Мегаом
- Мегаом
-
Ом (обозначение: Ом, Ω) — единица измерения электрического сопротивления в СИ. Ом равен электрическому сопротивлению проводника, между концами которого возникает напряжение 1 вольт при силе постоянного тока 1 ампер.
Хотя в Юникоде и присутствует значок ома (Ω, Ohm sign,
U+2126
), но его каноническим разложением является заглавная греческая буква омега (Ω,U+03A9
), т. е. эти два символа должны быть неразличимы с точки зрения пользователя. Рекомендуется для обозначения ома использовать омегу.При вычислениях, особенно рукописных, следует обращать внимание на возможную путаницу между Ом и 0 м (так, Ом и 0 м (метров) — совершенно разные величины) и между 0 и Ω.
Единица названа в честь немецкого учёного Георга Симона Ома.
Кратные и дольные единицы
Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.
Кратные Дольные величина название обозначение величина название обозначение 101 Ом декаом даОм daΩ 10−1 Ом дециом дОм dΩ 102 Ом гектоом гОм hΩ 10−2 Ом сантиом сОм cΩ 103 Ом килоом кОм kΩ 10−3 Ом миллиом мОм mΩ 106 Ом мегаом МОм MΩ 10−6 Ом микроом мкОм µΩ 109 Ом гигаом ГОм GΩ 10−9 Ом наноом нОм nΩ 1012 Ом тераом ТОм TΩ 10−12 Ом пикоом пОм pΩ 1015 Ом петаом ПОм PΩ 10−15 Ом фемтоом фОм fΩ 1018 Ом эксаом ЭОм EΩ 10−18 Ом аттоом аОм aΩ 1021 Ом зеттаом ЗОм ZΩ 10−21 Ом зептоом зОм zΩ 1024 Ом йоттаом ИОм YΩ 10−24 Ом йоктоом иОм yΩ применять не рекомендуется не применяются или редко применяются на практике Ссылки
- ГОСТ 8.417-2002. ЕДИНИЦЫ ВЕЛИЧИН. Введён в действие с 1 сентября 2003 г.
Единицы СИ Основные: метр | килограмм | секунда | ампер | кельвин | кандела | моль Производные: радиан | стерадиан | герц | градус Цельсия | катал | ньютон | джоуль | ватт | паскаль | кулон | вольт | ом | сименс | фарад | вебер | тесла | генри | люмен | люкс | беккерель | грэй | зиверт
Wikimedia Foundation.
2010.
Синонимы:
Полезное
Смотреть что такое «Мегаом» в других словарях:
-
мегаом — сущ., кол во синонимов: 2 • единица (830) • мегом (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
-
мегаом — megaomas statusas T sritis Standartizacija ir metrologija apibrėžtis Kartotinis elektrinės varžos matavimo vienetas, lygus milijonui omų, t. y. 1 MΩ = 10⁶ Ω. atitikmenys: angl. megohm vok. Megaohm, n; Megohm, n rus. мегаом, m; мегом, m pranc.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
-
мегаом — megaomas statusas T sritis fizika atitikmenys: angl. mega ohm; megohm vok. Megaohm, n; Megohm, n rus. мегаом, m; мегом, m pranc. mégohm, m … Fizikos terminų žodynas
-
мегаом — а, ч. Одиниця електричного опору – 106 Ом (МОм) … Український тлумачний словник
-
Внутреннее сопротивление — Двухполюсник и его эквивалентная схема Внутреннее сопротивление двухполюсника импеданс в эквивалентной схеме двухполюсника, состоящей из последовател … Википедия
-
Омметр — (Ом + др. греч. μετρεω «измеряю») измерительный прибор непосредственного отсчёта для определения электрических активных (омических) сопротивлений. Обычно измерение производится по постоянному току, однако, в некоторых электронных омметрах… … Википедия
-
Дифференциальный усилитель — Схема дифференциального усилителя на базе электронного моста с n p n биполярными транзисторами Дифференциальный усилитель электронный усилитель с двумя входами, выходной сигнал которого равен разности входных напряжений, умноженной на… … Википедия
-
мегом — мом, мегаом Словарь русских синонимов. мегом сущ., кол во синонимов: 2 • мегаом (2) • мом (5) … Словарь синонимов
-
МЕГА — (Mega) приставка к названиям единиц, обозначающая в метрической системе увеличение в миллион раз, напр. 1 мегом (мегаом) = 106 ом. Обозначение: М или мег. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ… … Морской словарь
-
Ом — У этого термина существуют и другие значения, см. Ом (значения). Ом (обозначение: Ом, Ω) единица измерения электрического сопротивления в Международной системе единиц (СИ). Ом равен электрическому сопротивлению проводника, между концами которого… … Википедия
Random converter
Перевести единицы: мегаом [МОм] в миллиом [мОм]
1 мегаом [МОм] = 1000000000 миллиом [мОм]
Подробнее об электрическом сопротивлении
Нагретый до 800°C резистивный нагревательный элемент.
