally
can be a better way to handle this case.
- If the exception handler will be printing out or logging the
- When catching operating system errors, prefer the explicit exception
hierarchy introduced in Python 3.3 over introspection oferrno
values. - Additionally, for all try/except clauses, limit the
try
clause
to the absolute minimum amount of code necessary. Again, this
avoids masking bugs:# Correct: try: value = collection[key] except KeyError: return key_not_found(key) else: return handle_value(value)
# Wrong: try: # Too broad! return handle_value(collection[key]) except KeyError: # Will also catch KeyError raised by handle_value() return key_not_found(key)
- When a resource is local to a particular section of code, use a
with
statement to ensure it is cleaned up promptly and reliably
after use. A try/finally statement is also acceptable. - Context managers should be invoked through separate functions or methods
whenever they do something other than acquire and release resources:# Correct: with conn.begin_transaction(): do_stuff_in_transaction(conn)
# Wrong: with conn: do_stuff_in_transaction(conn)
The latter example doesn’t provide any information to indicate that
the__enter__
and__exit__
methods are doing something other
than closing the connection after a transaction. Being explicit is
important in this case. - Be consistent in return statements. Either all return statements in
a function should return an expression, or none of them should. If
any return statement returns an expression, any return statements
where no value is returned should explicitly state this asreturn
, and an explicit return statement should be present at the
None
end of the function (if reachable):# Correct: def foo(x): if x >= 0: return math.sqrt(x) else: return None def bar(x): if x < 0: return None return math.sqrt(x)
# Wrong: def foo(x): if x >= 0: return math.sqrt(x) def bar(x): if x < 0: return return math.sqrt(x)
- Use
''.startswith()
and''.endswith()
instead of string
slicing to check for prefixes or suffixes.startswith() and endswith() are cleaner and less error prone:
# Correct: if foo.startswith('bar'):
# Wrong: if foo[:3] == 'bar':
- Object type comparisons should always use isinstance() instead of
comparing types directly:# Correct: if isinstance(obj, int):
# Wrong: if type(obj) is type(1):
- For sequences, (strings, lists, tuples), use the fact that empty
sequences are false:# Correct: if not seq: if seq:
# Wrong: if len(seq): if not len(seq):
- Don’t write string literals that rely on significant trailing
whitespace. Such trailing whitespace is visually indistinguishable
and some editors (or more recently, reindent.py) will trim them. - Don’t compare boolean values to True or False using
==
:# Wrong: if greeting == True:
Worse:
# Wrong: if greeting is True:
- Use of the flow control statements
return
/break
/continue
within the finally suite of atry...finally
, where the flow control
statement would jump outside the finally suite, is discouraged. This
is because such statements will implicitly cancel any active exception
that is propagating through the finally suite:# Wrong: def foo(): try: 1 / 0 finally: return 42
Function Annotations
With the acceptance of PEP 484, the style rules for function
annotations have changed.
- Function annotations should use PEP 484 syntax (there are some
formatting recommendations for annotations in the previous section). - The experimentation with annotation styles that was recommended
previously in this PEP is no longer encouraged. - However, outside the stdlib, experiments within the rules of PEP 484
are now encouraged. For example, marking up a large third party
library or application with PEP 484 style type annotations,
reviewing how easy it was to add those annotations, and observing
whether their presence increases code understandability. - The Python standard library should be conservative in adopting such
annotations, but their use is allowed for new code and for big
refactorings. - For code that wants to make a different use of function annotations
it is recommended to put a comment of the form:near the top of the file; this tells type checkers to ignore all
annotations. (More fine-grained ways of disabling complaints from
type checkers can be found in PEP 484.) - Like linters, type checkers are optional, separate tools. Python
interpreters by default should not issue any messages due to type
checking and should not alter their behavior based on annotations. - Users who don’t want to use type checkers are free to ignore them.
However, it is expected that users of third party library packages
may want to run type checkers over those packages. For this purpose
PEP 484 recommends the use of stub files: .pyi files that are read
by the type checker in preference of the corresponding .py files.
Stub files can be distributed with a library, or separately (with
the library author’s permission) through the typeshed repo [5].
Variable Annotations
PEP 526 introduced variable annotations. The style recommendations for them are
similar to those on function annotations described above:
- Annotations for module level variables, class and instance variables,
and local variables should have a single space after the colon. - There should be no space before the colon.
- If an assignment has a right hand side, then the equality sign should have
exactly one space on both sides:# Correct: code: int class Point: coords: Tuple[int, int] label: str = '<unknown>'
# Wrong: code:int # No space after colon code : int # Space before colon class Test: result: int=0 # No spaces around equality sign
- Although the PEP 526 is accepted for Python 3.6, the variable annotation
syntax is the preferred syntax for stub files on all versions of Python
(see PEP 484 for details).
Footnotes
References
Copyright
This document has been placed in the public domain.
Доброго времени суток, Хабрахабр. Сегодня на крыле принес еще один перевод я (pdf-ки гугловского стайл гайда выложены). Хотя, кто знает, если кто-то оценит сию работу — быть может появится и продолжение. Как-то днём одним, предложил мне мой широко известный в узких кругах коллега scraplesh почитать ресурс — The Hitchhiker’s Guide to Python! называемый. Ресурс этот понравился мне. Понравились советы выдаваемые там. Понравилась канва повествования и вообще понравилось направление мысли автора. А если что-то хорошо на Ваш вкус, то нужно передавать это из уст в уста:) Итак, решил я сделать перевод данного ресурса. Но не всё так сразу — сначала будет пробная статья «на отклик» хабрасообщества. Если уважаемым гикам понравится сия тематика и изложение — будем стараться выпускать новые части. На первый «отклик» я выбрал раздел — «Writing Great Code» и в нем два подпункта «Structure is Key» и «Modules». Откликнемся под катом.
Но перед тем, как окунуться с головой в чужие мысли относительно любимого Python, нужно представить собственно автора ресурса. Зовут его Kenneth Reitz. Как я понял по собранной информации — он профессиональный фотограф (об этом мы можем узнать на его личном сайте), евангелист языка Python и просто гуру разного рода разработки. Работает он на данный момент (по неподтвержденным данным) в Heroku. Так же перепризываю всех форкать его проект на гитхаб.
Фотография Кеннета
Kenneth Reitz на PyCon в Австралии (2012)
Далее — собственно сама статья. (При обнаружении ошибок, как водится — сразу кричите о них! Ошибки требуют исправления.)
Структурируйте свой проект
Под структурой мы подразумеваем решения, которые Вы приняли в отношении того, как Ваш проект сможет достичь поставленных целей. Мы должны рассмотреть как лучше использовать функциональные особенности языка Python, чтобы писать чистый и эффективный код. С практической точки зрения, понятие «структура» означает создание (написание) чистого когда в котором, логика и зависимости так же ясны как организация файлов и папок в файловой системе.
Какие функции должны быть перемещены в какие модули? Как пойдет поток данных через проект? Какие особенности и функции могут быть сгруппированы вместе и изолированы? Отвечая на подобные вопросы, Вы можете начать планировать как будет выглядеть готовый продукт.
В данном разделе мы внимательнее посмотрим на систему модулей и импортов в Python, т.к. они являются центральным элементом в обеспечении структурирования Вашего проекта. Затем, мы обсудим различные точки зрения о том, как построить код, который может быть расширен и надежно протестирован.
Структура решает
Благодаря тому, что импорты и модули обрабатываются в Python, сравнительно просто структурировать проект написанный на этом языке. Слово «просто», в данном контексте означает, что Вы не будете создавать лишних ограничений, и то, что модель импортируемого модуля легко понять. Таким образом, Вам остается сконцентрироваться на чисто архитектурной задаче, а именно трудиться над созданием различных частей Вашего проекта и их взаимодействии.
