Ноль целых три десятых как пишется

Например: 1013.140,51/41 2/3.

Число 0.3 прописью: ноль целых три десятых.

Является десятичной дробью с 1-м знаком после запятой, разряд — десятые.

Падеж Вопрос 0.3
Именительный есть что? ноль целых три десятых
Родительный нет чего? ноля целых трёх десятых
Дательный рад чему? нолю целых трём десятым
Винительный вижу что? ноль целых три десятых
Творительный оплачу чем? нолём целых тремя десятыми
Предложный думаю о чём? ноле целых трёх десятых

Всего найдено: 94

Добрый день!
Как лучше писать:
1) «В середине тридцатых годов…» или «В середине 30-х годов…»?
2) «В двадцатом столетии…» или «В ХХ столетии…»?
3) «в сто раз больше…» или «в 100 раз больше…»?
Есть ли разница между художественными и научными текстами?
Спасибо за ответ

Ответ справочной службы русского языка

Написание числительного в цифровой или словесной форме зависит от типа текста. Приводим основные рекомендации.

В изданиях художественной и близкой ей литератур рекомендуется все числительные писать прописью, поскольку цифры придают тексту деловой вид.

Как исключение цифровая форма предпочтительна в следующих случаях:
1. Когда требуется имитировать документы, письма, вывески, поскольку пропись в них маловероятна и будет нарушать их «подлинность».
2. Когда в авторском тексте (не в прямой речи) приводятся номера домов, учреждений и т. п. и необходимо передать их в том виде, в каком они предстают на бланке, вывеске и т. п.
3. Когда в прямой речи встречается сложный номер и стремятся упростить его чтение.
4. Когда стремятся подчеркнуть (иногда иронически) особую точность чисел.

В изданиях деловой и научной литератур цифровая форма более уместна, особенно в следующих случаях:
1) если однозначные числа (даже в косвенных падежах) стоят в одном ряду с дву- и многозначными: серии из 3, 5, 12 упражнений;
2) когда однозначные целые числа образуют сочетания с единицами физических величин, денежными единицами: 7 кг., 7 руб.;
3) для многозначных целых чисел цифровая форма в подавляющем большинстве случаев является предпочтительной.

Словесная форма чисел рекомендуется в изданиях деловой и научной литератур, если однозначные числа стоят в косвенных падежах (не при единицах величин, денежных единицах), напр.: оборудовать лабораторию четырьмя мойками (не 4 мойками) или если количественное числительное начинает собой предложение: Пять станков размещают (не 5 станков размещают).

См.: Мильчин А. Э., Чельцова Л. К. Справочник издателя и автора. М., 2003.

Как правильно пишется: Средний возраст жителей составил 38,1 лет или года?

Ответ справочной службы русского языка

Правильно: _Средний возраст жителей составил 38,1 года_ (читается: составил тридцать восемь целых и одну десятую года).

Спасибо за своевременный ответ. Еще один мой вопрос, наверное, затерялся. Фын (фамилия) Ли-да (имя) — верно? И дополнительно: 11,862, 164,79 года(лет)? Ваша помощь нужна,как всегда, очень срочно.

Ответ справочной службы русского языка

Что касается имени и фамилии, то точно ответить нельзя, лучше спросить у носителя.
Если эти числа — десятичные дроби (11 целых 862 тысячных и 164 целых 79 сотых), то верно: _года_.

Скажите, пожалуйста, нужно ли ставить в род.п. проценты, если число с половиной: 6,5 процентОВ? Или шесть и пять десятых процентА?

Ответ справочной службы русского языка

Правильно: _шесть целых пять десятых процента, шесть с половиной процентов_.

Добрый день! Прошу помочь. Какое окончание должно быть у словосочетания «квадратные метры» во фразе «общей площадью 129,2 (сто двадцать девять целых и два десятых) квадратных метров (?)». Предложенный вариант правильный? Если нет, то как правильно? Спасибо.

Ответ справочной службы русского языка

Верно: _квадратного метра_.

Добрый день! Скажите пожалуйста, когда в тексте пишем цифры с рублями, то рубли согласуем с целой или дробной частью? Например: 2033,33 рубля или 2033,33 рублей. Спасибо!

Ответ справочной службы русского языка

Правильно: _2033,33 рубля_ (читаем: две тысячи тридцать три целых тридцать три сотых рубля).

является ли употребление слова «прозвонить» в значении «позвонить по телефону кому-либо» грамотным? Насколько мне известно слово «прозвонить» является скорее техническим, чем общеупотребительным словом. Какие вообще значения может принимать это слово?