Введение
Определение
Закон Ома
Единицы измерения
Историческая справка
Физика явления в металлах и её применение
Физика явления в полупроводниках и её применение
Физика явления в газах и её применение
Физика явления в электролитах и её применение
Физика явления в диэлектриках и её применение
Резисторы: их назначение, применение и измерение
Цветовая маркировка резисторов
Измерение резисторов
Введение
Резисторы на этой плате из блока питания обведены красными прямоугольниками и составляют половину ее элементов
Термину сопротивление в некотором отношении повезло больше, чем другим физическим терминам: мы с раннего детства знакомимся с этим свойством окружающего мира, осваивая среду обитания, особенно когда тянемся к приглянувшейся игрушке в руках другого ребёнка, а он сопротивляется этому. Этот термин нам интуитивно понятен, поэтому в школьные годы во время уроков физики, знакомясь со свойствами электричества, термин электрическое сопротивление не вызывает у нас недоумения и его идея воспринимается достаточно легко.
Число производимых в мире технических реализаций электрического сопротивления — резисторов — не поддаётся исчислению. Достаточно сказать, что в наиболее распространённых современных электронных устройствах — мобильных телефонах, смартфонах, планшетах и компьютерах — число элементов может достигать сотен тысяч. По статистике резисторы составляют свыше 35% элементов электронных схем, а, учитывая масштабы производства подобных устройств в мире, мы получаем умопомрачительную цифру в десятки триллионов единиц. Наравне с другими пассивными радиоэлементами — конденсаторами и катушками индуктивности, резисторы лежат в основе современной цивилизации, являясь одним из китов, на которых покоится наш привычный мир.
Кабели должны обладать возможно меньшим электрическим сопротивлением
Определение
Электрическое сопротивление — это физическая величина, характеризующая некоторые электрические свойства материи препятствовать свободному, без потерь, прохождению электрического тока через неё. В терминах электротехники электрическое сопротивление есть характеристика электрической цепи в целом или её участка препятствовать протеканию тока и равная, при постоянном токе, отношению напряжения на концах цепи к силе тока, протекающего по ней.
Электрическое сопротивление связано с передачей или преобразованием электрической энергии в другие виды энергии. При необратимом преобразовании электрической энергии в тепловую, ведут речь об активном сопротивлении. При обратимом преобразовании электрической энергии в энергию магнитного или электрического поля, если в цепи течет переменный ток, говорят о реактивном сопротивлении. Если в цепи преобладает индуктивность, говорят об индуктивном сопротивлении, если ёмкость — о ёмкостном сопротивлении.
Полное сопротивление (активное и реактивное) для цепей переменного тока описывается понятиям импеданса, а для переменных электромагнитных полей — волновым сопротивлением. Сопротивлением иногда не совсем правильно называют его техническую реализацию — резистор, то есть радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.
Закон Ома
Сопротивление обозначается буквой R или r и считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как
Закон Ома
R = U/I
где
R — сопротивление, Ом;
U — разность электрических потенциалов (напряжение) на концах проводника, В;
I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.
Эта формула называется законом Ома, по имени немецкого физика, открывшего этот закон. Немаловажную роль в расчёте теплового эффекта активного сопротивления играет закон о выделяемой теплоте при прохождении электрического тока через сопротивление — закон Джоуля-Ленца:
Q = I2 · R · t
где
Q — количество выделенной теплоты за промежуток времени t, Дж;
I — сила тока, А;
R — сопротивление, Ом;
t — время протекания тока, сек.
Георг Симон Ом
Единицы измерения
Основной единицей измерения электрического сопротивления в системе СИ является Ом и его производные: килоом (кОм), мегаом (МОм). Соотношения единиц сопротивления системы СИ с единицами других систем вы можете найти в нашем конвертере единиц измерения.
Историческая справка
Первым исследователем явления электрического сопротивления, а, впоследствии, и автором знаменитого закона электрической цепи, названного затем его именем, стал выдающийся немецкий физик Георг Симон Ом. Опубликованный в 1827 году в одной из его работ, закон Ома сыграл определяющую роль в дальнейшем исследовании электрических явлений. К сожалению, современники не оценили его исследования, как и многие другие его работы в области физики, и, по распоряжению министра образования за опубликование результатов своих исследований в газетах он даже был уволен с должности преподавателя математики в Кёльне. И только в 1841 году, после присвоения ему Лондонским королевским обществом на заседании 30 ноября 1841 г. медали Копли, к нему наконец-то приходит признание. Учитывая заслуги Георга Ома, в 1881 г. на международном конгрессе электриков в Париже было решено назвать его именем теперь общепринятую единицу электрического сопротивления («один ом»).
