Конечноэлементный как пишется

конечно-элементный

конечно-элементный

конечно-элементный

Слитно или раздельно? Орфографический словарь-справочник. — М.: Русский язык.
.
1998.

Смотреть что такое «конечно-элементный» в других словарях:

  • ANSYS — Тип конечно элементный пакет Разработчик ANSYS, Inc. Операционная система Cross platform Последняя версия 14.5 (2012) Лицензия Проприетарное программное обеспечение EULA Сайт …   Википедия

  • Метод конечных элементов — Решение методом конечных элементов двухмерной магнитостатической задачи (линии и цвет означают направление и величину магнитной индукции) …   Википедия

  • T-FLEX CAD — Тип САПР Разработчик Топ Системы …   Википедия

  • T-Flex — «T FLEX CAD» система автоматизированного проектирования, разработанная компанией «Топ Системы» с возможностями параметрического моделирования и наличием средств оформления конструкторской документации согласно стандартам серии ЕСКД. «T FLEX CAD»… …   Википедия

  • T-FLEX CAD 2D — «T FLEX CAD» система автоматизированного проектирования, разработанная компанией «Топ Системы» с возможностями параметрического моделирования и наличием средств оформления конструкторской документации согласно стандартам серии ЕСКД. «T FLEX CAD»… …   Википедия

  • Эндопротезирование суставов — Эндопротезирование суставов  медицинская манипуляция при которой производится замена сустава его искусственным аналогом Содержание 1 Эндопротезирование суставов …   Википедия

  • КЭ — кислый эфир метилфосфоновой кислоты КЭ клещевой энцефалит Словари: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. 318 с., С. Фадеев. Словарь сокращений… …   Словарь сокращений и аббревиатур

  • Нефть — У этого термина существуют и другие значения, см. Нефть (значения). Нефть ? Основной состав Сn …   Википедия

  • АЛГЕБРАИЧЕСКИХ СИСТЕМ МНОГООБРАЗИЕ — алгебраических систем класс фиксированной сигнатуры и, аксиоматизируемый при помощи тождеств, т. е. формул вида где к. л. предикатный символ из или знак равенства, а термы сигнатуры Q от предметных переменных А. с. м. наз. иначе э к,… …   Математическая энциклопедия

  • Масс-спектрометрия — (масс спектроскопия, масс спектрография, масс спектральный анализ, масс спектрометрический анализ)  метод исследования вещества путём определения отношения …   Википедия

Смотреть что такое КОНЕЧНОЭЛЕМЕНТНЫЙ в других словарях:

КОНЕЧНОЭЛЕМЕНТНЫЙ

finite-element

КОНЕЧНОЭЛЕМЕНТНЫЙ

канечна-элементны

КОНЕЧНОЭЛЕМЕНТНЫЙ

канечна-элементны

КОНЕЧНОЭЛЕМЕНТНЫЙ АНАЛИЗ

англ.
(finite elements analysis) FEA

КОНЕЧНОЭЛЕМЕНТНЫЙ АНАЛИЗ

finite element analysis

КОНЕЧНОЭЛЕМЕНТНЫЙ АНАЛИЗ УСТАЛОСТИ

FE fatigue analysis

КОНЕЧНОЭЛЕМЕНТНЫЙ АНАЛОГ

finite-element analog

КОНЕЧНОЭЛЕМЕНТНЫЙ ИНСТРУМЕНТАРИЙ СОПРЯЖЕНИЯ

finite element mesh tools

DicipediA. Иностранные языки для всех. Перевод онлайн. Словари онлайн. На главную страницу

КОНЕЧНО-ЭЛЕМЕНТНЫЙ, КОНЕЧНО-ЭЛЕМЕНТНЫЙ правописание, КОНЕЧНО-ЭЛЕМЕНТНЫЙ орфография, как пишется КОНЕЧНО-ЭЛЕМЕНТНЫЙ, как писать КОНЕЧНО-ЭЛЕМЕНТНЫЙ, КОНЕЧНО-ЭЛЕМЕНТНЫЙ как правильно писать, Орфографический словарь