Ответ справочной службы русского языка

_Прозвонить_. 1. Издать непродолжительный звон. _Прозвонил звонок_. 2. Звоном возвестить, объявить о чем-то. _Прозвонить перемену_. 3. Проверить правильность монтажа с помощью электроприбора. _Прозвонить электрическую схему_. 4. Звонить в течение какого-то времени. _Прозвонить целых двадцать минут_. 5. _Разг. Истратить на телефонные разговоры. _Прозвонить двадцать рублей_.
Употребление слова _прозвонить_ в значении ‘обзвонить’ — просторечие.

как правильно писать: 2,32 кв.м. (две целых тридцать две сотых или сотые)

Ответ справочной службы русского языка

Возможны оба варианта, предпочтительно: _сотые_.

Здравствуйте! Подскажите, как согласно актуальным нормам современного русского языка правильно пишется, риэлтОр или риэлтЕр. Академический словарь трудностей рекомендуют писать через Е, а интернет (Яндекс) рекомендует через О. Понятно, что интернет показывает только количественный перевес, но как может быть, чтобы 1 мнл. ссылок было на Е и целых 4 млн. на О. Получается, что это такая распространённая ошибка, или за последнее время в русском языке относительно этого слова произошли изменения? Как быть? Заранее благодарю!

Ответ справочной службы русского языка

См. ответ № 189997 .

Правильно ли написана цифра прописью: Сегодняшний курс составил 25,4144 рубля за доллар — двадцать пять (целых) четыре тысячи сто сорок четыре рубля. Спасибо.

Ответ справочной службы русского языка

Верно: _двадцать пять целых четыре тысячи сто сорок четыре десятитысячных рубля._

равный нулю целых (целым) одной десятой?

Ответ справочной службы русского языка

Правильно: равный нулю целым и одной десятой. Однако обычно слова «ноль целых» при прочтении опускают.

Подскажите пожайлуста как правильно написать «доля в размере 0,022% (Ноль целых двадцать двЕ тысячных процента или Ноль целых двадцать двА тысячных процента ) С уважением, Екатерина

Ответ справочной службы русского языка

Верно: _двадцать две тысячных_.

как правильно написать словами «1001,44 евро»: 1) «одна тысяча один целых сорок четыре сотых евро» или 2) «одна тысяча одна целая сорок четыре сотых евро»?

Ответ справочной службы русского языка

Верен второй вариант.

«… по ставке 2,5 % (Два целых и пять десятых)процента Как правильно указать в скобках «Две целых и пять десятых» процента или «Два целых и пять десятых» процента. Спасибо.

Ответ справочной службы русского языка

Верно: _Две целых и пять десятых процента_.

Подскажите,пожалуйста,как правильно написать прописью и полностью:32,4 кв.м. С уважением,Масленников Андрей.

Ответ справочной службы русского языка

_Тридцать две целых четыре десятых квадратного метра_. Страницы: первая 1 2 3 4 6 7 последняя

Десятичная дробь отличается от обыкновенной дроби тем, что знаменатель у нее — это разрядная единица.

Например:

Десятичные дроби выделены из обыкновенных дробей в отдельный вид, что привело к собственным правилам сравнения, сложения, вычитания, умножения и деления этих дробей. В принципе, с десятичными дробями можно работать и по правилам обыкновенных дробей. Собственные правила преобразования десятичных дробей упрощают вычисления, а правила преобразования обыкновенных дробей в десятичные, и наоборот, служат связкой между этими видами дроби.

Запись и чтение десятичных дробей позволяет их записывать, сравнивать и производить действия над ними по правилам, очень похожим на правила действий с натуральными числами.

Впервые система десятичных дробей и действий над ними была изложена в XV в. самаркандским математиком и астрономом Джемшид ибн-Масудаль-Каши в книге «Ключ к искусству счета».

Целая часть десятичной дроби отделена от дробной части запятой, в некоторых странах (США) ставят точку. Если в десятичной дроби нет целой части, то перед запятой ставят число 0.

К дробной части десятичной дроби справа можно дописывать любое количество нулей, это величину дроби не изменяет. Дробная часть десятичной дроби читается по последнему значащему разряду.

Например:
0,3 — три десятых
0,75 — семьдесят пять сотых
0,000005 — пять миллионных.

Чтение целой части десятичной дроби такое же, как и натуральных чисел.

Например:
27,5 — двадцать семь…;
1,57 — одна…

После целой части десятичной дроби произносится слово «целых».