Физика явления в металлах и её применение
По своим свойствам относительной величины сопротивления, все материалы подразделяются на проводники, полупроводники и изоляторы. Отдельным классом выступают материалы, имеющие нулевое или близкое к таковому сопротивление, так называемые сверхпроводники. Наиболее характерными представителями проводников являются металлы, хотя и у них сопротивление может меняться в широких пределах, в зависимости от свойств кристаллической решётки.
По современным представлениям, атомы металлов объединяются в кристаллическую решётку, при этом из валентных электронов атомов металла образуется так называемый «электронный газ».
Перегорание нити лампы накаливания в воздухе
Относительно малое сопротивление металлов связано именно с тем обстоятельством, что в них имеется большое количество носителей тока — электронов проводимости — принадлежащих всему ансамблю атомов данного образца металла. Возникающий при приложении внешнего электрического поля, ток в металле представляет собой упорядоченное движение электронов. Под действием поля электроны ускоряются и приобретают определённый импульс, а затем сталкиваются с ионами решётки. При таких столкновениях, электроны изменяют импульс, частично теряя энергию своего движения, которая преобразуется во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока. Необходимо заметить, что сопротивление образца металла или сплавов металлов данного состава зависит от его геометрии, и не зависит от направления приложенного внешнего электрического поля.
Дальнейшее приложение всё более сильного внешнего электрического поля приводит к нарастанию тока через металл и выделению всё большего количества тепла, которое, в конечном итоге, может привести к расплавлению образца. Это свойство применяется в проволочных предохранителях электрических цепей. Если температура превысила определенную норму, то проволока расплавляется, и прерывает электрическую цепь — по ней больше не может течь ток. Температурную норму обеспечивают, выбирая материал для проволоки по его температуре плавления. Прекрасный пример того, что происходит с предохранителями, даёт опыт съёмки перегорания нити накала в обычной лампе накаливания.
Наиболее типичным применением электрического сопротивления является применение его в качестве тепловыделяющего элемента. Мы пользуемся этим свойством при готовке и подогреве пищи на электроплитках, выпекании хлеба и тортов в электропечах, а также при работе с электрочайниками, кофеварками, стиральными машинами и электроутюгами. И совершенно не задумываемся, что своему комфорту в повседневной жизни мы опять же должны быть благодарны электрическому сопротивлению: включаем ли бойлер для душа, или электрический камин, или кондиционер в режим подогрева воздуха в помещении — во всех этих устройствах обязательно присутствует нагревательный элемент на основе электрического сопротивления.
В промышленном применении электрическое сопротивление обеспечивает приготовление пищевых полуфабрикатов (сушка), проведение химических реакций при оптимальной температуре для получения лекарственных форм и даже при изготовлении совершенно прозаических вещей, вроде полиэтиленовых пакетов различного назначения, а также при производстве изделий из пластмасс (процесс экструдирования).
Физика явления в полупроводниках и её применение
В полупроводниках, в отличие от металлов, кристаллическая структура образуется за счёт ковалентных связей между атомами полупроводника и поэтому, в отличие от металлов, в чистом виде они имеют значительно более высокое электрическое сопротивление. Причем, если говорят о полупроводниках, обычно упоминают не сопротивление, а собственную проводимость.
Микропроцессор и видеокарта
Привнесение в полупроводник примесей атомов с большим числом электронов на внешней оболочке, создаёт донорную проводимость n-типа. При этом «лишние» электроны становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление понижается. Аналогично привнесение в полупроводник примесей атомов с меньшим числом электронов на внешней оболочке, создаёт акцепторную проводимость р-типа. При этом «недостающие» электроны, называемые «дырками», становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление также понижается.
Наиболее интересен случай соединения областей полупроводника с различными типами проводимости, так называемый p-n переход. Такой переход обладает уникальным свойством анизотропии — его сопротивление зависит от направления приложенного внешнего электрического поля. При включении «запирающего» напряжения, пограничный слой p-n перехода обедняется носителями проводимости и его сопротивление резко возрастает. При подаче «открывающего» напряжения в пограничном слое происходит рекомбинация носителей проводимости в пограничном слое и сопротивление p-n перехода резко понижается.
На этом принципе построены важнейшие элементы электронной аппаратуры — выпрямительные диоды. К сожалению, при превышении определённого тока через p-n переход, происходит так называемый тепловой пробой, при котором как донорные, так и акцепторные примеси перемещаются через p-n переход, тем самым разрушая его, и прибор выходит из строя.
