Как правильно пишется мгц

МГц

МГц

мегагерц

Русский орфографический словарь. / Российская академия наук. Ин-т рус. яз. им. В. В. Виноградова. — М.: «Азбуковник».
.
1999.

Смотреть что такое «МГц» в других словарях:

  • МГЦ — Механо гидравлический центр ОАО организация Источник: http://www.enerprom.ru/asp/news.asp?noparma=ziwk&mode=show&gid=31.2 МГЦ Московский городской центр Москва Словарь: С. Фадеев. Словарь сокращений современного русского языка. С. Пб.:… …   Словарь сокращений и аббревиатур

  • МГц — Герц Обозначается Гц или Hz единица измерения частоты периодических процессов(напр. колебаний). 1 Гц означает одно исполнение такого процесса за одну секунду: 1 Гц= 1/с. Если мы имеем 10 Гц, то это означает, что мы имеем десять исполнений такого… …   Википедия

  • МГЦ СПИД — Московский городской центр профилактики и борьбы со СПИДом Департамента здравоохранения Москвы мед., Москва, организация Источник: http://www.mosgorzdrav.ru/spid …   Словарь сокращений и аббревиатур

  • МГц — мегагерц …   Словарь сокращений русского языка

  • МГЦ — Московский городской центр …   Словарь сокращений русского языка

  • Методика СИСПР измерения помех в диапазоне 0,15 — 30 МГц — 4.2. Методика СИСПР измерения помех в диапазоне 0,15 30 МГц 4.2.1. Частоты измерения Базисная частота измерений 0,5 МГц. Рекомендуется производить измерения на частоте 0,5 МГц ± 10 %, допускается использовать другие частоты, например, 1 МГц.… …   Словарь-справочник терминов нормативно-технической документации

  • служба персональной связи в диапазоне 1900 МГц — Стандарт США для служб персональной связи, работающих в диапазоне частот 1850 1910 МГц и 1930 1990 МГц. В США весь спектр в указанном диапазоне поделен на участки шириной 2×15 МГц и 2×5 МГц, которые приобретаются операторами на аукционах. [Л.М.… …   Справочник технического переводчика

  • Кондуктивные помехи, наведенные радиочастотными электромагнитными полями, в полосе частот 0,15 — 80 МГц — 5.4 Кондуктивные помехи, наведенные радиочастотными электромагнитными полями, в полосе частот 0,15 80 МГц Испытания на устойчивость к кондуктивным помехам, наведенным радиочастотными электромагнитными полями, в полосе частот 0,15 80 МГц проводят… …   Словарь-справочник терминов нормативно-технической документации

  • Кондуктивные помехи, наведенные радиочастотными электромагнитными полями, в полосе частот 0,15 — 150 МГц — 5.3 Кондуктивные помехи, наведенные радиочастотными электромагнитными полями, в полосе частот 0,15 150 МГц Испытания на устойчивость к кондуктивным помехам, наведенным радиочастотными электромагнитными полями, в полосе частот 0,15 150МГц проводят …   Словарь-справочник терминов нормативно-технической документации

  • контрольная антенна для диапазона частот 20 -80 МГц — Укороченный резонансный симметричный вибратор, настроенный на частоту 80 МГц, а для диапазона частот свыше 80 МГц полуволновой резонансный симметричный вибратор, настроенный на частоту измерения. [ГОСТ Р 41.10 99] Тематики автотранспортная… …   Справочник технического переводчика

ГГц

ГГц

генри-герц

————————

гигагерц

Словарь сокращений русского языка .
2014.

Смотреть что такое «ГГц» в других словарях:

  • ГГЦ — Гипрогазцентр ДОАО «Гипрогазцентр» ОАО «Газпром» г. Нижний Новгород, организация ГГЦ городской гериатрический центр Санкт Петербург Источник: http://www.microsoft.com/Rus/Casestudies/CaseStudy.aspx?id=85 ГГц генри герц …   Словарь сокращений и аббревиатур

  • ГГц — …   Википедия

  • Ггц — …   Википедия

  • ГГц — генри герц …   Русский орфографический словарь

  • Проверка коэффициента отражения ПЭВ в полосе частот от 0,4 — 37,5 ГГц — 4.5. Проверка коэффициента отражения ПЭВ в полосе частот от 0,4 37,5 ГГц 4.5.1. Для проведения испытаний применяют аппаратуру и оборудование со следующими техническими характеристиками: генератор сигналов* с: полосой частот 0,4 37,5 ГГц,… …   Словарь-справочник терминов нормативно-технической документации

  • Проверка коэффициента отражения ПЭВ в полосе частот от 0,03 до 0,4 ГГц включительно — 4.4. Проверка коэффициента отражения ПЭВ в полосе частот от 0,03 до 0,4 ГГц включительно 4.4.1. Для проведения измерений применяют аппаратуру и оборудование со следующими техническими характеристиками: генератор сигналов с: полосой частот 0,03… …   Словарь-справочник терминов нормативно-технической документации