Например:
10.7 — десять целых семь десятых

0,67 — ноль целых шестьдесят семь сотых.

Десятичные знаки — это цифры дробной части. Дробная часть читается не по разрядам (в отличие от натуральных чисел), а целиком, поэтому дробная часть десятичной дроби определяется последним справа значащим разрядом. Разрядная система дробной части десятичной дроби несколько иная, чем у натуральных чисел.

  • 1-й разряд после занятой — разряд десятых
  • 2-й разряд после запятой — разряд сотых
  • 3-й разряд после запятой — разряд тысячных
  • 4-й разряд после запятой — разряд десятитысячных
  • 5-й разряд после запятой — разряд стотысячных
  • 6-й разряд после запятой — разряд миллионных
  • 7-й разряд после запятой — разряд десятимиллионных
  • 8-й разряд после запятой — разряд стомиллионных

В вычислениях чаще всего используются первые три разряда. Большая разрядность дробной части десятичных дробей используется только в специфических отраслях знаний, где вычисляются бесконечно малые величины.

Перевод десятичной дроби в смешанную дробь состоит н следующем: число, стоящее до запятой записать целой частью смешанной дроби; число, стоящее после запятой — числителем ее дробной части, а в знаменателе дробной части записать единицу со столькими нулями, сколько цифр стоит после запятой.

Например:

Перевод обыкновенной дроби в десятичную дробь — это вычисление частного отделения числителя дроби на знаменатель по правилам действий с десятичными дробями:

Но не все обыкновенные дроби можно перевести в десятичную дробь. Например: — нет такого множителя, который с множителем 3 даст в произведении разрядную единицу.

1 января 2017

Вот, казалось бы, перевод десятичной дроби в обычную — элементарная тема, но многие ученики её не понимают! Поэтому сегодня мы подробно рассмотрим сразу несколько алгоритмов, с помощью которых вы разберётесь с любыми дробями буквально за секунду.

Напомню, что существует как минимум две формы записи одной и той же дроби: обыкновенная и десятичная. Десятичные дроби — это всевозможные конструкции вида 0,75; 1,33; и даже −7,41. А вот примеры обыкновенных дробей, которые выражают те же самые числа:

Сейчас разберёмся: как от десятичной записи перейти к обычной? И самое главное: как сделать это максимально быстро?

Основной алгоритм

На самом деле существует как минимум два алгоритма. И мы сейчас рассмотрим оба. Начнём с первого — самого простого и понятного.

Чтобы перевести десятичную дробь в обыкновенную, необходимо выполнить три шага:

Важное замечание по поводу отрицательных чисел. Если в исходном примере перед десятичной дробью стоит знак «минус», то и на выходе перед обыкновенной дробью тоже должен стоять «минус». Вот ещё несколько примеров:

Примеры перехода от десятичной записи дробей к обычной

Особое внимание хотелось бы обратить на последний пример. Как видим, в дроби 0,0025 присутствует много нулей после запятой. Из-за этого приходится аж целых четыре раза умножать числитель и знаменатель на 10. Можно ли как-то упростить алгоритм в этом случае?

Конечно, можно. И сейчас мы рассмотрим альтернативный алгоритм — он чуть более сложен для восприятия, но после небольшой практики работает намного быстрее стандартного.

Более быстрый способ

В данном алгоритме также 3 шага. Чтобы получить обычную дробь из десятичной, нужно выполнить следующее:

Вот и всё! На первый взгляд, эта схема сложнее предыдущей. Но на самом деле он и проще, и быстрее. Судите сами:

Ещё один пример:

Наконец, последний пример:

Особенность этой дроби — наличие целой части. Поэтому на выходе у нас получается неправильная дробь 47/25. Можно, конечно, попытаться разделить 47 на 25 с остатком и таким образом вновь выделить целую часть. Но зачем усложнять себе жизнь, если это можно сделать ещё на этапе преобразований? Что ж, разберёмся.

Что делать с целой частью

На самом деле всё очень просто: если мы хотим получить правильную дробь, то необходимо убрать из неё целую часть на время преобразований, а затем, когда получим результат, вновь дописать её справа перед дробной чертой.

Например, рассмотрим то же самое число: 1,88. Забьём на единицу (целую часть) и посмотрим на дробь 0,88. Она легко преобразуется:

Затем вспоминаем про «утерянную» единицу и дописываем её спереди:

Вот и всё! Ответ получился тем же самым, что и после выделения целой части в прошлый раз. Ещё парочка примеров:

В этом и состоит прелесть математики: каким бы путём вы не пошли, если все вычисления выполнены правильно, ответ всегда будет одним и тем же.:)

В заключение хотел бы рассмотреть ещё один приём, который многим помогает.