Главный вывод о сопротивлении p-n переходов заключается в том, что их сопротивление зависит от направления приложенного электрического поля и носит нелинейный характер, то есть не подчиняется закону Ома.
Несколько иной характер носят процессы, происходящие в МОП-транзисторах (Металл-Окисел-Полупроводник). В них сопротивлением канала исток-сток управляет электрическое поле соответствующей полярности для каналов p- и n-типов, создаваемое затвором. МОП-транзисторы почти исключительно используются в режиме ключа — «открыт-закрыт» — и составляют подавляющее число электронных компонентов современной цифровой техники.
Вне зависимости от исполнения, все транзисторы по своей физической сути представляют собой, в известных пределах, безынерционные управляемые электрические сопротивления.
В ксеноновой лампе-вспышке (обведена красной линией) вспышка происходит после ионизации газа в результате уменьшения его электрического сопротивления
Физика явления в газах и её применение
В обычном состоянии газы являются отличными диэлектриками, поскольку в них имеется очень малое число носителей заряда — положительных ионов и электронов. Это свойство газов используется в контактных выключателях, воздушных линиях электропередач и в воздушных конденсаторах, так как воздух представляет собой смесь газов и его электрическое сопротивление очень велико.
Так как газ имеет ионно-электронную проводимость, при приложении внешнего электрического поля сопротивление газов вначале медленно падает из-за ионизации всё большего числа молекул. При дальнейшем увеличении напряжения внешнего поля возникает тлеющий разряд и сопротивление переходит на более крутую зависимость от напряжения. Это свойство газов использовалась ранее в газонаполненных лампах — стабисторах — для стабилизации постоянного напряжения в широком диапазоне токов. При дальнейшем росте приложенного напряжения, разряд в газе переходит в коронный разряд с дальнейшим снижением сопротивления, а затем и в искровой — возникает маленькая молния, а сопротивление газа в канале молнии падает до минимума.
Основным компонентом радиометра-дозиметра Терра-П является счетчик Гейгера-Мюллера. Его работа основана на ударной ионизации находящегося в нем газа при попадании гамма-кванта, в результате которой резко снижается его сопротивление, что и регистрируется.
Свойство газов светиться при протекании через них тока в режиме тлеющего разряда используется для оформления неоновых реклам, индикации переменного поля и в натриевых лампах. То же свойство, только при свечении паров ртути в ультрафиолетовой части спектра, обеспечивает работу и энергосберегающих ламп. В них световой поток видимого спектра получается в результате преобразования ультрафиолетового излучения флуоресцентным люминофором, которым покрыты колбы ламп. Сопротивление газов точно так же, как и в полупроводниках, носит нелинейный характер зависимости от приложенного внешнего поля и так же не подчиняется закону Ома.
Физика явления в электролитах и её применение
Сопротивление проводящих жидкостей — электролитов — определяется наличием и концентрацией ионов различных знаков — атомов или молекул, потерявших или присоединивших электроны. Такие ионы при недостатке электронов называются катионами, при избытке электронов — анионами. При приложении внешнего электрического поля (помещении в электролит электродов с разностью потенциалов) катионы и анионы приходят в движение; физика процесса заключается в разрядке или зарядке ионов на соответствующем электроде. При этом на аноде анионы отдают излишние электроны, а на катоде катионы получают недостающие.
Гальваническое покрытие хромом пластмассовой душевой головки. На внутренней стороне, не покрытой хромом, виден тонкий красный слой меди.
Существенным отличием электролитов от металлов, полупроводников и газов является перемещение вещества в электролитах. Это свойство широко используется в современной технике и медицине — от очистки металлов от примесей (рафинирование) до внедрения лекарственных средств в больную область (электрофорез). Сверкающей сантехнике наших ванн и кухонь мы обязаны процессам гальваностегии – никелированию и хромированию. Излишне вспоминать, что качество покрытия достигается именно благодаря управлению сопротивлением раствора и его температурой, а также многими другими параметрами процесса осаждения металла.
Поскольку человеческое тело с точки зрения физики представляет собой электролит, применительно к вопросам безопасности существенную роль играет знание о сопротивлении тела человека протеканию электрического тока. Хотя типичное значение сопротивления кожи составляет около 50 кОм (слабый электролит), оно может варьироваться в зависимости от психоэмоционального состояния конкретного человека и условий окружающей среды, а также площади контакта кожи с проводником электрического тока. При стрессе и волнении или при нахождении в некомфортных условиях оно может значительно снижаться, поэтому для расчётов сопротивления человека в технике безопасности принято значение 1 кОм.