  • ОСТ 45.193-2002: Фиксированная и радиовещательная спутниковые службы. Станции земные, работающие в полосах частот: 27,5-31,0 ГГц на передачу, 17,7-21,2 ГГц и 10,7-12,75 ГГц на прием. Технические требования. Методы испытаний — Терминология ОСТ 45.193 2002: Фиксированная и радиовещательная спутниковые службы. Станции земные, работающие в полосах частот: 27,5 31,0 ГГц на передачу, 17,7 21,2 ГГц и 10,7 12,75 ГГц на прием. Технические требования. Методы испытаний: Внешнее… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 8.617-2006: Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений мощности электромагнитных колебаний в диапазоне частот от 37,50 до 53,57 ГГц — Терминология ГОСТ Р 8.617 2006: Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений мощности электромагнитных колебаний в диапазоне частот от 37,50 до 53,57 ГГц оригинал документа:… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 52459.3-2009: Совместимость технических средств электромагнитная. Технические средства радиосвязи. Часть 3. Частные требования к устройствам малого радиуса действия, работающим на частотах от 9 кГц до 40 ГГц — Терминология ГОСТ Р 52459.3 2009: Совместимость технических средств электромагнитная. Технические средства радиосвязи. Часть 3. Частные требования к устройствам малого радиуса действия, работающим на частотах от 9 кГц до 40 ГГц оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 52459.19-2009: Совместимость технических средств электромагнитная. Технические средства радиосвязи. Часть 19. Частные требования к подвижным земным приемным станциям спутниковой службы, работающим в системе передачи данных в диапазоне 1,5 ГГц — Терминология ГОСТ Р 52459.19 2009: Совместимость технических средств электромагнитная. Технические средства радиосвязи. Часть 19. Частные требования к подвижным земным приемным станциям спутниковой службы, работающим в системе передачи данных в… …   Словарь-справочник терминов нормативно-технической документации

From Wikipedia, the free encyclopedia

hertz
FrequencyAnimation.gif

Top to bottom: Lights flashing at frequencies f = 0.5 Hz, 1.0 Hz and 2.0 Hz; that is, at 0.5, 1.0 and 2.0 flashes per second, respectively. The time between each flash – the period T – is given by 1f (the reciprocal of f ); that is, 2, 1 and 0.5 seconds, respectively.

General information
Unit system SI
Unit of frequency
Symbol Hz
Named after Heinrich Hertz
In SI base units s−1

The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), equivalent to one event (or cycle) per second.[1][3] The hertz is an SI derived unit whose expression in terms of SI base units is s−1, meaning that one hertz is the reciprocal of one second.[2] It is named after Heinrich Rudolf Hertz (1857–1894), the first person to provide conclusive proof of the existence of electromagnetic waves. Hertz are commonly expressed in multiples: kilohertz (kHz), megahertz (MHz), gigahertz (GHz), terahertz (THz).

Some of the unit’s most common uses are in the description of periodic waveforms and musical tones, particularly those used in radio- and audio-related applications. It is also used to describe the clock speeds at which computers and other electronics are driven. The units are sometimes also used as a representation of the energy of a photon, via the Planck relation E = , where E is the photon’s energy, ν is its frequency, and h is the Planck constant.

Definition[edit]

The hertz is equivalent to one cycle per second. The International Committee for Weights and Measures defined the second as «the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom»[4][5] and then adds: «It follows that the hyperfine splitting in the ground state of the caesium 133 atom is exactly 9192631770 hertz, νhfs Cs = 9192631770 Hz.» The dimension of the unit hertz is 1/time (T−1). Expressed in base SI units, the unit is the reciprocal second (1/s).

In English, «hertz» is also used as the plural form.[6] As an SI unit, Hz can be prefixed; commonly used multiples are kHz (kilohertz, 103 Hz), MHz (megahertz, 106 Hz), GHz (gigahertz, 109 Hz) and THz (terahertz, 1012 Hz). One hertz simply means «one event per second» (where the event being counted may be a complete cycle); 100 Hz means «one hundred events per second», and so on. The unit may be applied to any periodic event—for example, a clock might be said to tick at 1 Hz, or a human heart might be said to beat at 1.2 Hz.

The occurrence rate of aperiodic or stochastic events is expressed in reciprocal second or inverse second (1/s or s−1) in general or, in the specific case of radioactivity, in becquerels.[7] Whereas 1 Hz is one cycle (or periodic event) per second, 1 Bq is one radionuclide event per second on average.

Even though frequency, angular velocity, angular frequency and radioactivity all have the dimension T−1, of these only frequency is expressed using the unit hertz.[8] Thus a disc rotating at 60 revolutions per minute (rpm) is said to have an angular velocity of 2π rad/s and a frequency of rotation of 1 Hz. The correspondence between a frequency f with the unit hertz and an angular velocity ω with the unit radians per second is

omega =2pi f and {displaystyle f={frac {omega }{2pi }}.}

The hertz is named after Heinrich Hertz. As with every SI unit named for a person, its symbol starts with an upper case letter (Hz), but when written in full it follows the rules for capitalisation of a common noun; i.e., «hertz» becomes capitalised at the beginning of a sentence and in titles, but is otherwise in lower case.