Печать страницы

Орфографический словарь

Что такое КОНЕЧНО-ЭЛЕМЕНТНЫЙ, КОНЕЧНО-ЭЛЕМЕНТНЫЙ это, значение слова КОНЕЧНО-ЭЛЕМЕНТНЫЙ, происхождение (этимология) КОНЕЧНО-ЭЛЕМЕНТНЫЙ, синонимы к КОНЕЧНО-ЭЛЕМЕНТНЫЙ, парадигма (формы слова) КОНЕЧНО-ЭЛЕМЕНТНЫЙ в других словарях

Русский язык — словари

Русский язык ►

Словари других языков

Quotes of the Day
Цитаты дня на английском языке

«When you doubt, abstain.»

Ambrose Bierce

«The more refined and subtle our minds, the more vulnerable they are.»

Paul Tournier

«Everything has been figured out, except how to live.»

Jean-Paul Sartre

«The whole secret of life is to be interested in one thing profoundly and in a thousand things well.»

Horace Walpole

Сайт предназначен для лиц старше 18 лет

Разбор частей речи

Далее давайте разберем морфологические признаки каждой из частей речи русского языка на примерах. Согласно лингвистике русского языка, выделяют три группы из 10 частей речи, по общим признакам:

1. Самостоятельные части речи:

  • существительные (см. морфологические нормы сущ. );
  • глаголы:
    • причастия;
    • деепричастия;
  • прилагательные;
  • числительные;
  • местоимения;
  • наречия;

2. Служебные части речи:

  • предлоги;
  • союзы;
  • частицы;

3. Междометия.

Ни в одну из классификаций (по морфологической системе) русского языка не попадают:

  • слова да и нет, в случае, если они выступают в роли самостоятельного предложения.
  • вводные слова: итак, кстати, итого, в качестве отдельного предложения, а так же ряд других слов.

Морфологический разбор существительного

План морфологического разбора существительного

Пример:

«Малыш пьет молоко.»

Малыш (отвечает на вопрос кто?) – имя существительное;

  • начальная форма – малыш;
  • постоянные морфологические признаки: одушевленное, нарицательное, конкретное, мужского рода, I -го склонения;
  • непостоянные морфологические признаки: именительный падеж, единственное число;
  • при синтаксическом разборе предложения выполняет роль подлежащего.

Морфологический разбор слова «молоко» (отвечает на вопрос кого? Что?).

  • начальная форма – молоко;
  • постоянная морфологическая характеристика слова: среднего рода, неодушевленное, вещественное, нарицательное, II -е склонение;
  • изменяемые признаки морфологические: винительный падеж, единственное число;
  • в предложении прямое дополнение.

Приводим ещё один образец, как сделать морфологический разбор существительного, на основе литературного источника:

«Две дамы подбежали к Лужину и помогли ему встать. Он ладонью стал сбивать пыль с пальто. (пример из: «Защита Лужина», Владимир Набоков).»

Дамы (кто?) — имя существительное;

  • начальная форма — дама;
  • постоянные морфологические признаки: нарицательное, одушевленное, конкретное, женского рода, I склонения;
  • непостоянная морфологическая характеристика существительного: единственное число, родительный падеж;
  • синтаксическая роль: часть подлежащего.

Лужину (кому?) — имя существительное;

  • начальная форма — Лужин;
  • верная морфологическая характеристика слова: имя собственное, одушевленное, конкретное, мужского рода, смешанного склонения;
  • непостоянные морфологические признаки существительного: единственное число, дательного падежа;
  • синтаксическая роль: дополнение.

Ладонью (чем?) — имя существительное;

  • начальная форма — ладонь;
  • постоянные морфологические признаки: женского рода, неодушевлённое, нарицательное, конкретное, I склонения;
  • непостоянные морфо. признаки: единственного числа, творительного падежа;
  • синтаксическая роль в контексте: дополнение.

Пыль (что?) — имя существительное;

  • начальная форма — пыль;
  • основные морфологические признаки: нарицательное, вещественное, женского рода, единственного числа, одушевленное не охарактеризовано, III склонения (существительное с нулевым окончанием);
  • непостоянная морфологическая характеристика слова: винительный падеж;
  • синтаксическая роль: дополнение.