Преобразования «на слух»

Давайте задумаемся о том, что вообще такое десятичная дробь. Точнее, как мы её читаем. Например, число 0,64 — мы читаем его как «ноль целых, 64 сотых», правильно? Ну, или просто «64 сотых». Ключевое слово здесь — «сотых», т.е. число 100.

А что насчёт 0,004? Это же «ноль целых, 4 тысячных» или просто «четыре тысячных». Так или иначе, ключевое слово — «тысячных», т.е. 1000.

Ну и что в этом такого? А то, что именно эти числа в итоге «всплывают» в знаменателях на втором этапе алгоритма. Т.е. 0,004 — это «четыре тысячных» или «4 разделить на 1000»:

Попробуйте потренироваться сами — это очень просто. Главное — правильно прочесть исходную дробь. Например, 2,5 — это «2 целых, 5 десятых», поэтому

А какое-нибудь 1,125 — это «1 целая, 125 тысячных», поэтому

В последнем примере, конечно, кто-то возразит, мол, не всякому ученику очевидно, что 1000 делится на 125. Но здесь нужно помнить, что 1000 = 103, а 10 = 2 ∙ 5, поэтому

Таким образом, любая степень десятки раскладывается лишь на множители 2 и 5 — именно эти множители нужно искать и в числителе, чтобы в итоге всё сократилось.

На этом урок окончен. Переходим к более сложной обратной операции — см. «Переход от обыкновенной дроби к десятичной».

Опубликовано 3 года назад по предмету
Математика
от Dem333

Плиз, помогите
Найдите:
1. Ноль целых три десятых от тридцати.
2. Десять процентов от шести.
3. Четыре девятых от восемнадцати.
4. Квадрат трех восьмых.
5. Сумму одной третьей и одной седьмой умножьте на двадцать один.
6. Две целых одну пятую умножьте на три.

Верно ли высказывание (ответьте «да» или «нет»):
7. Произведение пяти и трех целых четырех пятых равно девятнадцати.

  1. Ответ

    Ответ дан
    tana19900428

    вот так получилось решение………..

Информация

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

Калькулятор «Калькулятор десятичных дробей»

Какая десятичная дробь 3/10?

Ответ: Дробь 3/10 в десятичном виде это 0.3

Объяснение конвертации дроби 3/10 в десятичную

Для того, чтобы перевести дробь 3/10 в десятичный формат необходимо разделить числитель 3 на знаменатель 10:

3 ÷ 10 = 0.3


Смотрите также: Сократить дробь 3/10

Поделитесь текущим расчетом

https://calculat.io/ru/number/fraction-as-a-decimal/0—3—10Копировать

<a href=»https://calculat.io/ru/number/fraction-as-a-decimal/0—3—10″>Перевести дробь 3/10 в десятичную — Calculatio</a>Копировать

Перевести дробь 3/10 в десятичную. Перевести обыкновенную дробь 3/10 в десятичную.

О калькуляторе «Калькулятор десятичных дробей»

Данный калькулятор поможет конвертировать обыкновенную дробь в десятичную. Например, Какая десятичная дробь 3/10? Введите дробь (целую часть, числитель и знаменатель) (например ‘3/10’) и нажмите кнопку ‘Конвертировать’.

Калькулятор «Калькулятор десятичных дробей»

Таблица конвертации обыкновенных дробей в десятичные

Мы уже говорили, что дроби бывают обыкновенные и десятичные. На данный момент мы немного изучили обыкновенные дроби. Мы узнали, что обыкновенные дроби бывают правильными и неправильными. Также мы узнали что обыкновенные дроби можно сокращать, складывать, вычитать умножать и делить. И ещё мы узнали, что бывают так называемые смешанные числа, которые состоят из целой и дробной части.

Мы ещё не полностью изучили обыкновенные дроби. Есть немало тонкостей и деталей, о которых следует поговорить, но уже сегодня мы начнём изучать десятичные дроби, поскольку обыкновенные и десятичные дроби достаточно часто приходиться сочетать. То есть, при решении задач приходиться работать с обоими видов дробей.

Этот урок возможно покажется сложным и непонятным. Это вполне нормально. Такого рода уроки требуют, чтобы их именно изучали, а не просматривали поверхностно.