Просто структурированный проект — означает, что также просто можно создать и плохо структурированный проект. Некоторые признаки плохо структурированного проекта:
- Множественные и грязные циклические зависимости. Если Ваши классы
Table
иChair
нуждаются в импорте классаCarpenter
из модуляworkers.py
, для того, чтобы ответить на вопросtable.isdoneby()
, и наоборот, если классCarpenter
нуждается в импорте классаTable
и классаChair
, чтобы ответить на вопросcarpenter.whatdo()
— Вы получаете циклическую зависимость. В этом случае Вам придется прибегнуть к хитрым уловкам, таким как использование оператора импорта внутри методов или функций. - Скрытые связи. Все и каждое изменение в классе
Table
проваливает 20 тестов в несвязанных тестах, т.к. оно извращает выполнение кода классаCarpenter
, который требует хирургически тонкого адаптивного изменения кода. Это означает, что у Вас слишком много «договоренностей» относительно класса Table в коде классаCarpenter
или наоборот. - Интенсивное использование глобального пространства имен или контекста. Вместо явной передачи (высота, ширина, тип, дерево) друг другу переменных классами
Table
иCarpenter
, Вы полагаетесь на глобальные переменные, которые могут быть изменены и модифицированы на лету разными «товарищами». Вы должны внимательно изучить все места, откуда можно получить доступ к этим глобальным переменным, чтобы понять, почему прямоугольный стол стал квадратным и обнаружить, что удаленный код так же подвергся изменению в данном контексте, подменив размеры стола. - Спагетти-код. Несколько страниц вложенных друг в друга конструкций
if
и цикловfor
с большим количеством повторяющегося кода и вообще не сегментированного, известного как спагетти, кода. Благодаря значащим отступам в Python (одной из самых обсуждаемых особенностей), очень сложно писать такой код на данном языке. Так что есть хорошие новости — Вы не будете наблюдать такой код часто. - Равиоли-код. Такой код более типичен для Python. Он состоит из сотен одинаковых (или подобных друг другу) кусочков логики, классов или объектов без надлежащей структуризации. Если Вы никак не можете запомнить не использовать
FurnitureTable
,AssetTable
илиTable
, или дажеTableNew
для решения Вашей задачи — Вы будете купаться в равиоли-коде.
Модули
Модули в Python являются одним из основных слоев абстракции которые доступны, и, вероятно, являются наиболее нативными для языка. Уровни абстракции позволяют разделить код на части обрабатывающие соответствующие данные и содержащие какой-либо функционал.
Например, один слой проекта может обрабатывать взаимодействие с пользователем, в то время как другой будет обрабатывать манипулирование данными на низком уровне. Наиболее естественный способ разделить эти два уровня — это поместить всю функциональность в один файл, а все низкоуровневые операции в другой. В таком случае интерфейсный файл будет нуждаться в импорте файла с низкоуровневым функционалом. Это делается с помощью выражений import
и from ... import
.
Как только Вы начинаете использовать выражение import — Вы начинаете использовать модули. Это могут быть встроенные модули, такие как os
и sys
, сторонние модули, которые Вы установили в свою среду, или внутренние модули Вашего проекта.
Чтобы придерживаться стиля руководства, старайтесь давать модулям короткие имена, содержащие только буквы нижнего регистра и уверяться, что Вы не используете специальные символы, такие как точка (.) или знак вопроса (?). Так как имя файла подобное my.spam.py, Вы должны избегать. Именование таким образом будет мешать Python искать модули.
В данном примере Python ожидает найти «spam.py
» в папке по имени «my
«, которой не существует. Существует пример того, как точечная нотация должна быть использована в документах Python.
Если Вы хотите, Вы можете назвать файл my_spam.py
, но даже нашего друга — Подчеркивание — не стоит часто использовать в именах модулей.
Помимо некоторых ограничений именования, ничего больше не требуется файлу чтобы стать Python-модулем, но механизм импорта необходимо понимать для того, чтобы использовать эту концепцию должным образом и избежать некоторых проблем.
Откровенно говоря, оператор импорта будет искать соответствующий файл module.py в той же директории, где находится импортирующий файл. Если он не будет найден, интерпретатор Python будет искать module.py
в переменной «path
» рекурсивно и возбудит исключение ImportError
, если последний не будет найден.
После того, как module.py
будет найден, интерпретатор Python выполнит модуль в изолированной области видимости. Любое объявление верхнего уровня в файле module.py
будет выполнено, включая вложенные импорты, если таковые имеются. Объявления функций и классов сохранятся в словарь модуля.
Затем переменные модуля, функции и классы будут доступны для вызова через пространство имен модуля — центральное понятие в программировании, которое особенно мощно и полезно в языке Python.
Во многих языках, файл включается напрямую используя препроцессор чтобы найти весь код в файле и «скопировать» его в код вызывающего модуля. Это отличается от поведения языка Python, в котором подключаемый код изолирован в области видимости своего модуля, что означает, что Вы можете не беспокоиться о том, что включение кода может иметь нежелательные последствия, например, переопределение существующих функций с тем же именем.
Это позволяет моделировать более стандартное поведение с помощью специального синтаксиса выражения import: from module import *
. Обычно это считается плохой практикой. Использование «import *
» делает код трудным для чтения и делает зависимости менее разобщенными.
Использование from module import func
это способ точно указать функцию, которую вы хотите импортировать и поместить в глобальную область видимости. А так же это менее вредно для кода нежели «import *
«, т.к. тут ясно видно что импортируется в глобальную область видимости, преимущество более простой записи import module заключается в экономии нажатий клавиш.
# Very bad
[...]
from modu import *
[...]
x = sqrt(4) # Is sqrt part of modu? A builtin? Defined above?
# Better
from modu import sqrt
[...]
x = sqrt(4) # sqrt may be part of modu, if not redefined in between
# Best
import modu
[...]
x = modu.sqrt(4) # sqrt is visibly part of modu's namespace
Как указано в разделе о стиле, читаемость является одной из главных особенностей Python. Читаемость означает уход от использования бесполезного текстового наполнения и беспорядка в коде, поэтому обычно некоторые усилия тратятся на попытки достичь определенного уровня краткости кода. Но лаконичность и простота имеют определенные пределы, где сокращение кода должно прекратиться. Будучи в состоянии сразу сказать где начинается тот или иной класс или функция, как и идеология module.func
, которая значительно улучшает читаемость кода и его прозрачность во всех, кроме самых простых, отдельных стоящий проектов «в одном файле».
Только зарегистрированные пользователи могут участвовать в опросе. Войдите, пожалуйста.
Переводить ли далее данный ресурс?
12.92%
Нет, т.к. это бесполезная трата времени
127
Проголосовали 983 пользователя.
Воздержались 209 пользователей.
Только зарегистрированные пользователи могут участвовать в опросе. Войдите, пожалуйста.
Следует ли при оформлении статьи выделять зарезервированные языком слова полужирным?
Проголосовали 854 пользователя.
Воздержался 261 пользователь.
Этот документ описывает соглашение о том, как писать код для языка python, включая стандартную библиотеку, входящую в состав python.
PEP 8 создан на основе рекомендаций Гуидо ван Россума с добавлениями от Барри. Если где-то возникал конфликт, мы выбирали стиль Гуидо. И, конечно, этот PEP может быть неполным (фактически, он, наверное, никогда не будет закончен).
Ключевая идея Гуидо такова: код читается намного больше раз, чем пишется. Собственно, рекомендации о стиле написания кода направлены на то, чтобы улучшить читаемость кода и сделать его согласованным между большим числом проектов. В идеале, весь код будет написан в едином стиле, и любой сможет легко его прочесть.
Это руководство о согласованности и единстве. Согласованность с этим руководством очень важна. Согласованность внутри одного проекта еще важнее. А согласованность внутри модуля или функции — самое важное. Но важно помнить, что иногда это руководство неприменимо, и понимать, когда можно отойти от рекомендаций. Когда вы сомневаетесь, просто посмотрите на другие примеры и решите, какой выглядит лучше.
Две причины для того, чтобы нарушить данные правила:
- Когда применение правила сделает код менее читаемым даже для того, кто привык читать код, который следует правилам.
- Чтобы писать в едином стиле с кодом, который уже есть в проекте и который нарушает правила (возможно, в силу исторических причин) — впрочем, это возможность переписать чужой код.
Содержание
- Внешний вид кода
- Отступы
- Табуляция или пробелы?
- Максимальная длина строки
- Пустые строки
- Кодировка исходного файла
- Импорты
- Пробелы в выражениях и инструкциях
- Избегайте использования пробелов в следующих ситуациях:
- Другие рекомендации
- Комментарии
- Блоки комментариев
- «Встрочные» комментарии
- Строки документации
- Контроль версий
- Соглашения по именованию
- Главный принцип
- Описание: Стили имен
- Предписания: соглашения по именованию
- Имена, которых следует избегать
- Имена модулей и пакетов
- Имена классов
- Имена исключений
- Имена глобальных переменных
- Имена функций
- Аргументы функций и методов
- Имена методов и переменных экземпляров классов
- Константы
- Проектирование наследования
- Общие рекомендации
Внешний вид кода
Отступы
Используйте 4 пробела на каждый уровень отступа.
Продолжительные строки должны выравнивать обернутые элементы либо вертикально, используя неявную линию в скобках (круглых, квадратных или фигурных), либо с использованием висячего отступа. При использовании висячего отступа следует применять следующие соображения: на первой линии не должно быть аргументов, а остальные строки должны четко восприниматься как продолжение линии.