(с) Пальто (С чего?) — существительное;

  • начальная форма — пальто;
  • постоянная правильная морфологическая характеристика слова: неодушевленное, нарицательное, конкретное, среднего рода, несклоняемое;
  • морфологические признаки непостоянные: число по контексту невозможно определить, родительного падежа;
  • синтаксическая роль как члена предложения: дополнение.

Морфологический разбор прилагательного

Имя прилагательное — это знаменательная часть речи. Отвечает на вопросы Какой? Какое? Какая? Какие? и характеризует признаки или качества предмета. Таблица морфологических признаков имени прилагательного:

  • начальная форма в именительном падеже, единственного числа, мужского рода;
  • постоянные морфологические признаки прилагательных:
    • разряд, согласно значению:
      • — качественное (теплый, молчаливый);
      • — относительное (вчерашний, читальный);
      • — притяжательное (заячий, мамин);
    • степень сравнения (для качественных, у которых этот признак постоянный);
    • полная / краткая форма (для качественных, у которых этот признак постоянный);
  • непостоянные морфологические признаки прилагательного:
    • качественные прилагательные изменяются по степени сравнения (в сравнительных степенях простая форма, в превосходных — сложная): красивый-красивее-самый красивый;
    • полная или краткая форма (только качественные прилагательные);
    • признак рода (только в единственном числе);
    • число (согласуется с существительным);
    • падеж (согласуется с существительным);
  • синтаксическая роль в предложении: имя прилагательное бывает определением или частью составного именного сказуемого.

План морфологического разбора прилагательного

Пример предложения:

Полная луна взошла над городом.

Полная (какая?) – имя прилагательное;

  • начальная форма – полный;
  • постоянные морфологические признаки имени прилагательного: качественное, полная форма;
  • непостоянная морфологическая характеристика: в положительной (нулевой) степени сравнения, женский род (согласуется с существительным), именительный падеж;
  • по синтаксическому анализу — второстепенный член предложения, выполняет роль определения.

Вот еще целый литературный отрывок и морфологический разбор имени прилагательного, на примерах:

Девушка была прекрасна: стройная, тоненькая, глаза голубые, как два изумительных сапфира, так и заглядывали к вам в душу.

Прекрасна (какова?) — имя прилагательное;

  • начальная форма — прекрасен (в данном значении);
  • постоянные морфологические нормы: качественное, краткое;
  • непостоянные признаки: положительная степень сравнения, единственного числа, женского рода;
  • синтаксическая роль: часть сказуемого.

Стройная (какая?) — имя прилагательное;

  • начальная форма — стройный;
  • постоянные морфологические признаки: качественное, полное;
  • непостоянная морфологическая характеристика слова: полное, положительная степень сравнения, единственное число, женский род, именительный падеж;
  • синтаксическая роль в предложении: часть сказуемого.

Тоненькая (какая?) — имя прилагательное;

  • начальная форма — тоненький;
  • морфологические постоянные признаки: качественное, полное;
  • непостоянная морфологическая характеристика прилагательного: положительная степень сравнения, единственное число, женского рода, именительного падежа;
  • синтаксическая роль: часть сказуемого.

Голубые (какие?) — имя прилагательное;

  • начальная форма — голубой;
  • таблица постоянных морфологических признаков имени прилагательного: качественное;
  • непостоянные морфологические характеристики: полное, положительная степень сравнения, множественное число, именительного падежа;
  • синтаксическая роль: определение.

Изумительных (каких?) — имя прилагательное;

  • начальная форма — изумительный;
  • постоянные признаки по морфологии: относительное, выразительное;
  • непостоянные морфологические признаки: множественное число, родительного падежа;
  • синтаксическая роль в предложении: часть обстоятельства.

Морфологические признаки глагола

Согласно морфологии русского языка, глагол — это самостоятельная часть речи. Он может обозначать действие (гулять), свойство (хромать), отношение (равняться), состояние (радоваться), признак (белеться, красоваться) предмета. Глаголы отвечают на вопрос что делать? что сделать? что делает? что делал? или что будет делать? Разным группам глагольных словоформ присущи неоднородные морфологические характеристики и грамматические признаки.