History[edit]

The hertz is named after the German physicist Heinrich Hertz (1857–1894), who made important scientific contributions to the study of electromagnetism. The name was established by the International Electrotechnical Commission (IEC) in 1935.[9] It was adopted by the General Conference on Weights and Measures (CGPM) (Conférence générale des poids et mesures) in 1960, replacing the previous name for the unit, «cycles per second» (cps), along with its related multiples, primarily «kilocycles per second» (kc/s) and «megacycles per second» (Mc/s), and occasionally «kilomegacycles per second» (kMc/s). The term «cycles per second» was largely replaced by «hertz» by the 1970s.[10][failed verification]

In some usage, the «per second» was omitted, so that «megacycles» (Mc) was used as an abbreviation of «megacycles per second» (that is, megahertz (MHz)).[11]

Applications[edit]

A heartbeat is an example of a non-sinusoidal periodic phenomenon that may be analyzed in terms of frequency. Two cycles are illustrated.

Sound and vibration[edit]

Sound is a traveling longitudinal wave, which is an oscillation of pressure. Humans perceive the frequency of a sound as its pitch. Each musical note corresponds to a particular frequency. An infant’s ear is able to perceive frequencies ranging from 20 Hz to 20000 Hz; the average adult human can hear sounds between 20 Hz and 16000 Hz.[12] The range of ultrasound, infrasound and other physical vibrations such as molecular and atomic vibrations extends from a few femtohertz[13] into the terahertz range[14] and beyond.[15]

Electromagnetic radiation[edit]

Electromagnetic radiation is often described by its frequency—the number of oscillations of the perpendicular electric and magnetic fields per second—expressed in hertz.

Radio frequency radiation is usually measured in kilohertz (kHz), megahertz (MHz), or gigahertz (GHz). Light is electromagnetic radiation that is even higher in frequency, and has frequencies in the range of tens (infrared) to thousands (ultraviolet) of terahertz. Electromagnetic radiation with frequencies in the low terahertz range (intermediate between those of the highest normally usable radio frequencies and long-wave infrared light) is often called terahertz radiation. Even higher frequencies exist, such as that of gamma rays, which can be measured in exahertz (EHz). (For historical reasons, the frequencies of light and higher frequency electromagnetic radiation are more commonly specified in terms of their wavelengths or photon energies: for a more detailed treatment of this and the above frequency ranges, see Electromagnetic spectrum.)

Computers[edit]

Further information on why the frequency, including for gigahertz (GHz) etc., is a flawed speed indicator for computers: Megahertz myth

In computers, most central processing units (CPU) are labeled in terms of their clock rate expressed in megahertz (MHz) or gigahertz (GHz). This specification refers to the frequency of the CPU’s master clock signal. This signal is nominally a square wave, which is an electrical voltage that switches between low and high logic levels at regular intervals. As the hertz has become the primary unit of measurement accepted by the general populace to determine the performance of a CPU, many experts have criticized this approach, which they claim is an easily manipulable benchmark. Some processors use multiple clock cycles to perform a single operation, while others can perform multiple operations in a single cycle.[16] For personal computers, CPU clock speeds have ranged from approximately 1 MHz in the late 1970s (Atari, Commodore, Apple computers) to up to 6 GHz in IBM Power microprocessors.

Various computer buses, such as the front-side bus connecting the CPU and northbridge, also operate at various frequencies in the megahertz range.

SI multiples[edit]

SI multiples of hertz (Hz)

Submultiples Multiples
Value SI symbol Name Value SI symbol Name
10−1 Hz dHz decihertz 101 Hz daHz decahertz
10−2 Hz cHz centihertz 102 Hz hHz hectohertz
10−3 Hz mHz millihertz 103 Hz kHz kilohertz
10−6 Hz µHz microhertz 106 Hz MHz megahertz
10−9 Hz nHz nanohertz 109 Hz GHz gigahertz
10−12 Hz pHz picohertz 1012 Hz THz terahertz
10−15 Hz fHz femtohertz 1015 Hz PHz petahertz
10−18 Hz aHz attohertz 1018 Hz EHz exahertz
10−21 Hz zHz zeptohertz 1021 Hz ZHz zettahertz
10−24 Hz yHz yoctohertz 1024 Hz YHz yottahertz
10−27 Hz rHz rontohertz 1027 Hz RHz ronnahertz
10−30 Hz qHz quectohertz 1030 Hz QHz quettahertz
Common prefixed units are in bold face.

Higher frequencies than the International System of Units provides prefixes for are believed to occur naturally in the frequencies of the quantum-mechanical vibrations of massive particles, although these are not directly observable and must be inferred through other phenomena. By convention, these are typically not expressed in hertz, but in terms of the equivalent energy, which is proportional to the frequency by the factor of the Planck constant.

Unicode[edit]

The CJK Compatibility block in Unicode contains characters for common SI units for frequency. These are intended for compatibility with East Asian character encodings, and not for use in new documents (which would be expected to use Latin letters, e.g. «MHz»).[17]

  • U+3390 SQUARE HZ
  • U+3391 SQUARE KHZ
  • U+3392 SQUARE MHZ
  • U+3393 SQUARE GHZ
  • U+3394 SQUARE THZ

See also[edit]

  • Alternating current
  • Bandwidth (signal processing)
  • Electronic tuner
  • FLOPS
  • Frequency changer
  • Normalized frequency (signal processing)
  • Orders of magnitude (frequency)
  • Periodic function
  • Radian per second
  • Rate
  • Sampling rate

Notes and references[edit]