Правильно:
# Выровнено по открывающему разделителю foo = long_function_name(var_one, var_two, var_three, var_four) # Больше отступов включено для отличения его от остальных def long_function_name( var_one, var_two, var_three, var_four): print(var_one)
Неправильно:
# Аргументы на первой линии запрещены, если не используется вертикальное выравнивание foo = long_function_name(var_one, var_two, var_three, var_four) # Больше отступов требуется, для отличения его от остальных def long_function_name( var_one, var_two, var_three, var_four): print(var_one)
Опционально:
# Нет необходимости в большем количестве отступов. foo = long_function_name( var_one, var_two, var_three, var_four)
Закрывающие круглые/квадратные/фигурные скобки в многострочных конструкциях могут находиться под первым непробельным символом последней строки списка, например:
my_list = [ 1, 2, 3, 4, 5, 6, ] result = some_function_that_takes_arguments( 'a', 'b', 'c', 'd', 'e', 'f', )
либо быть под первым символом строки, начинающей многострочную конструкцию:
my_list = [ 1, 2, 3, 4, 5, 6, ] result = some_function_that_takes_arguments( 'a', 'b', 'c', 'd', 'e', 'f', )
Табуляция или пробелы?
Пробелы — самый предпочтительный метод отступов.
Табуляция должна использоваться только для поддержки кода, написанного с отступами с помощью табуляции.
Python 3 запрещает смешивание табуляции и пробелов в отступах.
Python 2 пытается преобразовать табуляцию в пробелы.
Когда вы вызываете интерпретатор Python 2 в командной строке с параметром -t, он выдает предупреждения (warnings) при использовании смешанного стиля в отступах, а запустив интерпретатор с параметром -tt, вы получите в этих местах ошибки (errors). Эти параметры очень рекомендуются!
Максимальная длина строки
Ограничьте длину строки максимум 79 символами.
Для более длинных блоков текста с меньшими структурными ограничениями (строки документации или комментарии), длину строки следует ограничить 72 символами.
Ограничение необходимой ширины окна редактора позволяет иметь несколько открытых файлов бок о бок, и хорошо работает при использовании инструментов анализа кода, которые предоставляют две версии в соседних столбцах.
Некоторые команды предпочитают большую длину строки. Для кода, поддерживающегося исключительно или преимущественно этой группой, в которой могут прийти к согласию по этому вопросу, нормально увеличение длины строки с 80 до 100 символов (фактически увеличивая максимальную длину до 99 символов), при условии, что комментарии и строки документации все еще будут 72 символа.
Стандартная библиотека Python консервативна и требует ограничения длины строки в 79 символов (а строк документации/комментариев в 72).
Предпочтительный способ переноса длинных строк является использование подразумеваемых продолжений строк Python внутри круглых, квадратных и фигурных скобок. Длинные строки могут быть разбиты на несколько строк, обернутые в скобки. Это предпочтительнее использования обратной косой черты для продолжения строки.
Обратная косая черта все еще может быть использована время от времени. Например, длинная конструкция with не может использовать неявные продолжения, так что обратная косая черта является приемлемой:
with open('/path/to/some/file/you/want/to/read') as file_1, open('/path/to/some/file/being/written', 'w') as file_2: file_2.write(file_1.read())
Ещё один случай — assert.
Сделайте правильные отступы для перенесённой строки. Предпочтительнее вставить перенос строки после логического оператора, но не перед ним. Например:
class Rectangle(Blob): def __init__(self, width, height, color='black', emphasis=None, highlight=0): if (width == 0 and height == 0 and color == 'red' and emphasis == 'strong' or highlight > 100): raise ValueError("sorry, you lose") if width == 0 and height == 0 and (color == 'red' or emphasis is None): raise ValueError("I don't think so -- values are %s, %s" % (width, height)) Blob.__init__(self, width, height, color, emphasis, highlight)
Пустые строки
Отделяйте функции верхнего уровня и определения классов двумя пустыми строками.
Определения методов внутри класса разделяются одной пустой строкой.
Дополнительные пустые строки возможно использовать для разделения различных групп похожих функций. Пустые строки могут быть опущены между несколькими связанными однострочниками (например, набор фиктивных реализаций).
Используйте пустые строки в функциях, чтобы указать логические разделы.
Python расценивает символ control+L как незначащий (whitespace), и вы можете использовать его, потому что многие редакторы обрабатывают его как разрыв страницы — таким образом логические части в файле будут на разных страницах. Однако, не все редакторы распознают control+L и могут на его месте отображать другой символ.
Кодировка исходного файла
Кодировка Python должна быть UTF-8 (ASCII в Python 2).
Файлы в ASCII (Python 2) или UTF-8 (Python 3) не должны иметь объявления кодировки.
В стандартной библиотеке, нестандартные кодировки должны использоваться только для целей тестирования, либо когда комментарий или строка документации требует упомянуть имя автора, содержащего не ASCII символы; в остальных случаях использование x, u, U или N — наиболее предпочтительный способ включить не ASCII символы в строковых литералах.
Начиная с версии python 3.0 в стандартной библиотеке действует следующее соглашение: все идентификаторы обязаны содержать только ASCII символы, и означать английские слова везде, где это возможно (во многих случаях используются сокращения или неанглийские технические термины). Кроме того, строки и комментарии тоже должны содержать лишь ASCII символы. Исключения составляют: (а) test case, тестирующий не-ASCII особенности программы, и (б) имена авторов. Авторы, чьи имена основаны не на латинском алфавите, должны транслитерировать свои имена в латиницу.
Проектам с открытым кодом для широкой аудитории также рекомендуется использовать это соглашение.
Импорты
-
Каждый импорт, как правило, должен быть на отдельной строке.
Правильно:
import os import sys
Неправильно:
import sys, os
В то же время, можно писать так:
from subprocess import Popen, PIPE
-
Импорты всегда помещаются в начале файла, сразу после комментариев к модулю и строк документации, и перед объявлением констант.
Импорты должны быть сгруппированы в следующем порядке:
- импорты из стандартной библиотеки
- импорты сторонних библиотек
- импорты модулей текущего проекта
Вставляйте пустую строку между каждой группой импортов.
Указывайте спецификации __all__ после импортов.
-
Рекомендуется абсолютное импортирование, так как оно обычно более читаемо и ведет себя лучше (или, по крайней мере, даёт понятные сообщения об ошибках) если импортируемая система настроена неправильно (например, когда каталог внутри пакета заканчивается на sys.path):
import mypkg.sibling from mypkg import sibling from mypkg.sibling import example
Тем не менее, явный относительный импорт является приемлемой альтернативой абсолютному импорту, особенно при работе со сложными пакетами, где использование абсолютного импорта было бы излишне подробным:
from . import sibling from .sibling import example
В стандартной библиотеке следует избегать сложной структуры пакетов и всегда использовать абсолютные импорты.
Неявные относительно импорты никогда не должны быть использованы, и были удалены в Python 3.
-
Когда вы импортируете класс из модуля, вполне можно писать вот так:
from myclass import MyClass from foo.bar.yourclass import YourClass
Если такое написание вызывает конфликт имен, тогда пишите:
import myclass import foo.bar.yourclass
И используйте «myclass.MyClass» и «foo.bar.yourclass.YourClass».
-
Шаблоны импортов (from import *) следует избегать, так как они делают неясным то, какие имена присутствуют в глобальном пространстве имён, что вводит в заблуждение как читателей, так и многие автоматизированные средства. Существует один оправданный пример использования шаблона импорта, который заключается в опубликовании внутреннего интерфейса как часть общественного API (например, переписав реализацию на чистом Python в модуле акселератора (и не будет заранее известно, какие именно функции будут перезаписаны).
Пробелы в выражениях и инструкциях
Избегайте использования пробелов в следующих ситуациях:
-
Непосредственно внутри круглых, квадратных или фигурных скобок.
Правильно:
spam(ham[1], {eggs: 2})
Неправильно:
spam( ham[ 1 ], { eggs: 2 } )
-
Непосредственно перед запятой, точкой с запятой или двоеточием:
Правильно:
if x == 4: print(x, y); x, y = y, x
Неправильно:
if x == 4 : print(x , y) ; x , y = y , x
-
Сразу перед открывающей скобкой, после которой начинается список аргументов при вызове функции:
Правильно:
spam(1)
Неправильно:
spam (1)
-
Сразу перед открывающей скобкой, после которой следует индекс или срез:
Правильно:
dict['key'] = list[index]
Неправильно:
dict ['key'] = list [index]
-
Использование более одного пробела вокруг оператора присваивания (или любого другого) для того, чтобы выровнять его с другим:
Правильно:
x = 1 y = 2 long_variable = 3
Неправильно:
x = 1 y = 2 long_variable = 3
Другие рекомендации
-
Всегда окружайте эти бинарные операторы одним пробелом с каждой стороны: присваивания (=, +=, -= и другие), сравнения (==, <, >, !=, <>, <=, >=, in, not in, is, is not), логические (and, or, not).
-
Если используются операторы с разными приоритетами, попробуйте добавить пробелы вокруг операторов с самым низким приоритетом. Используйте свои собственные суждения, однако, никогда не используйте более одного пробела, и всегда используйте одинаковое количество пробелов по обе стороны бинарного оператора.