Любопытно, что на основе измерения сопротивления различных участков кожи человека, основан метод работы полиграфа — «детектора» лжи, который, наряду с оценкой многих физиологических параметров, определяет, в частности, отклонение сопротивления от текущих значений при задавании испытуемому «неудобных» вопросов. Правда этот метод ограниченно применим: он даёт неадекватные результаты при применении к людям с неустойчивой психикой, к специально обученным агентам или к людям с аномально высоким сопротивлением кожи.
В известных пределах к току в электролитах применим закон Ома, однако, при превышении внешнего прилагаемого электрического поля некоторых характерных для данного электролита значений, его сопротивление также носит нелинейный характер.
Физика явления в диэлектриках и её применение
Сопротивление диэлектриков весьма высоко, и это качество широко используется в физике и технике при применении их в качестве изоляторов. Идеальным диэлектриком является вакуум и, казалось бы, о каком сопротивлении в вакууме может идти речь? Однако, благодаря одной из работ Альберта Эйнштейна о работе выхода электронов из металлов, которая незаслуженно обойдена вниманием журналистов, в отличие от его статей по теории относительности, человечество получило доступ к технической реализации огромного класса электронных приборов, ознаменовавших зарю радиоэлектроники, и по сей день исправно служащих людям.
Магнетрон 2М219J, установленный в бытовой микроволновой печи
Согласно Эйнштейну, любой проводящий материал окружён облаком электронов, и эти электроны, при приложении внешнего электрического поля, образуют электронный луч. Вакуумные двухэлектродные приборы обладают различным сопротивлением при смене полярности приложенного напряжения. Раньше они использовались для выпрямления переменного тока. Трёх- и более электродные лампы использовались для усиления сигналов. Теперь они вытеснены более выгодными с энергетической точки зрения транзисторами.
Однако осталась область применения, где приборы на основе электронного луча совершенно незаменимы — это рентгеновские трубки, применяемые в радиолокационных станциях магнетроны и другие электровакуумные приборы. Инженеры и по сей день всматриваются в экраны осциллографов с электронно-лучевыми трубками, определяя характер происходящих физических процессов, доктора не могут обойтись без рентгеновских снимков, и все мы ежедневно пользуемся микроволновыми печами, в которых стоят СВЧ-излучатели — магнетроны.
Поскольку характер проводимости в вакууме носит только электронный характер, сопротивление большинства электровакуумных приборов подчиняется закону Ома.
Резисторы поверхностного монтажа
Резисторы: их назначение, применение и измерение
Переменный регулировочный резистор
Резистор (англ. resistor, от лат. resisto — сопротивляюсь) — элемент электрической цепи, предназначенный для использования его в качестве электрического сопротивления. Помимо этого, резисторы, являясь технической реализацией электрического сопротивления, также характеризуются паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.
Резистор — электронный прибор, необходимый во всех электронных схемах. По статистике, 35% любой радиосхемы составляют именно резисторы. Конечно, можно попытаться выдумать схему без резисторов, но это будут лишь игры разума. Практические электрические и электронные схемы без резисторов немыслимы. С точки зрения инженера-электрика любой прибор, обладающий сопротивлением, может называться резистором вне зависимости от его внутреннего устройства и способа изготовления. Ярким примером тому служит история с крушением дирижабля «Италия» полярного исследователя Нобиле. Радисту экспедиции удалось отремонтировать радиостанцию и подать сигнал бедствия, заменив сломанный резистор грифелем карандаша, что, в конечном итоге, и спасло экспедицию.
10-ваттный керамический резистор
Резисторы являются элементами электронной аппаратуры и могут применяться в качестве дискретных компонентов или составных частей интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду вольтамперной характеристики, по способу защиты и по способу монтажа, характеру изменения сопротивления, технологиям изготовления и рассеиваемой тепловой энергии. Обозначение резистора в схемах приведено на рисунке ниже:
Резисторы можно соединять последовательно и параллельно. При последовательном соединении резисторов общее сопротивление цепи равно сумме сопротивлений всех резисторов:
R = R1 + R2 + … + Rn
При параллельном соединении резисторов их общее сопротивление цепи равно
R = R1 · R2 · … · Rn/(R1 + R2 + … + Rn)
По назначению резисторы делятся на:
- резисторы общего назначения;
- резисторы специального назначения.
По характеру изменения сопротивления резисторы делятся на:
- постоянные резисторы;
- переменные регулировочные резисторы;
- переменные подстроечные резисторы.
Подстроечный резистор, предназначенный для установки на печатную плату
По способу монтажа:
- для печатного монтажа;
- для навесного монтажа;
- для микросхем и микромодулей.