Выражение величин в дробном виде

Иногда удобно бывает показать что-либо в дробном виде. Например, одна десятая часть дециметра записывается так:

1913

Это выражение означает, что один дециметр был разделён на десять равных частей, и от этих десяти частей была взята одна часть. А одна часть из десяти в данном случае равна одному сантиметру:

десятичные дроби рисунок 1

Рассмотрим следующий пример. Пусть требуется показать 6 см и ещё 3 мм в сантиметрах в дробном виде.

Итак, 6 целых сантиметров у нас уже есть:

1914

Но осталось еще 3 миллиметра. Как показать эти 3 миллиметра, при этом в сантиметрах?

На помощь приходят дроби. Один сантиметр это десять миллиметров. Три миллиметра это три части из десяти. А три части из десяти записываются как 1916 см

десятичные дроби рисунок 2

Выражение 1916 см означает, что один сантиметр был разделён на десять равных частей, и от этих десяти частей взяли три части.

В результате имеем шесть целых сантиметров и три десятых сантиметра:

1917

Цифра 6 показывает число целых сантиметров, а дробь 1916 — число дробных. Эта дробь читается как «шесть целых и три десятых сантиметра».

Дроби, в знаменателе которых присутствуют числа 10, 100, 1000 можно записывать без знаменателя. Сначала пишут цéлую часть, а потом числитель дробной части. Целая часть отделяется от числителя дробной части запятой.

Например, запишем 1918 без знаменателя. Сначала записываем целую часть. Целая часть это 6

6

Целая часть записана. Сразу же после написания целой части ставим запятую:

6,

И теперь записываем числитель дробной части. В смешанном числе 1918 числитель дробной части это число 3. Записываем после запятой тройку:

6,3

Любое число, которое представляется в таком виде, называется десятичной дробью.

Поэтому показать 6 см и ещё 3 мм в сантиметрах можно с помощью десятичной дроби:

6,3 см

На рисунке выглядеть это будет так:

1922

На самом деле десятичные дроби это те же самые обыкновенные дроби и смешанные числа. Особенность таких дробей заключается в том, что в знаменателе их дробной части содержатся числа 10, 100, 1 000 или 10 000.

Как и смешанное число, десятичная дробь имеет цéлую часть и дробную.

Например, в смешанном числе 1918 целая часть это 6, а дробная часть это 1916.

В десятичной дроби 6,3 целая часть это число 6, а дробная часть это числитель дроби 1916, то есть число 3.

Бывает и так, что обыкновенные дроби в знаменателе которых числа 10, 100, 1000 даны без целой части. Например, дробь 1921 дана без целой части. Чтобы записать такую дробь как десятичную, сначала записывают 0, затем ставят запятую и записывают числитель дробной части.

Так, дробь 1921 без знаменателя будет записана так:

0,5

Читается как «ноль целых, пять десятых».


Перевод смешанных чисел в десятичные дроби

Когда мы записываем смешанные числа без знаменателя, мы тем самым перевóдим их в десятичные дроби. При переводе обыкновенных дробей в десятичные дроби нужно знать несколько моментов, о которых мы сейчас поговорим.

После того как записана целая часть, обязательно нужно посчитать количество нулей в знаменателе дробной части, поскольку количество нулей в знаменателе дробной части и количество цифр после запятой в десятичной дроби должно быть одинаковым. Что это значит?

Рассмотрим следующий пример: перевести смешанное число 1931 в десятичную дробь.

Сначала записываем цéлую часть и ставим запятую:

3,

И можно бы сразу записать числитель дробной части и десятичная дробь готова, но обязательно нужно посчитать сколько нулей содержится в знаменателе дробной части.

Итак, посчитаем количество нулей в дробной части смешанного числа 1931.  Видим, что в знаменателе дробной части один ноль. Значит в десятичной дроби после запятой будет одна цифра и это цифра будет числитель дробной части смешанного числа 1931, то есть число 2

3,2

Таким образом, смешанное число 1931 при переводе в десятичную дробь обращается в 3,2. Эта десятичная дробь читается так:

«Три целых, две десятых»

«Десятых» потому что в дробной части смешанного числа 1931 содержится число 10.


Пример 2. Перевести смешанное число 1932 в десятичную дробь.

Записываем цéлую часть и ставим запятую:

5,

И можно бы сразу записать числитель дробной части и получить десятичную дробь 5,3 но правило говорит, что после запятой должно быть столько цифр сколько нулей в знаменателе дробной части смешанного числа 1932. А мы видим что в знаменателе дробной части 1932  два нуля. Значит в нашей десятичной дроби после запятой должно быть две цифры, а не одна.