Правильно:
i = i + 1 submitted += 1 x = x*2 - 1 hypot2 = x*x + y*y c = (a+b) * (a-b)
Неправильно:
i=i+1 submitted +=1 x = x * 2 - 1 hypot2 = x * x + y * y c = (a + b) * (a - b)
-
Не используйте пробелы вокруг знака =, если он используется для обозначения именованного аргумента или значения параметров по умолчанию.
Правильно:
def complex(real, imag=0.0): return magic(r=real, i=imag)
Неправильно:
def complex(real, imag = 0.0): return magic(r = real, i = imag)
-
Не используйте составные инструкции (несколько команд в одной строке).
Правильно:
if foo == 'blah': do_blah_thing() do_one() do_two() do_three()
Неправильно:
if foo == 'blah': do_blah_thing() do_one(); do_two(); do_three()
-
Иногда можно писать тело циклов while, for или ветку if в той же строке, если команда короткая, но если команд несколько, никогда так не пишите. А также избегайте длинных строк!
Точно неправильно:
if foo == 'blah': do_blah_thing() for x in lst: total += x while t < 10: t = delay()
Вероятно, неправильно:
if foo == 'blah': do_blah_thing() else: do_non_blah_thing() try: something() finally: cleanup() do_one(); do_two(); do_three(long, argument, list, like, this) if foo == 'blah': one(); two(); three()
Комментарии
Комментарии, противоречащие коду, хуже, чем отсутствие комментариев. Всегда исправляйте комментарии, если меняете код!
Комментарии должны являться законченными предложениями. Если комментарий — фраза или предложение, первое слово должно быть написано с большой буквы, если только это не имя переменной, которая начинается с маленькой буквы (никогда не изменяйте регистр переменной!).
Если комментарий короткий, можно опустить точку в конце предложения. Блок комментариев обычно состоит из одного или более абзацев, составленных из полноценных предложений, поэтому каждое предложение должно оканчиваться точкой.
Ставьте два пробела после точки в конце предложения.
Программисты, которые не говорят на английском языке, пожалуйста, пишите комментарии на английском, если только вы не уверены на 120%, что ваш код никогда не будут читать люди, не знающие вашего родного языка.
Блоки комментариев
Блок комментариев обычно объясняет код (весь, или только некоторую часть), идущий после блока, и должен иметь тот же отступ, что и сам код. Каждая строчка такого блока должна начинаться с символа # и одного пробела после него (если только сам текст комментария не имеет отступа).
Абзацы внутри блока комментариев разделяются строкой, состоящей из одного символа #.
«Встрочные» комментарии
Старайтесь реже использовать подобные комментарии.
Такой комментарий находится в той же строке, что и инструкция. «Встрочные» комментарии должны отделяться по крайней мере двумя пробелами от инструкции. Они должны начинаться с символа # и одного пробела.
Комментарии в строке с кодом не нужны и только отвлекают от чтения, если они объясняют очевидное. Не пишите вот так:
x = x + 1 # Increment x
Впрочем, такие комментарии иногда полезны:
x = x + 1 # Компенсация границы
Строки документации
-
Пишите документацию для всех публичных модулей, функций, классов, методов. Строки документации необязательны для приватных методов, но лучше написать, что делает метод. Комментарий нужно писать после строки с def.
-
PEP 257 объясняет, как правильно и хорошо документировать. Заметьте, очень важно, чтобы закрывающие кавычки стояли на отдельной строке. А еще лучше, если перед ними будет ещё и пустая строка, например:
"""Return a foobang Optional plotz says to frobnicate the bizbaz first. """
-
Для однострочной документации можно оставить закрывающие кавычки на той же строке.
Контроль версий
Если вам нужно использовать Subversion, CVS или RCS в ваших исходных кодах, делайте вот так:
__version__ = "$Revision: 1a40d4eaa00b $" # $Source$
Вставляйте эти строки после документации модуля перед любым другим кодом и отделяйте их пустыми строками по одной до и после.
Соглашения по именованию
Соглашения по именованию переменных в python немного туманны, поэтому их список никогда не будет полным — тем не менее, ниже мы приводим список рекомендаций, действующих на данный момент. Новые модули и пакеты должны быть написаны согласно этим стандартам, но если в какой-либо уже существующей библиотеке эти правила нарушаются, предпочтительнее писать в едином с ней стиле.
Главный принцип
Имена, которые видны пользователю как часть общественного API должны следовать конвенциям, которые отражают использование, а не реализацию.
Описание: Стили имен
Существует много разных стилей. Поможем вам распознать, какой стиль именования используется, независимо от того, для чего он используется.
Обычно различают следующие стили:
- b (одиночная маленькая буква)
- B (одиночная заглавная буква)
- lowercase (слово в нижнем регистре)
- lower_case_with_underscores (слова из маленьких букв с подчеркиваниями)
- UPPERCASE (заглавные буквы)
- UPPERCASE_WITH_UNDERSCORES (слова из заглавных букв с подчеркиваниями)
- CapitalizedWords (слова с заглавными буквами, или CapWords, или CamelCase). Замечание: когда вы используете аббревиатуры в таком стиле, пишите все буквы аббревиатуры заглавными — HTTPServerError лучше, чем HttpServerError.
- mixedCase (отличается от CapitalizedWords тем, что первое слово начинается с маленькой буквы)
- Capitalized_Words_With_Underscores (слова с заглавными буквами и подчеркиваниями — уродливо!)
Ещё существует стиль, в котором имена, принадлежащие одной логической группе, имеют один короткий префикс. Этот стиль редко используется в python, но мы упоминаем его для полноты. Например, функция os.stat() возвращает кортеж, имена в котором традиционно имеют вид st_mode, st_size, st_mtime и так далее. (Так сделано, чтобы подчеркнуть соответствие этих полей структуре системных вызовов POSIX, что помогает знакомым с ней программистам).
В библиотеке X11 используется префикс Х для всех public-функций. В python этот стиль считается излишним, потому что перед полями и именами методов стоит имя объекта, а перед именами функций стоит имя модуля.
В дополнение к этому, используются следующие специальные формы записи имен с добавлением символа подчеркивания в начало или конец имени:
-
_single_leading_underscore: слабый индикатор того, что имя используется для внутренних нужд. Например, from M import * не будет импортировать объекты, чьи имена начинаются с символа подчеркивания.
-
single_trailing_underscore_: используется по соглашению для избежания конфликтов с ключевыми словами языка python, например:
Tkinter.Toplevel(master, class_='ClassName')
-
__double_leading_underscore: изменяет имя атрибута класса, то есть в классе FooBar поле __boo становится _FooBar__boo.
-
__double_leading_and_trailing_underscore__ (двойное подчеркивание в начале и в конце имени): магические методы или атрибуты, которые находятся в пространствах имен, управляемых пользователем. Например, __init__, __import__ или __file__. Не изобретайте такие имена, используйте их только так, как написано в документации.
Предписания: соглашения по именованию
Имена, которых следует избегать
Никогда не используйте символы l (маленькая латинская буква «эль»), O (заглавная латинская буква «о») или I (заглавная латинская буква «ай») как однобуквенные идентификаторы.
В некоторых шрифтах эти символы неотличимы от цифры один и нуля. Если очень нужно l, пишите вместо неё заглавную L.
Имена модулей и пакетов
Модули должны иметь короткие имена, состоящие из маленьких букв. Можно использовать символы подчеркивания, если это улучшает читабельность. То же самое относится и к именам пакетов, однако в именах пакетов не рекомендуется использовать символ подчёркивания.
Так как имена модулей отображаются в имена файлов, а некоторые файловые системы являются нечувствительными к регистру символов и обрезают длинные имена, очень важно использовать достаточно короткие имена модулей — это не проблема в Unix, но, возможно, код окажется непереносимым в старые версии Windows, Mac, или DOS.
Когда модуль расширения, написанный на С или C++, имеет сопутствующий python-модуль (содержащий интерфейс высокого уровня), С/С++ модуль начинается с символа подчеркивания, например, _socket.
Имена классов
Имена классов должны обычно следовать соглашению CapWords.
Вместо этого могут использоваться соглашения для именования функций, если интерфейс документирован и используется в основном как функции.
Обратите внимание, что существуют отдельные соглашения о встроенных именах: большинство встроенных имен — одно слово (либо два слитно написанных слова), а соглашение CapWords используется только для именования исключений и встроенных констант.
Имена исключений
Так как исключения являются классами, к исключениям применяется стиль именования классов. Однако вы можете добавить Error в конце имени (если, конечно, исключение действительно является ошибкой).
Имена глобальных переменных
Будем надеяться, что глобальные переменные используются только внутри одного модуля. Руководствуйтесь теми же соглашениями, что и для имен функций.
Добавляйте в модули, которые написаны так, чтобы их использовали с помощью from M import *, механизм __all__, чтобы предотвратить экспортирование глобальных переменных. Или же, используйте старое соглашение, добавляя перед именами таких глобальных переменных один символ подчеркивания (которым вы можете обозначить те глобальные переменные, которые используются только внутри модуля).