Морфологические формы глаголов:

  • начальная форма глагола — инфинитив. Ее так же называют неопределенная или неизменяемая форма глагола. Непостоянные морфологические признаки отсутствуют;
  • спрягаемые (личные и безличные) формы;
  • неспрягаемые формы: причастные и деепричастные.

Морфологический разбор глагола

  • начальная форма — инфинитив;
  • постоянные морфологические признаки глагола:
    • переходность:
      • переходный (употребляется с существительными винительного падежа без предлога);
      • непереходный (не употребляется с существительным в винительном падеже без предлога);
    • возвратность:
      • возвратные (есть -ся, -сь);
      • невозвратные (нет -ся, -сь);
    • вид:
      • несовершенный (что делать?);
      • совершенный (что сделать?);
    • спряжение:
      • I спряжение (дела-ешь, дела-ет, дела-ем, дела-ете, дела-ют/ут);
      • II спряжение (сто-ишь, сто-ит, сто-им, сто-ите, сто-ят/ат);
      • разноспрягаемые глаголы (хотеть, бежать);
  • непостоянные морфологические признаки глагола:
    • наклонение:
      • изъявительное: что делал? что сделал? что делает? что сделает?;
      • условное: что делал бы? что сделал бы?;
      • повелительное: делай!;
    • время (в изъявительном наклонении: прошедшее/настоящее/будущее);
    • лицо (в настоящем/будущем времени, изъявительного и повелительного наклонения: 1 лицо: я/мы, 2 лицо: ты/вы, 3 лицо: он/они);
    • род (в прошедшем времени, единственного числа, изъявительного и условного наклонения);
    • число;
  • синтаксическая роль в предложении. Инфинитив может быть любым членом предложения:
    • сказуемым: Быть сегодня празднику;
    • подлежащим :Учиться всегда пригодится;
    • дополнением: Все гости просили ее станцевать;
    • определением: У него возникло непреодолимое желание поесть;
    • обстоятельством: Я вышел пройтись.

Морфологический разбор глагола пример

Чтобы понять схему, проведем письменный разбор морфологии глагола на примере предложения:

Вороне как-то Бог послал кусочек сыру… (басня, И. Крылов)

Послал (что сделал?) — часть речи глагол;

  • начальная форма — послать;
  • постоянные морфологические признаки: совершенный вид, переходный, 1-е спряжение;
  • непостоянная морфологическая характеристика глагола: изъявительное наклонение, прошедшего времени, мужского рода, единственного числа;
  • синтаксическая роль в предложении: сказуемое.

Следующий онлайн образец морфологического разбора глагола в предложении:

Какая тишина, прислушайтесь.

Прислушайтесь (что сделайте?) — глагол;

  • начальная форма — прислушаться;
  • морфологические постоянные признаки: совершенный вид, непереходный, возвратный, 1-го спряжения;
  • непостоянная морфологическая характеристика слова: повелительное наклонение, множественное число, 2-е лицо;
  • синтаксическая роль в предложении: сказуемое.

План морфологического разбора глагола онлайн бесплатно, на основе примера из целого абзаца:

— Его нужно предостеречь.

— Не надо, пусть знает в другой раз, как нарушать правила.

— Что за правила?

— Подождите, потом скажу. Вошел! («Золотой телёнок», И. Ильф)

Предостеречь (что сделать?) — глагол;

  • начальная форма — предостеречь;
  • морфологические признаки глагола постоянные: совершенный вид, переходный, невозвратный, 1-го спряжения;
  • непостоянная морфология части речи: инфинитив;
  • синтаксическая функция в предложении: составная часть сказуемого.

Пусть знает (что делает?) — часть речи глагол;

  • начальная форма — знать;
  • постоянные морфологические признаки: несовершенный вид, невозвратный, переходный, 1-го спряжения;
  • непостоянная морфология глагола: повелительное наклонение, единственного числа, 3-е лицо;
  • синтаксическая роль в предложении: сказуемое.