  1. ^ «hertz». (1992). American Heritage Dictionary of the English Language (3rd ed.), Boston: Houghton Mifflin.
  2. ^ a b «SI Brochure: The International System of Units (SI) – 9th edition» (PDF). BIPM: 26. Retrieved 7 August 2022.
  3. ^ Although hertz is equivalent to cycle per second (cps), the SI explicitly states that «cycle» and «cps» are not units in the SI, likely due to ambiguity in the terms.[2]
  4. ^ «SI Brochure: The International System of Units (SI) § 2.3.1 Base units» (PDF) (in British English and French) (9th ed.). BIPM. 2019. p. 130. Retrieved 2 February 2021.
  5. ^ «SI Brochure: The International System of Units (SI) § Appendix 1. Decisions of the CGPM and the CIPM» (PDF) (in British English and French) (9th ed.). BIPM. 2019. p. 169. Retrieved 2 February 2021.
  6. ^ NIST Guide to SI Units – 9 Rules and Style Conventions for Spelling Unit Names, National Institute of Standards and Technology
  7. ^ «(d) The hertz is used only for periodic phenomena, and the becquerel (Bq) is used only for stochastic processes in activity referred to a radionuclide.» «BIPM – Table 3». BIPM. Retrieved 24 October 2012.
  8. ^ «SI brochure, Section 2.2.2, paragraph 6». Archived from the original on 1 October 2009.
  9. ^ «IEC History». Iec.ch. Archived from the original on 19 May 2013. Retrieved 6 January 2021.
  10. ^ Cartwright, Rufus (March 1967). Beason, Robert G. (ed.). «Will Success Spoil Heinrich Hertz?» (PDF). Electronics Illustrated. Fawcett Publications, Inc. pp. 98–99.
  11. ^ Pellam, J. R.; Galt, J. K. (1946). «Ultrasonic Propagation in Liquids: I. Application of Pulse Technique to Velocity and Absorption Measurements at 15 Megacycles». The Journal of Chemical Physics. 14 (10): 608–614. Bibcode:1946JChPh..14..608P. doi:10.1063/1.1724072. hdl:1721.1/5042.
  12. ^ Ernst Terhardt (20 February 2000). «Dominant spectral region». Mmk.e-technik.tu-muenchen.de. Archived from the original on 26 April 2012. Retrieved 28 April 2012.
  13. ^ «Black Hole Sound Waves – Science Mission Directorate». science.nasa.go.
  14. ^ Atomic vibrations are typically on the order of tens of terahertz
  15. ^ «Black Hole Sound Waves – Science Mission Directorate». science.nasa.go.
  16. ^ Asaravala, Amit (30 March 2004). «Good Riddance, Gigahertz». Wired. Retrieved 28 April 2012.
  17. ^ Unicode Consortium (2019). «The Unicode Standard 12.0 – CJK Compatibility ❰ Range: 3300—33FF ❱» (PDF). Unicode.org. Retrieved 24 May 2019.

External links[edit]

  • SI Brochure: Unit of time (second)
  • National Research Council of Canada: Cesium fountain clock
  • National Research Council of Canada: Optical frequency standard based on a single trapped ion (archived 23 December 2013)
  • National Research Council of Canada: Optical frequency comb (archived 27 June 2013)
  • National Physical Laboratory: Time and frequency Optical atomic clocks
  • Online Tone Generator

From Wikipedia, the free encyclopedia

hertz
FrequencyAnimation.gif

Top to bottom: Lights flashing at frequencies f = 0.5 Hz, 1.0 Hz and 2.0 Hz; that is, at 0.5, 1.0 and 2.0 flashes per second, respectively. The time between each flash – the period T – is given by 1f (the reciprocal of f ); that is, 2, 1 and 0.5 seconds, respectively.

General information
Unit system SI
Unit of frequency
Symbol Hz
Named after Heinrich Hertz
In SI base units s−1

The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), equivalent to one event (or cycle) per second.[1][3] The hertz is an SI derived unit whose expression in terms of SI base units is s−1, meaning that one hertz is the reciprocal of one second.[2] It is named after Heinrich Rudolf Hertz (1857–1894), the first person to provide conclusive proof of the existence of electromagnetic waves. Hertz are commonly expressed in multiples: kilohertz (kHz), megahertz (MHz), gigahertz (GHz), terahertz (THz).

Some of the unit’s most common uses are in the description of periodic waveforms and musical tones, particularly those used in radio- and audio-related applications. It is also used to describe the clock speeds at which computers and other electronics are driven. The units are sometimes also used as a representation of the energy of a photon, via the Planck relation E = , where E is the photon’s energy, ν is its frequency, and h is the Planck constant.

Definition[edit]

The hertz is equivalent to one cycle per second. The International Committee for Weights and Measures defined the second as «the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom»[4][5] and then adds: «It follows that the hyperfine splitting in the ground state of the caesium 133 atom is exactly 9192631770 hertz, νhfs Cs = 9192631770 Hz.» The dimension of the unit hertz is 1/time (T−1). Expressed in base SI units, the unit is the reciprocal second (1/s).

In English, «hertz» is also used as the plural form.[6] As an SI unit, Hz can be prefixed; commonly used multiples are kHz (kilohertz, 103 Hz), MHz (megahertz, 106 Hz), GHz (gigahertz, 109 Hz) and THz (terahertz, 1012 Hz). One hertz simply means «one event per second» (where the event being counted may be a complete cycle); 100 Hz means «one hundred events per second», and so on. The unit may be applied to any periodic event—for example, a clock might be said to tick at 1 Hz, or a human heart might be said to beat at 1.2 Hz.