Имена функций
Имена функций должны состоять из маленьких букв, а слова разделяться символами подчеркивания — это необходимо, чтобы увеличить читабельность.
Стиль mixedCase допускается в тех местах, где уже преобладает такой стиль, для сохранения обратной совместимости.
Аргументы функций и методов
Всегда используйте self в качестве первого аргумента метода экземпляра объекта.
Всегда используйте cls в качестве первого аргумента метода класса.
Если имя аргумента конфликтует с зарезервированным ключевым словом python, обычно лучше добавить в конец имени символ подчеркивания, чем исказить написание слова или использовать аббревиатуру. Таким образом, class_ лучше, чем clss. (Возможно, хорошим вариантом будет подобрать синоним).
Имена методов и переменных экземпляров классов
Используйте тот же стиль, что и для имен функций: имена должны состоять из маленьких букв, а слова разделяться символами подчеркивания.
Используйте один символ подчёркивания перед именем для непубличных методов и атрибутов.
Чтобы избежать конфликтов имен с подклассами, используйте два ведущих подчеркивания.
Python искажает эти имена: если класс Foo имеет атрибут с именем __a, он не может быть доступен как Foo.__a. (Настойчивый пользователь все еще может получить доступ, вызвав Foo._Foo__a.) Вообще, два ведущих подчеркивания должны использоваться только для того, чтобы избежать конфликтов имен с атрибутами классов, предназначенных для наследования.
Примечание: есть некоторые разногласия по поводу использования __ имена (см. ниже).
Константы
Константы обычно объявляются на уровне модуля и записываются только заглавными буквами, а слова разделяются символами подчеркивания. Например: MAX_OVERFLOW, TOTAL.
Проектирование наследования
Обязательно решите, каким должен быть метод класса или экземпляра класса (далее — атрибут) — публичный или непубличный. Если вы сомневаетесь, выберите непубличный атрибут. Потом будет проще сделать его публичным, чем наоборот.
Публичные атрибуты — это те, которые будут использовать другие программисты, и вы должны быть уверены в отсутствии обратной несовместимости. Непубличные атрибуты, в свою очередь, не предназначены для использования третьими лицами, поэтому вы можете не гарантировать, что не измените или не удалите их.
Мы не используем термин «приватный атрибут», потому что на самом деле в python таких не бывает.
Другой тип атрибутов классов принадлежит так называемому API подклассов (в других языках они часто называются protected). Некоторые классы проектируются так, чтобы от них наследовали другие классы, которые расширяют или модифицируют поведение базового класса. Когда вы проектируете такой класс, решите и явно укажите, какие атрибуты являются публичными, какие принадлежат API подклассов, а какие используются только базовым классом.
Теперь сформулируем рекомендации:
-
Открытые атрибуты не должны иметь в начале имени символа подчеркивания.
-
Если имя открытого атрибута конфликтует с ключевым словом языка, добавьте в конец имени один символ подчеркивания. Это более предпочтительно, чем аббревиатура или искажение написания (однако, у этого правила есть исключение — аргумента, который означает класс, и особенно первый аргумент метода класса (class method) должен иметь имя cls).
-
Назовите простые публичные атрибуты понятными именами и не пишите сложные методы доступа и изменения (accessor/mutator, get/set, — прим. перев.) Помните, что в python очень легко добавить их потом, если потребуется. В этом случае используйте свойства (properties), чтобы скрыть функциональную реализацию за синтаксисом доступа к атрибутам.
Примечание 1: Свойства (properties) работают только в классах нового стиля (в Python 3 все классы являются таковыми).
Примечание 2: Постарайтесь избавиться от побочных эффектов, связанным с функциональным поведением; впрочем, такие вещи, как кэширование, вполне допустимы.
Примечание 3: Избегайте использования вычислительно затратных операций, потому что из-за записи с помощью атрибутов создается впечатление, что доступ происходит (относительно) быстро.
-
Если вы планируете класс таким образом, чтобы от него наследовались другие классы, но не хотите, чтобы подклассы унаследовали некоторые атрибуты, добавьте в имена два символа подчеркивания в начало, и ни одного — в конец. Механизм изменения имен в python сработает так, что имя класса добавится к имени такого атрибута, что позволит избежать конфликта имен с атрибутами подклассов.
Примечание 1: Будьте внимательны: если подкласс будет иметь то же имя класса и имя атрибута, то вновь возникнет конфликт имен.
Примечание 2: Механизм изменения имен может затруднить отладку или работу с __getattr__(), однако он хорошо документирован и легко реализуется вручную.
Примечание 3: Не всем нравится этот механизм, поэтому старайтесь достичь компромисса между необходимостью избежать конфликта имен и возможностью доступа к этим атрибутам.
Общие рекомендации
-
Код должен быть написан так, чтобы не зависеть от разных реализаций языка (PyPy, Jython, IronPython, Pyrex, Psyco и пр.).
Например, не полагайтесь на эффективную реализацию в CPython конкатенации строк в выражениях типа a+=b или a=a+b. Такие инструкции выполняются значительно медленнее в Jython. В критичных к времени выполнения частях программы используйте ».join() — таким образом склеивание строк будет выполнено за линейное время независимо от реализации python.
-
Сравнения с None должны обязательно выполняться с использованием операторов is или is not, а не с помощью операторов сравнения. Кроме того, не пишите if x, если имеете в виду if x is not None — если, к примеру, при тестировании такая переменная может принять значение другого типа, отличного от None, но при приведении типов может получиться False!
-
При реализации методов сравнения, лучше всего реализовать все 6 операций сравнения (__eq__, __ne__, __lt__, __le__, __gt__, __ge__), чем полагаться на то, что другие программисты будут использовать только конкретный вид сравнения.
Для минимизации усилий можно воспользоваться декоратором functools.total_ordering() для реализации недостающих методов.
PEP 207 указывает, что интерпретатор может поменять y > х на х < y, y >= х на х <= y, и может поменять местами аргументы х == y и х != y. Гарантируется, что операции sort() и min() используют оператор <, а max() использует оператор >. Однако, лучше всего осуществить все шесть операций, чтобы не возникало путаницы в других местах.
-
Всегда используйте выражение def, а не присваивание лямбда-выражения к имени.
Правильно:
def f(x): return 2*x
Неправильно:
f = lambda x: 2*x
-
Наследуйте свой класс исключения от Exception, а не от BaseException. Прямое наследование от BaseException зарезервировано для исключений, которые не следует перехватывать.
-
Используйте цепочки исключений соответствующим образом. В Python 3, «raise X from Y» следует использовать для указания явной замены без потери отладочной информации.
Когда намеренно заменяется исключение (использование «raise X» в Python 2 или «raise X from None» в Python 3.3+), проследите, чтобы соответствующая информация передалась в новое исключение (такие, как сохранение имени атрибута при преобразовании KeyError в AttributeError или вложение текста исходного исключения в новом).
-
Когда вы генерируете исключение, пишите raise ValueError(‘message’) вместо старого синтаксиса raise ValueError, message.
Старая форма записи запрещена в python 3.
Такое использование предпочтительнее, потому что из-за скобок не нужно использовать символы для продолжения перенесенных строк, если эти строки длинные или если используется форматирование.
-
Когда код перехватывает исключения, перехватывайте конкретные ошибки вместо простого выражения except:.
К примеру, пишите вот так:
try: import platform_specific_module except ImportError: platform_specific_module = None
Простое написание «except:» также перехватит и SystemExit, и KeyboardInterrupt, что породит проблемы, например, сложнее будет завершить программу нажатием control+C. Если вы действительно собираетесь перехватить все исключения, пишите «except Exception:».
Хорошим правилом является ограничение использования «except:», кроме двух случаев:
- Если обработчик выводит пользователю всё о случившейся ошибке; по крайней мере, пользователь будет знать, что произошла ошибка.
- Если нужно выполнить некоторый код после перехвата исключения, а потом вновь «бросить» его для обработки где-то в другом месте. Обычно же лучше пользоваться конструкцией «try…finally».
-
При связывании перехваченных исключений с именем, предпочитайте явный синтаксис привязки, добавленный в Python 2.6:
try: process_data() except Exception as exc: raise DataProcessingFailedError(str(exc))
Это единственный синтаксис, поддерживающийся в Python 3, который позволяет избежать проблем неоднозначности, связанных с более старым синтаксисом на основе запятой.
-
При перехвате ошибок операционной системы, предпочитайте использовать явную иерархию исключений, введенную в Python 3.3, вместо анализа значений errno.
-
Постарайтесь заключать в каждую конструкцию try…except минимум кода, чтобы легче отлавливать ошибки. Опять же, это позволяет избежать замаскированных ошибок.