В таких случаях числитель дробной части нужно немного видоизменить: добавить ноль перед числителем, то есть перед числом 3

1933

Теперь можно довести дело до конца. Записываем после запятой числитель дробной части:

5,03

Видим, что количество цифр после запятой и количество нулей в знаменателе дробной части смешанного числа 1933  одинаково.

Десятичная дробь 5,03 читается так:

«Пять целых, три сотых»

«Сотых» потому что в знаменателе дробной части смешанного числа 1933 содержится число 100.


Пример 3. Перевести смешанное число 1941 в десятичную дробь.

Из предыдущих примеров мы узнали, что для успешного перевода смешанного числа в десятичную дробь, количество цифр в числителе дробной части и количество нулей в  знаменателе дробной части должно быть одинаковым.

Перед переводом смешанного числа 1941 в десятичную дробь, его дробную часть нужно немного видоизменить, а именно сделать так чтобы количество цифр в числителе дробной части и количество нулей в знаменателе дробной части было одинаковым.

В первую очередь смóтрим на количество нулей в знаменателе дробной части. Видим, что там три нуля:

1942

Наша задача организовать в числителе дробной части три цифры. Одна цифра у нас уже есть — это цифра 2. Осталось добавить ещё две цифры. Ими будут два нуля. Добавим их перед цифрой 2. В результате количество нулей в знаменателе и количество цифр в числителе станет одинаковым:

1943

Теперь можно заняться переводом этого смешанного числа в десятичную дробь. Записываем сначала цéлую часть и ставим запятую:

3,

и сразу записываем числитель дробной части

3,002

Видим, что количество цифр после запятой и количество нулей в знаменателе дробной части смешанного числа 1944 одинаково.

Десятичная дробь 3,002 читается так:

«Три целых, две тысячных»

«Тысячных» потому что в знаменателе дробной части смешанного числа 1944  содержится число 1000.


Перевод обыкновенных дробей в десятичные дроби

Обыкновенные дроби, у которых в знаменателе числа 10, 100, 1000 или  10000, тоже можно перевести в десятичные дроби. Поскольку у обыкновенной дроби целая часть отсутствует, сначала записывают 0, затем ставят запятую и записывают числитель дробной части.

Здесь также количество нулей в знаменателе и количество цифр в числителе должно быть одинаковым. Поэтому следует быть внимательным.

Пример 1. Перевести обыкновенную дробь 1921 в десятичную дробь.

Целая часть отсутствует, значит сначала записываем 0 и ставим запятую:

0,

Теперь смóтрим на количество нулей в знаменателе. Видим, что там один ноль. И в числителе одна цифра. Значит можно спокойно продолжить десятичную дробь, записав после запятой цифру 5

0,5

В полученной десятичной дроби 0,5 количество цифр после запятой и количество нулей в знаменателе дроби 1921 одинаково. Значит дробь переведена правильно.

Десятичная дробь 0,5 читается так:

«Ноль целых, пять десятых»


Пример 2. Перевести обыкновенную дробь 1951 в десятичную дробь.

Целая часть отсутствует. Записываем сначала 0 и стáвим запятую:

0,

Теперь смóтрим на количество нулей в знаменателе. Видим, что там два нуля. А в числителе только одна цифра. Чтобы сделать количество цифр и количество нулей одинаковым, добавим в числителе перед цифрой 2 один ноль. Тогда дробь примет вид  1952. Теперь количество нулей в знаменателе и количество цифр в числителе одинаково. Значит можно продолжить десятичную дробь:

0,02

В полученной десятичной дроби 0,02 количество цифр после запятой и количество нулей в знаменателе дроби 1952 одинаково. Значит дробь переведена правильно.

Десятичная дробь 0,02 читается так:

«Ноль целых, две сотых».


Пример 3. Перевести обыкновенную дробь 1961 в десятичную дробь.

Записываем 0 и стáвим запятую:

0,

Теперь посчитаем количество нулей в знаменателе дроби 1961. Видим, что там пять нулей, а в числителе только одна цифра. Чтобы сделать количество нулей в знаменателе и количество цифр в числителе одинаковым, нужно в числителе перед цифрой 5 дописать четыре нуля:

1962

Теперь можно продолжить десятичную дробь. Записываем после запятой числитель дроби 1962

0,00005

В полученной десятичной дроби 0,00005 количество цифр после запятой и количество нулей в знаменателе дроби  1962 одинаково. Значит дробь переведена правильно.

Десятичная дробь 0,00005 читается так:

«Ноль целых, пять стотысячных».


Перевод неправильных дробей в десятичную дробь

Неправильная дробь это дробь, у которой числитель больше знаменателя.