Нарушать (что делать?) — слово глагол;

  • начальная форма — нарушать;
  • постоянные морфологические признаки: несовершенный вид, невозвратный, переходный, 1-го спряжения;
  • непостоянные признаки глагола: инфинитив (начальная форма);
  • синтаксическая роль в контексте: часть сказуемого.

Подождите (что сделайте?) — часть речи глагол;

  • начальная форма — подождать;
  • постоянные морфологические признаки: совершенный вид, невозвратный, переходный, 1-го спряжения;
  • непостоянная морфологическая характеристика глагола: повелительное наклонение, множественного числа, 2-го лица;
  • синтаксическая роль в предложении: сказуемое.

Вошел (что сделал?) — глагол;

  • начальная форма — войти;
  • постоянные морфологические признаки: совершенный вид, невозвратный, непереходный, 1-го спряжения;
  • непостоянная морфологическая характеристика глагола: прошедшее время, изъявительное наклонение, единственного числа, мужского рода;
  • синтаксическая роль в предложении: сказуемое.

Results of morphology analysis

конечноэлементный (57) | Adjective, short, comparative

 Мужской род  Женский род  Средний род  Множественное число
 Именительный конечноэлементный конечноэлементная конечноэлементное конечноэлементные
 Родительный конечноэлементного конечноэлементной конечноэлементного конечноэлементных
 Дательный конечноэлементному конечноэлементной конечноэлементному конечноэлементным
 Винительный конечноэлементного, конечноэлементный конечноэлементную конечноэлементное конечноэлементных, конечноэлементные
 Творительный конечноэлементным конечноэлементной,
 конечноэлементною
конечноэлементным конечноэлементными
 Предложный конечноэлементном конечноэлементной конечноэлементном конечноэлементных
 Краткая форма конечноэлементен конечноэлементна конечноэлементно конечноэлементны
 Сравнительная форма конечноэлементнее,
 конечноэлементней

Энциклопедии, словари, справочники — онлайн

Поиск в словарях

Введите слово для поиска:

Выбор словаря:

Англо-русский Русско-английский научно-технический словарь — конечноэлементный

Связанные словари

Перевод с английского языка конечноэлементный на русский

конечноэлементный

finite-element

Вопрос-ответ:

Похожие слова

Ссылка для сайта или блога:

Ссылка для форума (bb-код):

Самые популярные термины

Джордж Лайрд, Ph.D., PE

Инженер-механик на PredictiveEngineer.com,
e-mail для связи:
FEA@PredictiveEngineering.com.
Отправляйте свои комментарии к статье по адресу: DE-Editors@deskeng.com.

Мало кто проводит аналитическую работу просто из любопытства или от избытка свободного времени. Как правило, мы занимаемся ею тогда, когда не уверены в надежности конструкции в плане безопасности и окупаемости. В зависимости от типа риска наши опасения могут быть довольно слабыми, но, учитывая, как требовательны сегодня производители и насколько потребители склонны к судебным тяжбам, в случае неудачи вы можете оказаться в эпицентре серьезного разбирательства.

Если вы уже проводили анализ, вам должны быть знакомы понятия, используемые при анализе статического напряжения; задав нагрузку и граничные условия, вы сразу можете определить, удачна ли модель, по тому, что она окрашена в мягкие тона серого и голубого, без малейшего вкрапления красного. Однако подсознательно вас тревожит воздействие большого вибромотора или заводского оборудования, непрерывно работающего с частотой 12,5 Гц. Или вам необходимо прикрепить короб с электроникой к стене здания, расположенного в сейсмоактивной зоне, а ваш босс ставит под сомнение предложенный вами вариант конструкции монтажных кронштейнов. Как бы то ни было, мир статики вам подвластен. А как насчет всего остального?

В данном цикле статей мы вкратце рассмотрим основы динамического анализа и увидим, что они легко могут быть применены вами для проверки вашей конструкции на прочность и надежность при воздействии динамических нагрузок, будь то вибрация, землетрясение или даже запуск ракеты.