Правильно:
try: value = collection[key] except KeyError: return key_not_found(key) else: return handle_value(value)
Неправильно:
try: # Здесь много действий! return handle_value(collection[key]) except KeyError: # Здесь также перехватится KeyError, который может быть сгенерирован handle_value() return key_not_found(key)
-
Когда ресурс является локальным на участке кода, используйте выражение with для того, чтобы после выполнения он был очищен оперативно и надёжно.
-
Менеджеры контекста следует вызывать с помощью отдельной функции или метода, всякий раз, когда они делают что-то другое, чем получение и освобождение ресурсов. Например:
Правильно:
with conn.begin_transaction(): do_stuff_in_transaction(conn)
Неправильно:
with conn: do_stuff_in_transaction(conn)
Последний пример не дает никакой информации, указывающей на то, что __enter__ и __exit__ делают что-то кроме закрытия соединения после транзакции. Быть явным важно в данном случае.
-
Используйте строковые методы вместо модуля string — они всегда быстрее и имеют тот же API для unicode-строк. Можно отказаться от этого правила, если необходима совместимость с версиями python младше 2.0.
В Python 3 остались только строковые методы.
-
Пользуйтесь ».startswith() и ».endswith() вместо обработки срезов строк для проверки суффиксов или префиксов.
startswith() и endswith() выглядят чище и порождают меньше ошибок. Например:
Правильно:
if foo.startswith('bar'):
Неправильно:
if foo[:3] == 'bar':
-
Сравнение типов объектов нужно делать с помощью isinstance(), а не прямым сравнением типов:
Правильно:
if isinstance(obj, int):
Неправильно:
if type(obj) is type(1):
Когда вы проверяете, является ли объект строкой, обратите внимание на то, что строка может быть unicode-строкой. В python 2 у str и unicode есть общий базовый класс, поэтому вы можете написать:
if isinstance(obj, basestring):
Отметим, что в Python 3, unicode и basestring больше не существуют (есть только str) и bytes больше не является своего рода строкой (это последовательность целых чисел).
-
Для последовательностей (строк, списков, кортежей) используйте тот факт, что пустая последовательность есть false:
Правильно:
if not seq: if seq:
Неправильно:
if len(seq) if not len(seq)
-
Не пользуйтесь строковыми константами, которые имеют важные пробелы в конце — они невидимы, а многие редакторы (а теперь и reindent.py) обрезают их.
-
Не сравнивайте логические типы с True и False с помощью ==:
Правильно:
if greeting:
Неправильно:
if greeting == True:
Совсем неправильно:
if greeting is True:
PEP 8
Python, подобно живому организму, развивается и приобретает новые возможности благодаря многочисленному международному сообществу согласно определенным правилам и стандартам PEP. PEP – Python Enhancement Proposal, предложения по развитию Python. Эти стандарты позволяют создавать унифицированную проектную документацию для новых утвержденных возможностей языка Python.
Самый известный PEP имеет восьмой порядковый номер. PEP8 содержит перечень принципов написания красивого и лаконичного программного кода на языке Python.
Под названием каждого подраздела главы будет находиться по одному из 19 принципов философии Python (Zen of Python). Попытайтесь «прочувствовать» то, что имел в виду автор. Также, если хочется, вместо русской адаптации этих постулатов, увидеть оригинальный текст Тима Петерса, можно запустив вот такую программу.
import this
Для чего придуман PEP8?
(Читаемость имеет значение)
PEP8 существует, чтобы улучшить “читабельность„ кода. Но почему этот параметр имеет настолько большую важность? Почему написание хорошо читаемого кода – один из фундаментальных принципов языка Python?
Как сказал создатель Python, Гвидо Ван Россум: «Код читается гораздо чаще, чем пишется». Вы можете провести несколько минут, или весь день, в процессе написания куска кода для, к примеру, аутентификации пользователя. Написав его, однажды, вы не будете писать его еще раз. Но вы точно вернетесь, чтобы прочитать его еще и еще раз. Эта часть кода может быть частью проекта, над которым вы работаете. Каждый раз, возвращаясь к этому файлу, придется вспомнить, что этот код делает и почему вы написали это именно так.
Если вы начинающий программист Python, вам может быть тяжело запомнить, что делает определенная часть кода по прошествии нескольких дней после ее написания. Однако, если вы будете следовать рекомендациям PEP8, можете быть уверены, ваш код будет в полном порядке. Вы будете знать, что добавили достаточно пробелов, в соответствии с разделением на логические блоки кода.
Соблюдение PEP8 особенно важно, если вы в поисках вакансии python-разработчика. Чистый и читаемый код показывает высокий профессионализм. Он говорит работодателю о вашем понимании правильного структурирования программного кода.
Если же вы более опытный Python-программист, тогда с помощи PEP8 можно с легкостью объединиться с другими программистами для работы над одной задачей. Хорошо читаемый код имеет в данном случае особую критичность. Люди, ранее не видевшие вас, но знакомые с вашим кодом, будут читать, понимая идею, которую вы хотели донести.
Негласная договоренность об именах
(Явное лучше, чем неявное)
При написании Python кода, необходимо придумывать имена многим вещам: переменным, функциям, классам, пакетам и так далее. Выбор разумных имен сэкономит вам время и силы в последствии. По названию нужно суметь понять, что представляет собой определенная переменная, функция или класс. Вы также избежите использования некорректных имен, которые могут привести к критическим ошибкам, плохо поддающимся отладке.
Не использовать одиночные буквы l, O, или I в качестве каких‑либо имен из‑за риска спутать их с 1 и 0, в зависимости от шрифта.
O = 2 # Это может выглядеть так, будто вы хотите приравнять 2 к нулю.
Стили именования
В таблице ниже описаны некоторые из распространенных стилей именования в коде Python и указаны случаи, когда их следует использовать:
Тип | Соглашение об именовании | Примеры |
---|---|---|
Функции | Используйте слово или слова в нижнем регистре. Для удобства чтения разделяйте слова подчеркиванием. | function, my_function |
Переменные | Используйте одну строчную букву, слово или слова. Для удобства чтения разделяйте слова подчеркиванием. | x, var, my_variable |
Классы | Каждое слово начинайте с заглавной буквы. Не разделяйте слова подчеркиванием. Этот стиль называется «дело верблюда». | Model, MyClass |
Методы | Используйте слово или слова в нижнем регистре. Для удобства чтения разделяйте слова подчеркиванием. | class_method, method |
Константы | Используйте одну заглавную букву, слово или слова. Для удобства чтения разделяйте слова подчеркиванием. | CONSTANT, MY_CONSTANT, MY_LONG_CONSTANT |
Модули | Используйте короткие слова или слова в нижнем регистре. Для удобства чтения разделяйте слова подчеркиванием. | module.py, my_module.py |
Пакеты | Используйте короткие слова или слова в нижнем регистре. Не разделяйте слова подчеркиванием. | package, mypackage |
Помимо выбора правильных стилей именования в вашем коде, вы также должны тщательно выбирать сами имена. Ниже приведены несколько советов, как сделать это максимально эффективно.
Правильный выбор имени
Выбор имен для переменных, функций, классов и т. д. может оказаться неожиданно сложной задачей. При написании кода вы должны хорошо продумать свой выбор имен, так как это сделает ваш код более читаемым. Лучший способ назвать ваши объекты в Python — использовать описательные имена, чтобы было понятно, что представляет собой объект.
При именовании переменных у вас может возникнуть соблазн выбрать простые, состоящие из одной буквы имена в нижнем регистре, например x. Но если вы не используете x в качестве аргумента математической функции, непонятно, что представляет собой этот самый x. Представьте, что вы храните имя человека в виде строки и хотите использовать срез строки, чтобы по‑другому отформатировать его имя.
Вы можете получить что‑то вроде этого:
# Не рекомендуется
x = 'Иван Петров'
y, z = x.split()
Это будет работать, но вам нужно будет отслеживать, что представляют собой x, y и z. Это также может сбивать с толку соавторов. Более правильный выбор имен будет примерно таким:
# Рекомендуется
name = 'Иван Петров'
first_name, last_name = name.split()
Точно так же, чтобы уменьшить количество набираемых вами букв, может возникнуть соблазн использовать сокращения при выборе имен. В приведенном ниже примере была определена функция db, которая принимает единственный аргумент x и удваивает его:
# Не рекомендуется
def db(x):
return x * 2
На первый взгляд, это может показаться очевидным выбором — это ведь отличное сокращением для double! Но представьте, что вернетесь к этому коду через несколько дней. Скорее всего, вы забудете, какой смысл вкладывали в эту функцию и вполне можете подумать, что это сокращение от database.
Следующий пример еще более понятен:
# Рекомендуется
def multiply_by_two(x):
return x * 2
Та же самая философия относится и ко всем прочим типам данных и объектов в Python. Всегда пробуйте использовать наиболее емкие и лаконичные названия.