Бывают неправильные дроби, у которых в знаменателе содержатся числа 10, 100, 1000 или 10000. Такие дроби можно переводить в десятичные. Но перед переводом в десятичную дробь, у таких дробей необходимо выделять цéлую часть.

Пример 1. Перевести неправильную дробь 1971 в десятичную.

Дробь 1971 является неправильной. Чтобы перевести такую дробь в десятичную, нужно в первую очередь выделить у нее цéлую часть. Вспоминаем, как выделять целую часть у неправильных дробей. Если забыли, советуем вернуться к этой теме и хорошенько изучить её.

Итак, выделим целую часть в неправильной дроби 1971 . Напомним, что дробь означает деление — в данном случае деление числа 112 на число 10. Деление нужно выполнить с остатком:

десятичные дроби рисунок 1

Посмóтрим на этот рисунок и соберём новое смешанное число, подобно детскому конструктору. Частное 11 будет целой частью, остаток 2 — числителем дробной части, делитель 10 — знаменателем дробной части:

десятичные дроби рисунок 2

Мы получили смешанное число 1974. Его и переведём в десятичную дробь. А как переводить такие числа в десятичные дроби мы уже знаем. Сначала записываем целую часть и ставим запятую:

11,

Теперь посчитаем количество нулей в знаменателе дробной части. Видим, что там один ноль. И в числителе дробной части одна цифра. Значит количество нулей в знаменателе дробной части  и количество цифр в числителе дробной части одинаково. Это даёт нам возможность сразу записать после запятой числитель дробной части:

11,2

Значит, неправильная дробь 1971 при переводе в десятичную обращается в 11,2

Десятичная дробь 11,2 читается так:

«Одиннадцать целых, две десятых».


Пример 2. Перевести неправильную дробь 1981  в десятичную дробь.

Это неправильная дробь, поскольку числитель больше знаменателя. Но её можно перевести в десятичную дробь, поскольку в знаменателе содержится число 100.

В первую очередь выделим целую часть этой дроби. Для этого разделим уголком 450 на 100:

десятичные дроби рисунок 3

Соберём новое смешанное число — получим 1983 . Теперь переведём его в десятичную дробь. Записываем целую часть и ставим запятую:

4,

Теперь посчитаем количество нулей в знаменателе дробной части и количество цифр в числителе дробной части. Видим, что количество нулей в знаменателе  и количество цифр в числителе одинаково. Это даёт нам возможность сразу записать числитель дробной части после запятой:

4,50

Значит неправильная дробь 1981 при переводе в десятичную обращается в 4,50

При решении задач, если в конце десятичной дроби оказываются нули, их можно отбросить. Давайте и мы отбросим ноль в нашем ответе. Тогда мы получим 4,5

Это одна из интересных особенностей десятичных дробей. Она заключается в том, что нули которые стоят в конце дроби, не придают этой дроби никакого веса. Другими словами, десятичные дроби 4,50 и 4,5 равны и между ними можно поставить знак равенства:

4,50 = 4,5

Возникает вопрос «а почему так происходит Ведь на вид 4,50 и 4,5 разные дроби. Весь секрет кроется в основном свойстве дроби, котором мы изучали ранее. Мы попробуем доказать, почему равны десятичные дроби 4,50 и 4,5, но после изучения следующей темы, которая называется «перевод десятичной дроби в смешанное число».


Перевод десятичной дроби в смешанное число

Любая десятичная дробь может быть обратно переведена в смешанное число. Для этого достаточно уметь читать десятичные дроби.

Например, переведём 6,3 в смешанное число. 6,3 это шесть целых и три десятых. Записываем сначала шесть целых:

6

и рядом три десятых:

1918


Пример 2. Перевести десятичную дробь 3,002 в смешанное число

3,002 это три целых и две тысячных. Записываем сначала три целых

3

и рядом записываем две тысячных:

3 1991


Пример 3. Перевести десятичную дробь 4,50 в смешанное число

4,50 это четыре целых и пятьдесят сотых. Записываем четыре целых

4

и рядом пятьдесят сотых:

1983

Кстати, давайте вспомним последний пример из предыдущей темы. Мы сказали, что десятичные дроби 4,50 и 4,5 равны. Также мы сказали, что ноль можно отбросить. Докажем, что десятичные 4,50 и 4,5 равны. Для этого переведем обе десятичные дроби в смешанные числа.