The occurrence rate of aperiodic or stochastic events is expressed in reciprocal second or inverse second (1/s or s−1) in general or, in the specific case of radioactivity, in becquerels.[7] Whereas 1 Hz is one cycle (or periodic event) per second, 1 Bq is one radionuclide event per second on average.

Even though frequency, angular velocity, angular frequency and radioactivity all have the dimension T−1, of these only frequency is expressed using the unit hertz.[8] Thus a disc rotating at 60 revolutions per minute (rpm) is said to have an angular velocity of 2π rad/s and a frequency of rotation of 1 Hz. The correspondence between a frequency f with the unit hertz and an angular velocity ω with the unit radians per second is

omega =2pi f and {displaystyle f={frac {omega }{2pi }}.}

The hertz is named after Heinrich Hertz. As with every SI unit named for a person, its symbol starts with an upper case letter (Hz), but when written in full it follows the rules for capitalisation of a common noun; i.e., «hertz» becomes capitalised at the beginning of a sentence and in titles, but is otherwise in lower case.

History[edit]

The hertz is named after the German physicist Heinrich Hertz (1857–1894), who made important scientific contributions to the study of electromagnetism. The name was established by the International Electrotechnical Commission (IEC) in 1935.[9] It was adopted by the General Conference on Weights and Measures (CGPM) (Conférence générale des poids et mesures) in 1960, replacing the previous name for the unit, «cycles per second» (cps), along with its related multiples, primarily «kilocycles per second» (kc/s) and «megacycles per second» (Mc/s), and occasionally «kilomegacycles per second» (kMc/s). The term «cycles per second» was largely replaced by «hertz» by the 1970s.[10][failed verification]

In some usage, the «per second» was omitted, so that «megacycles» (Mc) was used as an abbreviation of «megacycles per second» (that is, megahertz (MHz)).[11]

Applications[edit]

A heartbeat is an example of a non-sinusoidal periodic phenomenon that may be analyzed in terms of frequency. Two cycles are illustrated.

Sound and vibration[edit]

Sound is a traveling longitudinal wave, which is an oscillation of pressure. Humans perceive the frequency of a sound as its pitch. Each musical note corresponds to a particular frequency. An infant’s ear is able to perceive frequencies ranging from 20 Hz to 20000 Hz; the average adult human can hear sounds between 20 Hz and 16000 Hz.[12] The range of ultrasound, infrasound and other physical vibrations such as molecular and atomic vibrations extends from a few femtohertz[13] into the terahertz range[14] and beyond.[15]

Electromagnetic radiation[edit]

Electromagnetic radiation is often described by its frequency—the number of oscillations of the perpendicular electric and magnetic fields per second—expressed in hertz.

Radio frequency radiation is usually measured in kilohertz (kHz), megahertz (MHz), or gigahertz (GHz). Light is electromagnetic radiation that is even higher in frequency, and has frequencies in the range of tens (infrared) to thousands (ultraviolet) of terahertz. Electromagnetic radiation with frequencies in the low terahertz range (intermediate between those of the highest normally usable radio frequencies and long-wave infrared light) is often called terahertz radiation. Even higher frequencies exist, such as that of gamma rays, which can be measured in exahertz (EHz). (For historical reasons, the frequencies of light and higher frequency electromagnetic radiation are more commonly specified in terms of their wavelengths or photon energies: for a more detailed treatment of this and the above frequency ranges, see Electromagnetic spectrum.)

Computers[edit]

Further information on why the frequency, including for gigahertz (GHz) etc., is a flawed speed indicator for computers: Megahertz myth

In computers, most central processing units (CPU) are labeled in terms of their clock rate expressed in megahertz (MHz) or gigahertz (GHz). This specification refers to the frequency of the CPU’s master clock signal. This signal is nominally a square wave, which is an electrical voltage that switches between low and high logic levels at regular intervals. As the hertz has become the primary unit of measurement accepted by the general populace to determine the performance of a CPU, many experts have criticized this approach, which they claim is an easily manipulable benchmark. Some processors use multiple clock cycles to perform a single operation, while others can perform multiple operations in a single cycle.[16] For personal computers, CPU clock speeds have ranged from approximately 1 MHz in the late 1970s (Atari, Commodore, Apple computers) to up to 6 GHz in IBM Power microprocessors.

Various computer buses, such as the front-side bus connecting the CPU and northbridge, also operate at various frequencies in the megahertz range.

SI multiples[edit]

SI multiples of hertz (Hz)

Submultiples Multiples
Value SI symbol Name Value SI symbol Name
10−1 Hz dHz decihertz 101 Hz daHz decahertz
10−2 Hz cHz centihertz 102 Hz hHz hectohertz
10−3 Hz mHz millihertz 103 Hz kHz kilohertz
10−6 Hz µHz microhertz 106 Hz MHz megahertz
10−9 Hz nHz nanohertz 109 Hz GHz gigahertz
10−12 Hz pHz picohertz 1012 Hz THz terahertz
10−15 Hz fHz femtohertz 1015 Hz PHz petahertz
10−18 Hz aHz attohertz 1018 Hz EHz exahertz
10−21 Hz zHz zeptohertz 1021 Hz ZHz zettahertz
10−24 Hz yHz yoctohertz 1024 Hz YHz yottahertz
10−27 Hz rHz rontohertz 1027 Hz RHz ronnahertz
10−30 Hz qHz quectohertz 1030 Hz QHz quettahertz
Common prefixed units are in bold face.