Расположение кода
(Красивое лучше, чем уродливое)
То, как Вы расположите ваш код, имеет огромную роль в повышении его читаемость.
В этом разделе вы узнаете, как добавить вертикальные пробелы для улучшения восприятия вашего кода. Вы также узнаете, как правильно пользоваться ограничением в 79 символов на строку, рекомендованным в PEP8.
Монолитный код может быть труден для восприятия. Точно так же, слишком много пустых строк в коде делает его очень разреженным, что заставит читателя пролистывать его чаще, чем необходимо. Ниже приведены три основных правила использования вертикальных пробелов.
Окружите функции и классы верхнего уровня двумя пустыми строками. Функции и классы верхнего уровня должны быть самодостаточны и обрабатывать отдельные функции. Имеет смысл разместить вокруг них дополнительное вертикальное пространство, чтобы было ясно, что они разделены:
class MyFirstClass:
pass
class MySecondClass:
pass
def top_level_function():
return None
Обособьте определения методов внутри классов одной пустой строкой. Внутри класса все функции связаны друг с другом. Рекомендуется оставлять между ними только одну строку:
class MyClass:
def first_method(self):
return None
def second_method(self):
return None
Используйте пустые строки внутри функций, чтобы четко показать шаги. Иногда сложная функция должна выполнить несколько шагов перед оператором return. Чтобы помочь читателю понять логику внутри функции, может быть полезно оставлять пустую строку между каждым шагом.
В приведенном ниже примере есть функция для вычисления дисперсии списка. Это двухэтапная задача, поэтому логично будет отделить каждый шаг, оставив между ними пустую строку. Перед оператором возврата также есть пустая строка. Это помогает читателю ясно увидеть, что возвращается:
def calculate_variance(number_list):
sum_list = 0
for number in number_list:
sum_list = sum_list + number
mean = sum_list / len(number_list)
sum_squares = 0
for number in number_list:
sum_squares = sum_squares + number**2
mean_squares = sum_squares / len(number_list)
return mean_squares - mean**2
Если вы правильно используете вертикальные пробелы, это может значительно улучшить читаемость вашего кода и помочь читателю визуально понять, что этот код делает.
Максимальная длина строки и разрыв строки
PEP8 предлагает ограничить длину строки 79 символами. Это рекомендуется делать, чтобы вы имели возможность открывать несколько файлов рядом друг с другом, а также избегать переноса строк.
Конечно, не всегда возможно обеспечить длины всех операторов до 79 символов. PEP8 также описывает способы, позволяющие операторам занимать несколько строк. Python предполагает наличие продолжения строки, если код заключен в круглые, квадратные или фигурные скобки:
def function(arg_one, arg_two,
arg_three, arg_four):
return arg_one
Если продолжение строки использовать не представляется возможным, можно также использовать обратную косую черту для разрыва строки:
from mypkg import example1,
example2, example3
Важно: если разрыв строки должен произойти вокруг бинарных операторов, таких как сложение или, например, умножение, он должен находиться перед оператором.
Отступы
(Должен быть один очевидный способ сделать это)
Отступы или же пробелы в начале строки — крайне важная часть в синтаксисе Python. Как группируются операторы друг с другом операторы, в Python определяют именно уровни строк.
x = 2
if x > 6:
print('x больше, чем 6')
Отступ перед оператором вывода дает сигнал Python об условном выполнении только в случае, когда оператор if возвращает True. Ровно такой же отступ покажет Python, какой именно код выполнять при вызове функции или какой код имеет отношение к данному классу.
Ключевых правил расстановки отступов всего два и они ниже:
-
Используйте четыре последовательных пробела для отступа;
-
Отдавайте предпочтение пробелам, а не табуляции.
Пробелы против Табуляции
Вы можете настроить ваш редактор кода на вставку четырех пробелов, когда вы нажимаете клавишу Tab.
Также необходимо иметь в виду, что в Python 3 запрещено смешение пробелов и табуляции. Изначально выберите, как именно вы будете выставлять отступы и придерживайтесь этого выбора. Иначе, вместо выполнения кода, вы получите ошибку.
Комментарии
(Если реализацию трудно объяснить, это была плохая идея)
Используйте комментарии для документирования кода в том виде, в каком он написан. Это важно для ваших коллег и вашего понимания своего кода в будущем.
Вот три важных ключевых момента, которые необходимо учитывать, при добавлении комментариев к коду:
-
Используйте длину комментариев при документации не более 72 символов;
-
Не используйте сокращения, начинайте предложения с заглавной буквы;
-
Не забывайте актуализировать комментарии, при изменении кода.
Пример простейшего комментария:
name = 'John Smith' # Student Name
Пробелы в выражениях и утверждениях
(Разреженное лучше, чем плотное)
Полезность пробелов в выражениях и операторах трудно переоценить. Если пробелов недостаточно, код может быть трудночитаемым, так как все сгруппированы вместе. Если пробелов слишком много, может быть сложно визуально объединить строки кода в, логически связанные, блоки.
Окружите следующие бинарные операторы одним пробелом с каждой стороны:
-
Операторы присвоения ( =, +=, -= и т. п.)
-
Сравнения ( ==, !=, >, <. >=, <= ) и (is, is not, in, not in)
-
Логические (and, or, not)
Когда = используется для присвоения значения для аргумента функции, не окружайте его пробелами.
Рекомендации программисту
(Простое лучше сложного)
Необходимо заметить, что в Python можно придумать несколько способов для выполнения одного и того же действия. Далее будет рассказано, как избавляться от двусмысленности при сохранении последовательности.
# Не рекомендуется
my_bool = 4 > 3
if my_bool == True:
return '4 больше 3'
Использование оператора эквивалентности здесь не имеет необходимости, my_bool может иметь только два значения, True или False. Поэтому достаточно написать так:
# Рекомендуется
if my_bool:
return '4 is bigger than 3'
Этот способ выполнения оператора if с логическим оператором проще и требует меньше кода, поэтому PEP8 рекомендует именно его.
Когда лучше проигнорировать PEP8
Однозначно ответить на этот вопрос довольно сложно. Если вы безукоризненно исполняете все предписания PEP8, можно с уверенностью гарантировать «чистоту», высокий уровень читаемости кода и профессионализм программиста. Что принесет пользу всем взаимодействующим с вашим кодом, от коллег до конечного заказчика продукта.
Но все же некоторые рекомендации PEP8 неприменимы в следующих случаях:
-
Если соблюдение PEP8 нарушит совместимость с существующим программным обеспечением;
-
Если код, сопутствующий тому, над чем вы работаете, несовместим с PEP8;
-
Если код нужно оставить совместимым с неактуальными версиями Python.
Заключение
Теперь вам должно стать понятны способы создания высококачественного, читаемого кода Python, с помощью рекомендаций PEP8. Хотя они могут показаться тюрьмой для мозга творца, их соблюдение действительно может «прокачать» ваш код, в частности, когда речь заходит о разделении работы над ним с соавторами.
Если же у вас имеется желание углубиться в изучение тонкостей PEP8, можно ознакомиться с полной англоязычной документацией или посетить информационный ресурс pep8.org, содержащий ту же информацию, в более структурированном виде. В этих документах вы найдете, не попавшие в эту «выжимку», рекомендации.
Сообщество приняло набор стилевых рекомендаций PEP8, который Гвидо ван Россум, создатель языка, предложил еще в 2001 году. Как применять и когда отступать — рассказываем в этой статье.
Что такое стандарты PEP8 для языка Python
С предсказуемым кодом приятно работать: сразу понятно, где импортированные модули, константа здесь или переменная и в каком блоке текущая строка. Для предсказуемости важны стиль и оформление, особенно в Python, который многое прощает разработчику.
Требования PEP8 по оформлению Python-кода
Единообразие, наглядность и информативность — это основа PEP8. Страница с текстом предложения постоянно дополняется, рекомендуем иногда перечитывать.
Структура кода
В Python внутренние блоки кода выделяются отступами, а не специальными разделителями. Размер отступа — четыре пробела, табуляция не используется:
if (expression_is_true): do_this() elif (other_expression_is_true): do_that() else: do_something_else()
Для удобства настройте табуляцию в любимом редакторе на проставление четырех пробелов.
Аргументы функций переносятся на следующую строку и выравниваются, если строка слишком длинная:
def long_func (arg_one, arg_two, arg_three, arg_four) def extra_long_function_name ( arg_one, arg_two, arg_three, arg_four): do_something()
Некоторые редакторы при переносе строки добавляют спецсимвол, поэтому вместо стандартных 80 символов максимальная длина строки в PEP8 — 79. Комментарии и документация — 72 символа.
Максимальную длину строки разрешается увеличить до 99 символов, если стандартные 79 ухудшают читаемость кода.