Будем проще

Анализ статического напряжения — сущий пустяк для большинства специалистов, занимающихся аналитической работой. Эта процедура воспринимается как крайне понятная и простая: мы прикладываем фиксированную нагрузку и наблюдаем проистекающее статическое поведение (как правило, линейное при заданном линейном поведении материалов). В результате мы получаем несколько аккуратных прогибов и деформаций, которые благополучно соответствуют нашим ожиданиям относительно поведения конструкции. И хотя в ходе процесса могут возникнуть небольшие несоответствия, полученный конечный результат, как правило, представляется нашим техническим умам вполне логичным.

Динамическое поведение структуры также можно рассматривать в подобном ключе, достаточно только взглянуть на ситуацию под немного другим углом и подумать о том, как будет деформироваться наша структура в ходе динамического воздействия. Когда структура подвергается удару или некой меняющейся во времени нагрузке (переменной или стабильной), она реагирует на подобное воздействие весьма характерным образом. Если нагрузка не чрезмерна и структура под ее воздействием не разрушается и не подвергается пластической деформации, то динамическая реакция вашей структуры, скорее всего, будет линейной. То есть если нагрузку убрать и дать структуре вернуться в состояние покоя, то она вернется в исходное, недеформированное состояние. Тот же принцип следует использовать при анализе линейного статического напряжения: когда нагрузка исчезает, напряжение конструкции вновь обнуляется.

Что именно мы подразумеваем под характеристическим динамическим поведением? Все структуры имеют характеристический, или собственный, вид колебаний. Звук или нота колеблющейся гитарной струны — это типичный пример собственной частоты колебаний. При ударе по гитарной струне ее вибрация соответствует определенной ноте, или тону. Эта нота — и есть характеристическая частота струны.

Другим примером могут послужить алюминиевые бейсбольные биты. Лучшие алюминиевые биты проектируются так, чтобы их характеристические колебания могли ограничить деформацию, которая происходит при ударе по мячу не оптимальной для удара частью биты. Каждая частота создает физическую деформацию или форму, и суммарная динамическая реакция биты является комбинацией всех форм ее собственных колебаний (рис. 1 и 2).

Рис. 1. Первая форма собственных колебаний алюминиевой бейсбольной биты фирмы NCAA

Рис. 1. Первая форма собственных колебаний алюминиевой бейсбольной биты фирмы NCAA

Рис. 2. Вторая форма собственных колебаний алюминиевой бейсбольной биты NCAA

Рис. 2. Вторая форма собственных колебаний алюминиевой бейсбольной биты NCAA

В конечно­элементном анализе (КЭА) эти собственные частоты называются собственными частотами (eigenvalues), а их формы обозначаются как собственные векторы (eigenvectors) или собственные формы колебаний (eigenmodes). Эта терминология заимствована из немецкого языка, где eigen означает «характерный» или «свойственный для», и первоначально получила распространение среди математиков XIX века. В динамическом анализе вам также встретятся термины «нормальная форма колебаний» и «анализ нормальных колебаний». Слово «нормальное» применительно к слову «колебание» — это еще один синоним естественных, характерных, собственных (eigen) форм колебаний. Описывая формы колебаний, мы чаще всего будем использовать термин «нормальные колебания», чтобы подчеркнуть естественный, неизбежный характер реакции структуры.

На примере балки

Если рассматривать свободно опертую балку (закрепленную с одного конца), ее собственные формы колебаний определяются геометрией, тогда как частота колебаний зависит от прочности и плотности. Просто? Взгляните на график первых трех форм колебаний нашей балки (рис. 3 и 4). Первые три формы балки обозначены четко, но отображаются попарно, чтобы охватить весь возможный диапазон движения данной балки. В трехмерном отображении первая форма может колебаться в 360­градусном диапазоне по продольной оси. Численно процесс расчета собственных форм колебаний дает нам всего две ортогональные моды (формы), но эти две моды подразумевают вариации в диапазоне 360°.