Higher frequencies than the International System of Units provides prefixes for are believed to occur naturally in the frequencies of the quantum-mechanical vibrations of massive particles, although these are not directly observable and must be inferred through other phenomena. By convention, these are typically not expressed in hertz, but in terms of the equivalent energy, which is proportional to the frequency by the factor of the Planck constant.

Unicode[edit]

The CJK Compatibility block in Unicode contains characters for common SI units for frequency. These are intended for compatibility with East Asian character encodings, and not for use in new documents (which would be expected to use Latin letters, e.g. «MHz»).[17]

  • U+3390 SQUARE HZ
  • U+3391 SQUARE KHZ
  • U+3392 SQUARE MHZ
  • U+3393 SQUARE GHZ
  • U+3394 SQUARE THZ

See also[edit]

  • Alternating current
  • Bandwidth (signal processing)
  • Electronic tuner
  • FLOPS
  • Frequency changer
  • Normalized frequency (signal processing)
  • Orders of magnitude (frequency)
  • Periodic function
  • Radian per second
  • Rate
  • Sampling rate

Notes and references[edit]

  1. ^ «hertz». (1992). American Heritage Dictionary of the English Language (3rd ed.), Boston: Houghton Mifflin.
  2. ^ a b «SI Brochure: The International System of Units (SI) – 9th edition» (PDF). BIPM: 26. Retrieved 7 August 2022.
  3. ^ Although hertz is equivalent to cycle per second (cps), the SI explicitly states that «cycle» and «cps» are not units in the SI, likely due to ambiguity in the terms.[2]
  4. ^ «SI Brochure: The International System of Units (SI) § 2.3.1 Base units» (PDF) (in British English and French) (9th ed.). BIPM. 2019. p. 130. Retrieved 2 February 2021.
  5. ^ «SI Brochure: The International System of Units (SI) § Appendix 1. Decisions of the CGPM and the CIPM» (PDF) (in British English and French) (9th ed.). BIPM. 2019. p. 169. Retrieved 2 February 2021.
  6. ^ NIST Guide to SI Units – 9 Rules and Style Conventions for Spelling Unit Names, National Institute of Standards and Technology
  7. ^ «(d) The hertz is used only for periodic phenomena, and the becquerel (Bq) is used only for stochastic processes in activity referred to a radionuclide.» «BIPM – Table 3». BIPM. Retrieved 24 October 2012.
  8. ^ «SI brochure, Section 2.2.2, paragraph 6». Archived from the original on 1 October 2009.
  9. ^ «IEC History». Iec.ch. Archived from the original on 19 May 2013. Retrieved 6 January 2021.
  10. ^ Cartwright, Rufus (March 1967). Beason, Robert G. (ed.). «Will Success Spoil Heinrich Hertz?» (PDF). Electronics Illustrated. Fawcett Publications, Inc. pp. 98–99.
  11. ^ Pellam, J. R.; Galt, J. K. (1946). «Ultrasonic Propagation in Liquids: I. Application of Pulse Technique to Velocity and Absorption Measurements at 15 Megacycles». The Journal of Chemical Physics. 14 (10): 608–614. Bibcode:1946JChPh..14..608P. doi:10.1063/1.1724072. hdl:1721.1/5042.
  12. ^ Ernst Terhardt (20 February 2000). «Dominant spectral region». Mmk.e-technik.tu-muenchen.de. Archived from the original on 26 April 2012. Retrieved 28 April 2012.
  13. ^ «Black Hole Sound Waves – Science Mission Directorate». science.nasa.go.
  14. ^ Atomic vibrations are typically on the order of tens of terahertz
  15. ^ «Black Hole Sound Waves – Science Mission Directorate». science.nasa.go.
  16. ^ Asaravala, Amit (30 March 2004). «Good Riddance, Gigahertz». Wired. Retrieved 28 April 2012.
  17. ^ Unicode Consortium (2019). «The Unicode Standard 12.0 – CJK Compatibility ❰ Range: 3300—33FF ❱» (PDF). Unicode.org. Retrieved 24 May 2019.

External links[edit]

  • SI Brochure: Unit of time (second)
  • National Research Council of Canada: Cesium fountain clock
  • National Research Council of Canada: Optical frequency standard based on a single trapped ion (archived 23 December 2013)
  • National Research Council of Canada: Optical frequency comb (archived 27 June 2013)
  • National Physical Laboratory: Time and frequency Optical atomic clocks
  • Online Tone Generator

Герц (единица измерения)

герц
Гц, Hz
Величина частота
Система СИ
Тип производная

Герц (русское обозначение: Гц, международное обозначение: Hz) — единица частоты периодических процессов (например, колебаний) в Международной системе единиц (СИ) а также в системах единиц СГС и МКГСС[1]. Герц — производная единица, имеющая специальные наименование и обозначение. Через основные единицы СИ герц выражается следующим образом:

1 Гц = 1 с−1.

1 Гц означает одно исполнение (реализацию) такого процесса за одну секунду, другими словами — одно колебание в секунду, 10 Гц — десять исполнений такого процесса, или десять колебаний за одну секунду.