Знаки операций ставятся после переноса строки:
total_users = (currently_online + offline_but_active + offline_inactive - duplicate_accounts - banned)
Между функциями верхнего уровня и классами вставляются две пустые строки. Между определениями методов в классе — одна пустая строка. Разрешается добавлять пустые строки между логическими секциями, но не злоупотребляйте этим:
do_stuff() do_similar_stuff() do_different_stuff() do_something_else_entirely()
Правила выбора имен
По правильно названной переменной или функции сразу понятно, зачем они нужны: в first_name лежит имя, а calculate_employee_salary() считает зарплату сотрудника.
Старайтесь использовать полные имена. Их проще читать, а с сокращениями вы и сами потом с трудом разберетесь:
# Правильно first_name = ‘Ivan’ last_name = ‘Ivanov’ def plus_one (x): return x + 1 # Неправильно fnm = ‘Ivan’ lnm = ‘Ivanov’ # Plus 1? Phase 1? Point 1? def p1 (x): return x + 1
Придерживайтесь этих стилей именования:
Тип | Рекомендация | Примеры |
Функция | Одно или несколько слов в нижнем регистре, нижние подчеркивания для улучшения читаемости (snake case) | function, add_one |
Переменная | Одна буква, слово или несколько слов в нижнем регистре, нижние подчеркивания для улучшения читаемости | x, connection, first_name |
Класс | Одно или несколько слов с большой буквы без пробелов (camel case) | Image, UserData |
Метод | Одно или несколько слов в нижнем регистре, нижние подчеркивания для улучшения читаемости | draw(), get_user_data() |
Константа | Одна буква, слово или несколько слов в верхнем регистре, нижние подчеркивания для улучшения читаемости | PI, MAX_CONNECTIONS |
Модуль | Короткое слово или слова в нижнем регистре, нижние подчеркивания для улучшения читаемости | module.py, user_data.py |
Пакет | Короткое слово или слова в нижнем регистре без подчеркиваний | package, userdata |
Проверка истинности без знаков равенства
Условия с булевыми значениями проверяются без оператора эквивалентности (==):
# Правильно if this_is_true: do_something() if not this_is_false: do_something_else() # Неправильно if this_is_true == True: do_something() if this_is_false == False: do_something_else()
Сравнение с None делается с помощью операторов is / is not:
if connection is None: print_error_message() if user is not None: get_user_data()
Пустой массив, список, словарь или строка — это False. С содержимым — уже True:
first_name = ‘’ if not first_name: do_something () # выполнится colors = [‘red’] if colors: do_something_else() # выполнится
Использование комментариев
Хороший комментарий — полезный комментарий. Пользуйтесь простым и понятным языком и не забывайте обновлять их, если код меняется. Рекомендации PEP8:
- Пишите полные предложения с заглавной буквы, если это не название.
- Ставьте два пробела после точки в комментариях, кроме последнего предложения.
- Пишите на английском, если читатели не знают ваш язык.
Блочные комментарии объясняют следующий за ними участок кода. Выравнивайте их на том же уровне и начинайте каждую строку с # и пробела. Параграфы в блочных комментариях разделяются строкой с одной #:
# Returns a filled UserData object for the current user ID if user exists, None otherwise. Assumes database connection is already open # # TODO: very poor performance, rewrite it! def get_user_data (db_connection, user_id)
Не злоупотребляйте комментариями на той же строке (внутренними). Они не должны объяснять очевидных вещей и затруднять чтение кода. Отделяйте их от текста как минимум двумя пробелами и начинайте с # и пробела:
# Правильно first_name = ‘Ivan’ # test user, shouldn’t show up in prod # Неправильно first_name = ‘Ivan’ # first name
Пишите документацию для всех публичных модулей, функций, классов и методов. В приватных можно ограничиться комментариями, зачем они нужны и как используются.
В многострочных комментариях “”” в конце переносится на новую строку:
“””Run the provided database request. Scalar only! For everything else, use db_query(). “””
В однострочных комментариях открывающие и закрывающие “”” — на той же строке:
“””Flush buffer and close the file”””
Выражения и инструкции
Стандартная кодировка для Python 3 — UTF8. В Python 2 — ASCII, которая не поддерживает кириллицу. Пользуйтесь Windows 1251 или аналогами:
# coding: cp1251 print (“Текст кириллицей”)
Импортируйте модули в начале файла, сразу после верхнеуровневых комментариев и строк документации. Группируйте их и разделяйте группы пустыми строками: сначала стандартная библиотека, потом — сторонние, в конце — локальные модули проекта. При импорте каждый модуль пишется с новой строки. Совмещайте несколько импортов из одного модуля:
import os from math import pi, sin
Разделяйте условия, циклы и обработку исключений на отдельные строки, кроме тривиальных случаев:
# Правильно if this_is_true and that_is_true and something_else_is_true: do_stuff(); do_other_stuff(); # Допустимо if file_position &amp;lt; 0: file_position = 0 # file system quirk # Неправильно if this and that and something_else: do_stuff(); do_other_stuff()
Использование запятых
Кортеж из одного элемента отделяется запятой и берется в скобки для улучшения читаемости. Для систем контроля версий элементы в списке пишутся с новой строки и отделяются запятыми, если список будет расширяться. В остальных случаях запятые не ставятся:
# Правильно TEST_USERS = (‘ivanov_i’, ) TEST_ACCOUNT_IDS = [ ‘123’, ‘456’, ] # Неправильно TEST_USERS = ‘ivanov_i’, TEST_ACCOUNT_IDS = [‘123’, ‘456’, ]
Рекомендации по программированию
Определяйте функции с аннотациями типов аргументов и возвращаемых значений. Стрелка окружается пробелами с обеих сторон:
def sum(a: int, b: int) -&gt; int: return a + b
Для типов переменных вставляйте один пробел после двоеточия. Знак присваивания окружается пробелами с обеих сторон:
# Правильно user_count: int class UserData: first_name: str = ‘replace_me’ login_and_password_hash: Tuple[str, str] # Неправильно user_count:int user_count : int class UserData: first_name: str=’’
Не забудьте указать специальный комментарий, чтобы автоматические проверки игнорировали файл, если в проекте используются любые другие виды аннотаций:
# type: ignore
По умолчанию интерпретаторы Python должны игнорировать проверку типов и сохранять такое же поведение, как и без аннотаций. Линтеры и другой инструментарий — опциональны.
Другие рекомендации, на которые стоит обратить внимание:
- Используйте стандартную библиотеку, а не конкретную имплементацию (PyPy, CPython и т. д.).
- Реализуйте все операторы (__eq__, __ne__, __lt__, __le__, __gt__, __ge__) для сравнения элементов, не доверяйте внешнему коду в использовании только одного или нескольких.
- Определяйте функции ключевым словом def, а не знаком равенства: равенство оставляйте для лямбд.
- Наследуйте исключения от Exception вместо BaseException: BaseException зарезервировано для исключений, ловить которые — плохая идея.
- Сохраняйте стек вызовов при обработке цепочки исключений.
- Обрабатывайте конкретное исключение: слишком широкое условие (или пустой оператор except) поймает больше, чем нужно.
- Минимизируйте количество кода в try-блоке: в длинных условиях легче потеряться или проглотить ошибку.
- Очищайте локальные ресурсы с помощью with или try/finally.
- Вызывайте методы в менеджерах контекста явно. Исключение — резерв или возврат ресурса.
- Возвращайте единообразные значения: либо везде пустой return, либо везде результат или None.
- Проверяйте префиксы и суффиксы строк с помощью .startswith() и .endswith().
- Сравнивайте типы объектов через isinstance().
- Избегайте строковых литералов с пробельными символами в конце: некоторые редакторы и модули их обрежут.
Как проверить код на соответствие стандартам PEP8
Ручная проверка плохо подходит даже для небольших проектов: отнимает время, легко ошибиться. Используйте готовые инструменты:
- Среды разработки, например PyCharm.
- Pylint — для статического анализа и проверки стиля.
- Flake8 — для проверки стиля.
Pylint, Flake8 и многое другое лежит в разделе Python Code Quality Authority на гитхабе.
Когда можно проигнорировать соблюдение стандартов
Когда соблюдение стандартов ухудшает код. Помните: единообразный код понятнее и лучше читается. Например, PEP8 не применяется, если проект не доступен публично и уже использует другой стиль — или разрабатывался под старые версии Python. Для публичных библиотек PEP8 обязателен.
В проектах без единого стиля — договоритесь с командой и берите PEP8.
Коротко о главном
- Пишите единообразный код: его приятнее читать и легче воспринимать. PEP8 — стилевой стандарт сообщества.
- Выравнивайте блоки кода и отделяйте логические секции пустыми строками.
- Выбирайте понятные и однозначные имена для объектов.
- Добавляйте полезные комментарии. Обновляйте их, когда код меняется.
- Обрабатывайте исключения с узкими и краткими условиями.
- Берите автоматические инструменты проверки.
- Игнорируйте стандарты, если их соблюдение ухудшит код.