По виду вольт-амперной характеристики:
- линейные резисторы — как правило, резисторы общего назначения, предназначенные для деления напряжения, ограничения тока и рассеивания мощности;
- варисторы — сопротивление зависит от приложенного напряжения и резко падает при достижения порога срабатывания, применяются для защиты аппаратуры от импульсных перенапряжений (помех) и быстрых переходных процессов (выбросов напряжения);
- терморезисторы — сопротивление зависит от температуры, различают терморезисторы с отрицательным (термисторы) и положительным (позисторы) температурным коэффициентом сопротивления (ТКС). На них основаны системы измерения и регулирования температуры, противопожарной безопасности и схемы температурной компенсации. В недавнем прошлом их широко использовали для измерения мощности в высокочастотной технике. Включая старый телевизор на электронно-лучевой трубке (кинескопе), за счёт позистора с петлёй размагничивания мы получаем затухающее по амплитуде переменное магнитное поле, и поэтому на кинескопе нет искажений цвета из-за случайного намагничивания;
- фоторезисторы — сопротивление зависит от освещённости, применяются как световые датчики в устройствах слежения и автоматики, а также в бытовых фотореле, в охранных системах; мы пользуемся ими, не замечая этого, проходя через турникет метрополитена и входные автоматические двери;
- магниторезисторы — сопротивление зависит от величины магнитного поля, применяются для измерения магнитной индукции, мощности, в качестве чувствительных элементов бесконтактных переключателей, датчиков линейных перемещений, датчиков Холла и бесконтактных потенциометров.
0,5-ваттные резисторы на ленте
Цветовая маркировка резисторов
В зависимости от габаритов и назначения резисторов, для обозначения их номиналов применяются цифро-символьная маркировка или маркировка цветными полосками для резисторов навесного или печатного монтажа. Символ в маркировке может играть роль запятой в обозначении номинала: для обозначения Ом применяются символы R и E, для килоом — символ К, для мегаом — символ М. Например: 3R3 означает номинал в 3,3 Ом, 33Е = 33 Ом, 4К7 = 4,7 кОм, М56 = 560 кОм, 1М0 = 1,0 Мом.
Цветовая маркировка резисторов
Измерение сопротивления резистора с помощью мультиметра
Для малогабаритных резисторов навесного монтажа и печатного применяется маркировка цветными полосками по имеющимся таблицам. Чтобы не рыться в справочниках, в Интернете можно найти множество различных программ для определения номинала резистора.
Резисторы для поверхностного монтажа (SMD) маркируются тремя или четырьмя цифрами или тремя символами, в последнем случае номинал тоже определяется по таблице или по специальным программам.
Измерение резисторов
Наиболее универсальным и практичным методом определения номинала резистора и его исправности является непосредственное измерение его сопротивления измерительным прибором. Однако при измерении непосредственно в схеме следует помнить, что ее питание должно быть отключено и что измерение будет неточным.
Литература
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
Электротехника
Электротехника — область технических наук, изучающая получение, распределение, преобразование и использование электрической энергии. Электротехника включает в себя такие области техники как электроэнергетику, электронику, системы управления, обработку сигналов и связь.
Конвертер электрического сопротивления
Электрическое сопротивление физическая величина, характеризующая свойство проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе протекающего через него тока.
В Международной системе единиц (СИ) сопротивление измеряется в Омах (Ом). Ом (обозначение: Ом, Ω) — единица измерения электрического сопротивления в СИ. Ом равен электрическому сопротивлению проводника, между концами которого возникает напряжение 1 вольт при силе постоянного тока 1 ампер.
Использование конвертера «Конвертер электрического сопротивления»
На этих страницах размещены конвертеры единиц измерения, позволяющие быстро и точно перевести значения из одних единиц в другие, а также из одной системы единиц в другую. Конвертеры пригодятся инженерам, переводчикам и всем, кто работает с разными единицами измерения.
Пользуйтесь конвертером для преобразования нескольких сотен единиц в 76 категориях или несколько тысяч пар единиц, включая метрические, британские и американские единицы. Вы сможете перевести единицы измерения длины, площади, объема, ускорения, силы, массы, потока, плотности, удельного объема, мощности, давления, напряжения, температуры, времени, момента, скорости, вязкости, электромагнитные и другие.
Примечание. В связи с ограниченной точностью преобразования возможны ошибки округления. В этом конвертере целые числа считаются точными до 15 знаков, а максимальное количество цифр после десятичной запятой или точки равно 10.
Для представления очень больших и очень малых чисел в этом калькуляторе используется компьютерная экспоненциальная запись, являющаяся альтернативной формой нормализованной экспоненциальной (научной) записи, в которой числа записываются в форме a · 10x. Например: 1 103 000 = 1,103 · 106 = 1,103E+6. Здесь E (сокращение от exponent) — означает «· 10^», то есть «…умножить на десять в степени…». Компьютерная экспоненциальная запись широко используется в научных, математических и инженерных расчетах.