Рис. 3. Балка в состоянии покоя плюс две первые формы ее собственных колебаний (два направления движения)

Рис. 3. Балка в состоянии покоя плюс две первые формы ее собственных колебаний (два направления движения)

Рис. 4. Пары второй и третьей форм собственных колебаний свободно опертой балки

Рис. 4. Пары второй и третьей форм собственных колебаний свободно опертой балки

Все структуры имеют практически бесконечное количество собственных форм колебаний. К счастью, реакция структуры лежит в основном в низких частотах, так что высокими частотами мы можем в принципе пренебрегать. Эмпирическим путем доказано, что первые три формы колебаний отражают практически все возможные варианты реакции структуры, поэтому мы можем спокойно пренебречь высокими частотами (обоснование этого утверждения приведено в части II данного цикла статей).

Собственная частота колебаний, иначе говоря их собственные значения, зависит от жесткости и плотности балки. Таким образом, уравнение частоты колебаний для структур может быть представлено как

ω = √K/m,

где К — жесткость структуры, а m — ее масса. Это на удивление простое уравнение дает нам всю основную информацию о структуре. Классический способ графического представления данного уравнения — это тело, подвешенное на пружине, причем тело может двигаться только вверх и вниз либо с одной степенью свободы (DOF), согласно терминологии конечно­элементного анализа.

Собственный вектор колебаний данной системы — колебания вверх и вниз.

На примере конструкции целлюлозно­бумажного производства

В производственных структурах применяется то же самое уравнение. Собственная частота колебаний структуры определяется той же формулой:

ω = √K/m.

Например, рассмотрим конструкцию, используемую в целлюлозно­бумажном производстве. Данная структура имеет 10 м в длину и изготовлена из нержавеющей стали. На целлюлозно­бумажном комбинате рабочая частота составляет порядка 9 Гц. Если нормальная частота колебаний конструкции практически равна рабочей частоте, структура резонирует и разрушается. А главное, при этом серьезно пострадает предприятие, в которое вложен не один миллион долларов (рис. 5 и 6).

Рис. 5. Первая форма колебаний оборудования целлюлозно-бумажного комбината

Рис. 5. Первая форма колебаний оборудования целлюлозно-бумажного комбината

Рис. 6. Вторая собственная форма колебаний оборудования целлюлозно-бумажного комбината

Рис. 6. Вторая собственная форма колебаний оборудования целлюлозно-бумажного комбината

Параметры исходной конструкции давали первую форму колебаний при частоте 8,4 Гц, а это равносильно катастрофе. Рассматриваемая доска изготавливается из стальных пластин толщиной 9,5 мм, поэтому нашей первой мыслью в направлении оптимизации конструкции было простое увеличение толщины пластин. Мы прорабатывали данный вариант в течение нескольких дней, но при увеличении толщины пластин масса структуры также возрастала, повышаясь одновременно с жесткостью (см. приведенное выше уравнение). В результате всех этих усилий мы получили лишь незначительное улучшение (резонансная частота колебаний ~11 Гц) при толщине пластин 25 мм, но такое изменение конструкции стоило бы предприятию огромных денег.

На этом мы отказались от спешных попыток найти решение проблемы и задумались над тем, как формируется прочность в вытянутых тонких структурах. Мы поняли, что связь между нижней и верхней поверхностями доски очень слабая. Эта догадка привела нас к идее добавления диагональных стальных стержней, соединяющих верхнюю и нижнюю поверхности и позволивших бы нам сохранить толщину пластин 9,5 мм. Обновленная конструкция была протестирована на компьютере и показала первую собственную частоту колебаний 13 Гц. Теперь собственная частота колебаний изделия стала гораздо больше, чем рабочая частота комбината, резонанс стал невозможен, а система приобрела динамическую устойчивость. Кроме того, сохранение толщины пластин (9,5 вместо 25 мм) означало вдвое меньшую стоимость внесения изменений по сравнению с первым малоэффективным вариантом доработки конструкции.

Поведение конструкции под воздействием динамической нагрузки

Если на структуру действует кратковременная или изменяющаяся во времени нагрузка (например, электромотор создает постоянную, синусоидально меняющуюся нагрузку) и если собственное значение колебаний конструкции ниже или выше, чем частота возбуждения, то поведение структуры будет таким же, как при воздействии статической нагрузки. Допустим, у нас есть структура с собственным значением колебаний в 10 Гц и она подвергается кратковременному удару (например, полусинусоидальной волной с частотой 10 Гц). В этом случае можно ожидать, что структура будет вибрировать от удара, а затем постепенно вернется в исходное состояние покоя в отсутствие воздействия.