В соответствии с общими правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы герц пишется со строчной буквы, а её обозначение — с заглавной.

История

Единица названа в честь немецкого учёного-физика XIX века Генриха Герца, который внёс важный вклад в развитие электродинамики. Название было учреждено Международной электротехнической комиссией (МЭК) в 1930 году[2]. В 1960 году XI Генеральной конференцией по мерам и весам вместе с учреждением СИ это название было принято для единицы частоты в СИ.

Кратные и дольные единицы

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Гц декагерц даГц daHz 10−1 Гц децигерц дГц dHz
102 Гц гектогерц гГц hHz 10−2 Гц сантигерц сГц cHz
103 Гц килогерц кГц kHz 10−3 Гц миллигерц мГц mHz
106 Гц мегагерц МГц MHz 10−6 Гц микрогерц мкГц µHz
109 Гц гигагерц ГГц GHz 10−9 Гц наногерц нГц nHz
1012 Гц терагерц ТГц THz 10−12 Гц пикогерц пГц pHz
1015 Гц петагерц ПГц PHz 10−15 Гц фемтогерц фГц fHz
1018 Гц эксагерц ЭГц EHz 10−18 Гц аттогерц аГц aHz
1021 Гц зеттагерц ЗГц ZHz 10−21 Гц зептогерц зГц zHz
1024 Гц иоттагерц ИГц YHz 10−24 Гц иоктогерц иГц yHz
     применять не рекомендуется      не применяются или редко применяются на практике

Герц и беккерель

Кроме герца в СИ существует ещё одна производная единица, равная секунде в минус первой степени (1/с): таким же соотношением с секундой связан беккерель. Существование двух равных, но имеющих различные названия единиц, связано с различием сфер их применения: герц используется только для периодических процессов, а беккерель — только для случайных процессов распада радионуклидов[3]. Хотя использовать обратные секунды в обоих случаях было бы формально правильно, рекомендуется использовать единицы с различными названиями, поскольку различие названий единиц подчёркивает различие природы соответствующих физических величин.

Примеры

  • Диапазон частот звуковых колебаний, которые способен слышать человек, лежит в пределах от 20 Гц до 20 кГц.
  • Сердце человека в спокойном состоянии бьётся с частотой приблизительно 1 Гц (Примечательно, что Herz в переводе с немецкого означает «сердце». Однако фамилия великого физика пишется Hertz).
  • Частота ноты ля первой октавы по стандарту настройки, принятому в настоящее время, составляет 440 Гц. Является стандартной частотой камертона (нота ля первой октавы является эталонной для настройки музыкальных инструментов). В концертных залах применяется настройка в 442 Гц, иногда выше.
  • Частоты колебаний электромагнитного поля, воспринимаемого человеком как видимое излучение (свет), лежат в диапазоне от 3,9·1014 до 7,9·1014 Гц.
  • Частота электромагнитного излучения, используемого в микроволновых печах для нагрева продуктов, обычно равна 2,45 ГГц.

См. также

  • Беккерель

Примечания

  1. Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 35. — 240 с. — ISBN 5-7050-0118-5.
  2. История МЭК (англ.). МЭК. Проверено 1 сентября 2013.
  3. Table 3. Coherent derived units in the SI with special names and symbols (англ.) на сайте Международного бюро мер и весов

Разница между ГГц и МГц

Видео: Разница между ГГц и МГц | Сравните разницу между похожими терминами

Содержание:

ГГц против МГц

ГГц и МГц обозначают гигагерцы и мегагерцы соответственно. Эти две единицы используются для измерения частоты. Гигагерцы и мегагерцы используются в разных ситуациях для измерения частоты в разных масштабах. Частота — очень важный фактор волны или вибрации. Понятие частоты широко используется в таких областях, как физика, инженерия, астрономия, акустика, электроника и в различных других областях. Жизненно важно хорошо понимать понятие частоты и единиц, используемых для ее измерения, чтобы преуспеть в таких областях. В этой статье мы собираемся обсудить, что такое частота, что такое ГГц и МГц, их применение, сходство между ГГц и МГц и, наконец, разница между ГГц и МГц.

МГц (мегагерцы)

Единица измерения мегагерц используется для измерения частоты. Необходимо понимать понятие мегагерца, чтобы понять единицу мегагерца. Частота — это понятие, обсуждаемое в периодических движениях объектов. Периодическое движение можно рассматривать как любое движение, которое повторяется в фиксированный период времени. Планета, вращающаяся вокруг Солнца, — это периодическое движение. Спутник, вращающийся вокруг Земли, — это периодическое движение, даже движение балансира — это периодическое движение. Большинство периодических движений, с которыми мы сталкиваемся, являются круговыми, линейными или полукруглыми. Периодическое движение имеет частоту. Частота означает, насколько «часто» происходит событие. Для простоты мы принимаем частоту как количество событий в секунду. Периодические движения могут быть как равномерными, так и неравномерными. Равномерный может иметь равномерную угловую скорость. Такие функции, как амплитудная модуляция, могут иметь двойной период. Это периодические функции, заключенные в другие периодические функции. Обратное значение частоты периодического движения дает время для периода. Устройство было названо Герц в честь великого немецкого физика Генриха Герца. Единица Мегагерц равна 10 6 герц. Единица измерения мегагерц широко используется для измерения частот радио- и телевещания радиоволн и скорости микропроцессоров.