- Выберите единицу, с которой выполняется преобразование, из левого списка единиц измерения.
- Выберите единицу, в которую выполняется преобразование, из правого списка единиц измерения.
- Введите число (например, «15») в поле «Исходная величина».
- Результат сразу появится в поле «Результат» и в поле «Преобразованная величина».
- Можно также ввести число в правое поле «Преобразованная величина» и считать результат преобразования в полях «Исходная величина» и «Результат».
Мы работаем над обеспечением точности конвертеров и калькуляторов TranslatorsCafe.com, однако мы не можем гарантировать, что они не содержат ошибок и неточностей. Вся информация предоставляется «как есть», без каких-либо гарантий. Условия.
Если вы заметили неточность в расчётах или ошибку в тексте, или вам необходим другой конвертер для перевода из одной единицы измерения в другую, которого нет на нашем сайте — напишите нам!
Канал Конвертера единиц TranslatorsCafe.com на YouTube
Компания СИМАС
Москва, Варшавское шоссе
д.125 стр.1
+7 (495) 980 — 29 — 37,
+7 (916) 942 — 65 — 95
info@simas.ru
Принятые единицы измерения и сокращения
ПРИНЯТЫЕ СОКРАЩЕНИЯ И ЕДИНИЦЫ ИЗМЕРЕНИЯ
Единицы измерения электротехнических величин
Величина |
Наименование единицы |
Обозначение |
Напряжение |
Вольт, киловольт |
В, кВ |
Сила тока |
Ампер, килоампер |
А, кА |
Сопротивление |
Ом, килом, мегаом |
Ом, кОм, МОм |
Частота переменного тока |
Герц, килогерц |
Гц, кГц |
Активная мощность |
Ватт, киловатт, мегаватт, киловатт-ампер |
Вт, кВт, МВт,кВА |
Работа, энергия |
Джоуль, ватт-час, киловатт-час, мегаватт-час |
Дж, Вт·ч, кВт·ч, МВт·ч |
Электрический разряд |
Кулон, ампер-час |
Кл, А·ч |
Единицы измерения механических величин
Величина |
Наименование единицы |
Обозначение |
Сила, сила тяжести (вес) |
Ньютон, килоньютон, тонна-сила, килограмм-сила |
Н, Кн, тс, кгс |
Поверхностное натяжение |
Ньютон на метр |
Н/м |
Момент силы |
Ньютон-метр |
Н·м |
Плотность |
Килограмм на кубический метр |
кг/м³ |
Удельный объем |
Кубический метр на килограмм |
м³/кг |
Кинематическая вязкость |
Квадратный метр на секунду, стокс, сантистокс |
м²/с, Ст, сСт |
Динамическая вязкость |
Паскаль-секунда |
Па·с |
Единицы измерения термических и термодинамических величин
Величина |
Наименование единицы |
Обозначение |
Температура Цельсия |
Градус Цельсия |
ºС |
Давление |
Паскаль, килопаскаль, мегапаскаль, атмосфера, бар |
Па, кПа, МПа, атм, бар |
Теплота, количество теплоты |
Джоуль |
Дж |
Теплопроводность |
Ватт на метр-кельвин |
Вт/(м·К) |
Поверхностная плотность теплового потока |
Ватт на квадратный метр |
Вт/м² |
Коэффициент теплообмена (теплопередачи) |
Ватт на квадратный метр-кельвин |
Вт(м²·К) |
Удельная теплоемкость |
Джоуль на килограмм-кельвин |
Дж/(кг·К) |
Толковый словарь русского языка. Поиск по слову, типу, синониму, антониму и описанию. Словарь ударений.
мегом
ТОЛКОВЫЙ СЛОВАРЬ УШАКОВА
МЕГО́М, мегома, муж. (от греч. megas — большой и слова ом) (физ., тех.). Единица электрического сопротивления, равная одному миллиону омов.
СЛИТНО. РАЗДЕЛЬНО. ЧЕРЕЗ ДЕФИС
мего/м, -а, род. мн. мего/м и мего/мов
ОРФОГРАФИЧЕСКИЙ СЛОВАРЬ
мего́м, -а, род. п. мн. ч. -ов, счетн. ф. мего́м
СЛОВАРЬ УДАРЕНИЙ
мего́м, -а; р. мн. -ов, счётн. ф. -о́м
ФОРМЫ СЛОВ
мего́м, мего́мы, мего́ма, мего́мов, мего́му, мего́мам, мего́мом, мего́мами, мего́ме, мего́мах
СИНОНИМЫ
сущ., кол-во синонимов: 2
МОРФЕМНО-ОРФОГРАФИЧЕСКИЙ СЛОВАРЬ
ГРАММАТИЧЕСКИЙ СЛОВАРЬ
мего́м м 1a[②] (физ. единица)
БОЛЬШОЙ СЛОВАРЬ ИНОСТРАННЫХ СЛОВ
мегом
— мегома, м. [от греч. megas — большой и слова ом] (физ., тех.). Единица электрического сопротивления, равная одному миллиону омов.