Однако если структура подвергнется динамической нагрузке, изменяющейся во времени (например, воздействие синусоидальной волны частотой 10 Гц), то произойдет резонанс. Если поглощения вибрации практически нет (как у металлов или пластика), можно будет наблюдать классический гармонический резонанс, подобный тому, что привел к обрушению Тэкомского моста в 1940 году.

Именно резонанс разрушает конструкции, а наихудшая разновидность резонанса возникает тогда, когда на изделие снова и снова оказывается переменное возбуждающее воздействие. Наиболее эффективным способом предотвращения подобной неприятности является создание такой конструкции, собственная частота колебаний которой выше или ниже, чем ее рабочая частота; решение этой задачи лежит в основе проведения анализа собственных частот колебаний.

Итоговые расчеты

В предыдущих выкладках мы ни разу не упомянули амплитуду колебаний. То есть мы говорили об их частоте и форме, но вопрос амплитуды остался незатронутым. В частотном анализе (анализе собственной частоты колебаний) рассматривается структура без приложения к ней какой­либо нагрузки. Без нагрузки (то есть без воздействия каких­либо сил или давления) прогнозировать реальный вид вынужденных колебаний невозможно. Выведение собственных форм колебаний (формы допустимых видов деформации) предполагает проведение математических расчетов, ход которых можно посмотреть в любом учебнике. Однако ключевым для нас является решение уравнения динамики:

{f(t)} = [m]{x”(t)}+[C]{x`(t)}+[K]{x(t)}.

Если пренебрегать демпфированием (С) (а это можно смело делать в отношении многих конструкций), а прикладываемая сила f(t) равна нулю, уравнение принимает более краткую и удобную форму:

[m]{x”(t)}+[K]{x(t)} = 0.

Это ключевое уравнение для анализа свободных колебаний, показывающее, что только масса и прочность структуры влияют на формы ее колебаний.

Для решения данного уравнения воспользуйтесь вашим любимым пособием по математике. Суть вопроса в том, что вычисление собственной частоты колебаний структуры сводится к компактной формуле:

ω = √K/m.

И поскольку при расчете собственной частоты колебаний конструкции никакие силы не учитываются, связанные с ним собственные формы колебаний не поддаются измерению. В этом случае ваша программа для конечно­элементного анализа регулирует формы собственных колебаний таким образом, чтобы максимальное перемещение внутри каждой формы приближалось к 1.0 или к некой величине в зависимости от массы структуры. Когда данные формы свободных колебаний отображаются в программе для конечно­элементного анализа, мы видим воображаемую амплитуду; такая визуализация может стать проблемой для многих новичков, впервые отважившихся погрузиться в мир динамического анализа. Но более подробно о ее особенностях рассказано в части 2 данной статьи.

Основные этапы анализа собственных форм и частот колебаний

Определите, какой тип нагрузки может воздействовать на вашу конструкцию и может ли эта нагрузка вызвать резонанс. Постарайтесь определить частотные характеристики вашей нагрузки и убедитесь, что они не совпадают с собственными частотами вашей конструкции.

Проведите частотный анализ и посмотрите на первые три собственные частоты колебаний. Проверьте, попадают ли они в определенную вами опасную зону.

Если собственные частоты не попадают в диапазон частот вашей нагрузки, можете прекращать работу. Вы закончили ее, и всё получилось правильно.

Если собственные частоты вашего изделия попадают в диапазон опасных частот и вы не можете изменить конструкцию для улучшения ситуации, тогда продолжайте читать наши статьи. В них мы расскажем, почему ваше положение не так уж и плохо.

siemens

www.siemens.ru/plm

Copyright © by Level 5 Communications, Inc., 1283 Main St., Dublin, NH 03444, All Rights Reserved. www.deskeng.com

САПР и графика 1`2011

Понравилась статья? Поделить с друзьями:
  • Конный завод как пишется правильно
  • Конечно элементный как пишется
  • Коннотация как пишется
  • Конечно правда как пишется
  • Конноспортивный как пишется правильно