ГГц (Гигагерцы)

Гигагерц — это также единица измерения частоты. Префикс «Гига» означает 10-кратный коэффициент. 9 . Таким образом, единица Гигагерц равна 10 9 герц. Обычный домашний персональный компьютер имеет вычислительную мощность в диапазоне гигагерц. Радиоволны также измеряются в ГГц, когда используются радиоволны с высокочастотной модуляцией.

В чем разница между МГц и ГГц?

• И мегагерцы, и гигагерцы используются для измерения частоты. МГц в 1000 раз ниже, чем ГГц.

• Электромагнитная волна в диапазоне ГГц имеет больше энергии на фотон, чем в диапазоне МГц.

• ГГц широко используется для измерения вычислительной мощности процессора домашних и офисных компьютеров. МГц широко используется для измерения вычислительной мощности малогабаритных микропроцессоров.

• Мегагерцы представляют 10 6 герц, тогда как гигагерц представляет 10 9 герц.

Что измеряют в герцах и гигагерцах

Что измеряют в герцах и гигагерцах

Герц представляет собой единицу измерения частоты осуществления колебаний. В русском языке для ее обозначения принято сокращение «Гц», в англоязычной литературе для этих целей применяется обозначение Hz. При этом, по правилам системы СИ, в случае, если употребляется сокращенное название этой единицы, ее следует писать с заглавной буквы, а если в тексте используется полное наименование — то со строчной.

Происхождение термина

Значение термина

Герц применяется для измерения частоты колебаний любого рода, поэтому сфера его использования является весьма широкой. Так, например, в количестве герц принято измерять звуковые частоты, биение человеческого сердца, колебания электромагнитного поля и другие движения, повторяющиеся с определенной периодичностью. Так, например, частота биения сердца человека в спокойном состоянии составляет около 1 Гц.

Содержательно единица в данном измерении интерпретируется как количество колебаний, совершаемых анализируемым объектом в течение одной секунды. В этом случае специалисты говорят, что частота колебаний составляет 1 герц. Соответственно, большее количество колебаний в секунду соответствует большему количеству этих единиц. Таким образом, с формальной точки зрения величина, обозначаемая как герц, является обратной по отношению к секунде.

Значительные величины частот принято называть высокими, незначительные — низкими. Примерами высоких и низких частот могут служить звуковые колебания различной интенсивности. Так, например, частоты, находящиеся в диапазоне от 16 до 70 Гц, образуют так называемые басовые, то есть очень низкие звуки, а частоты диапазона от 0 до 16 Гц и вовсе неразличимы для человеческого уха. Самые высокие звуки, которые способен слышать человек, лежат в диапазоне от 10 до 20 тысяч герц, а звуки с более высокой частотой относятся к категории ультразвуков, то есть тех, которые человек не способен слышать.

Для обозначения больших величин частот к обозначению «герц» добавляют специальные приставки, призванные сделать употребление этой единицы более удобным. При этом такие приставки являются стандартными для системы СИ, то есть используются и с другими физическими величинами. Так, тысяча герц носит название «килогерц», миллион герц — «мегагерц», миллиард герц — «гигагерц».

GHz — это ГигаГерц — 10^9 Герц.
Герц — это единица измерения частоты, соответствующая одному такту в секунду.

Генрих Герц — немецкий физик, в честь которого единица получила своё название.

Чaстота́ — физическая величина, характеристика периодического процесса, равна количеству повторений или возникновения событий (процессов) в единицу времени. Рассчитывается, как отношение количества повторений или возникновения событий (процессов) к промежутку времени, за которое они совершены.

Материал из Викисловаря

Перейти к навигации
Перейти к поиску

Русский[править]

ГГц

  • Графическое сокращение названия единицы измерения гигагерц. ◆ Частота 10 ГГц была выделена для связи.

Белорусский[править]

ГГц

  • Графическое сокращение названия единицы измерения гігагерц. ◆ Частата 10 ГГц была выдзелена для сувязі.

Украинский[править]

ГГц

  • Графическое сокращение названия единицы измерения гігагерц. ◆ Частота 10 ГГц була виділена для зв’язку.

Категории:

  • Русский язык
  • Графические сокращения названий единиц измерения/ru
  • Слова из 3 букв/ru
  • Белорусский язык
  • Графические сокращения названий единиц измерения/be
  • Требуется категоризация/be
  • Слова из 3 букв/be
  • Украинский язык
  • Графические сокращения названий единиц измерения/uk
  • Требуется категоризация/uk
  • Слова из 3 букв/uk

Материал из Викисловаря

Перейти к навигации
Перейти к поиску

Русский[править]

МГц

  • Графическое сокращение от мегагерц.

Источник — https://ru.wiktionary.org/w/index.php?title=МГц&oldid=9034378

Категории:

  • Русский язык
  • Графические сокращения/ru
  • Слова из 3 букв/ru

Скрытая категория:

  • Требуется категоризация/ru

Понравилась статья? Поделить с друзьями:
  • Как правильно пишется межрегионгаз
  • Как правильно пишется мгу
  • Как правильно пишется межповерочный интервал
  • Как правильно пишется мвд полностью
  • Как правильно пишется межинститутский или межынститутский