СКАНВОРДЫ
— Единица электрического сопротивления, равная одному миллиону омов.
ПОЛЕЗНЫЕ СЕРВИСЫ
мегометр
СИНОНИМЫ
сущ., кол-во синонимов: 3
ПОЛЕЗНЫЕ СЕРВИСЫ
мегомит
СИНОНИМЫ
сущ., кол-во синонимов: 1
ПОЛЕЗНЫЕ СЕРВИСЫ
мегомметр
ЭНЦИКЛОПЕДИЧЕСКИЙ СЛОВАРЬ
Мегомме́тр — омметр для непосредственного измерения очень больших электрических сопротивлений (свыше 105 Ом), например изоляции обмоток трансформаторов, электрических машин.
* * *
МЕГОММЕТР — МЕГОММЕ́ТР, омметр для непосредственного измерения очень больших электрических сопротивлений (св. 105 Ом), напр. изоляции обмоток трансформаторов, электрических машин.
БОЛЬШОЙ ЭНЦИКЛОПЕДИЧЕСКИЙ СЛОВАРЬ
МЕГОММЕТР — омметр для непосредственного измерения очень больших электрических сопротивлений (св. 105 Ом), напр. изоляции обмоток трансформаторов, электрических машин.
СЛИТНО. РАЗДЕЛЬНО. ЧЕРЕЗ ДЕФИС
ОРФОГРАФИЧЕСКИЙ СЛОВАРЬ
СЛОВАРЬ УДАРЕНИЙ
СИНОНИМЫ
сущ., кол-во синонимов: 4
МОРФЕМНО-ОРФОГРАФИЧЕСКИЙ СЛОВАРЬ
НОВЫЙ СЛОВАРЬ ИНОСТРАННЫХ СЛОВ
мего́мметр
(см. мега… + ом + …метр) прибор для измерения больших электрических сопротивлений (от 0,1 до 1000 мом), гл. обр. сопротивлений электрической изоляции кабелей, трансформаторов, электрических машин и др.
СКАНВОРДЫ
— Прибор для непосредственного измерения очень больших электрических сопротивлений.
ПОЛЕЗНЫЕ СЕРВИСЫ
Full name: megaohm
Plural form: megaohms
Symbol: MΩ
Alternate spelling: megohms
Category type: electric resistance
Scale factor: 1000000
SI unit: ohm
The SI derived unit for electric resistance is the ohm.
1 ohm is equal to 1.0E-6 megaohm.
Valid units must be of the electric resistance type.
You can use this form to select from known units:
Definition: Megaohm
The SI prefix «mega» represents a factor of
106, or in exponential notation, 1E6.
So 1 megaohm = 106 ohms.
The definition of a ohm is as follows:
The ohm (symbol: Ω) is the SI unit of electrical impedance or, in the direct current case, electrical resistance, named after Georg Ohm. It is defined as the resistance between two points of a conductor when a constant potential difference of 1 volt, applied to these points, produces in the conductor a current of 1 ampere, the conductor not being the seat of any electromotive force.
Sample conversions: megaohm
megaohm to microohm
megaohm to ohm
megaohm to teraohm
megaohm to nanoohm
megaohm to gigaohm
megaohm to volt/ampere
megaohm to statohm
megaohm to milliohm
megaohm to abohm
Full name: megaohm
Plural form: megaohms
Symbol: MΩ
Alternate spelling: megohms
Category type: electric resistance
Scale factor: 1000000
SI unit: ohm
The SI derived unit for electric resistance is the ohm.
1 ohm is equal to 1.0E-6 megaohm.
Valid units must be of the electric resistance type.
You can use this form to select from known units:
Definition: Megaohm
The SI prefix «mega» represents a factor of
106, or in exponential notation, 1E6.
So 1 megaohm = 106 ohms.
The definition of a ohm is as follows:
The ohm (symbol: Ω) is the SI unit of electrical impedance or, in the direct current case, electrical resistance, named after Georg Ohm. It is defined as the resistance between two points of a conductor when a constant potential difference of 1 volt, applied to these points, produces in the conductor a current of 1 ampere, the conductor not being the seat of any electromotive force.
Sample conversions: megaohm
megaohm to microohm
megaohm to kiloohm
megaohm to gigaohm
megaohm to ohm
megaohm to milliohm
megaohm to statohm
megaohm to volt/ampere
megaohm to picoohm
megaohm to teraohm