После перевода в смешанное число десятичная дробь 4,50 обращается в 1983, а десятичная дробь 4,5 обращается в 19101

Имеем два смешанных числа 1983  и  19101. Переведём эти смешанные числа в неправильные дроби:

19102

19103

Теперь имеем две дроби  19104  и  19105. Теперь вспоминаем основное свойство дроби, которое говорит о том, что при умножении (или делении) числителя и знаменателя дроби на одно и то же число, значение дроби не меняется.

Давайте разделим числитель и знаменатель первой дроби 19104 на число 10

19106

Получили 19105, а это есть вторая дробь. Значит 19104 и 19105 равны между собой и равны одному и тому же значению:

19104  = 19105

Попробуйте на калькуляторе разделить сначала 450 на 100, а затем 45 на 10. Забавная штука получится.


Перевод десятичной дроби в обыкновенную дробь

Любая десятичная дробь может быть обратно переведена в обыкновенную дробь. Для этого опять же достаточно уметь читать десятичные дроби. Например, переведём 0,3 в обыкновенную дробь. 0,3 это ноль целых и три десятых. Записываем сначала ноль целых:

0

и рядом три десятых 0 1916 . Ноль по традиции не записывают, поэтому окончательный ответ будет не 01916, а просто 1916.


Пример 2. Перевести десятичную дробь 0,02 в обыкновенную дробь.

0,02 это ноль целых и две сотых. Ноль не записываем, поэтому сразу записываем две сотых

1951


Пример 3. Перевести 0,00005 в обыкновенную дробь

0,00005 это ноль целых и пять сто тысячных. Ноль не записываем, поэтому сразу записываем пять сто тысячных  1961


Пример 4. Перевести 3,5 в обыкновенную дробь

Сначала переведём данную десятичную дробь в смешанное число:

десятичные дроби рисунок 4

Теперь смешанное число 3 целых 5 десятых переведём в неправильную (обыкновенную) дробь:

десятичные дроби рисунок 5


Пример 5. Перевести 1,25 в обыкновенную дробь

Сначала переведём данную десятичную дробь в смешанное число:

десятичные дроби рисунок 6

Теперь смешанное число 1 целая 25 сотых переведём в неправильную (обыкновенную) дробь:

десятичные дроби рисунок 7


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже



Запись и чтение десятичных дробей

Десятичная дробь отличается от обыкновенной дроби тем, что знаменатель у нее — это разрядная единица.

Например: отличие обыкновенной дроби от десятичной

Десятичные дроби выделены из обыкновенных дробей в отдельный вид, что привело к собственным правилам сравнения, сложения, вычитания, умножения и деления этих дробей. В принципе, с десятичными дробями можно работать и по правилам обыкновенных дробей. Собственные правила преобразования десятичных дробей упрощают вычисления, а правила преобразования обыкновенных дробей в десятичные, и наоборот, служат связкой между этими видами дроби.

Запись и чтение десятичных дробей позволяет их записывать, сравнивать и производить действия над ними по правилам, очень похожим на правила действий с натуральными числами.

Впервые система десятичных дробей и действий над ними была изложена в XV в. самаркандским математиком и астрономом Джемшид ибн-Масудаль-Каши в книге «Ключ к искусству счета».

Целая часть десятичной дроби отделена от дробной части запятой, в некоторых странах (США) ставят точку. Если в десятичной дроби нет целой части, то перед запятой ставят число 0.

К дробной части десятичной дроби справа можно дописывать любое количество нулей, это величину дроби не изменяет. Дробная часть десятичной дроби читается по последнему значащему разряду.

Например:
0,3 — три десятых
0,75 — семьдесят пять сотых
0,000005 — пять миллионных.

Чтение целой части десятичной дроби такое же, как и натуральных чисел.

Например:
27,5 — двадцать семь…;
1,57 — одна…

После целой части десятичной дроби произносится слово «целых».

Например:
10.7 — десять целых семь десятых

0,67 — ноль целых шестьдесят семь сотых.

Десятичные знаки — это цифры дробной части. Дробная часть читается не по разрядам (в отличие от натуральных чисел), а целиком, поэтому дробная часть десятичной дроби определяется последним справа значащим разрядом. Разрядная система дробной части десятичной дроби несколько иная, чем у натуральных чисел.

  • 1-й разряд после занятой — разряд десятых
  • 2-й разряд после запятой — разряд сотых
  • 3-й разряд после запятой — разряд тысячных
  • 4-й разряд после запятой — разряд десятитысячных
  • 5-й разряд после запятой — разряд стотысячных
  • 6-й разряд после запятой — разряд миллионных
  • 7-й разряд после запятой — разряд десятимиллионных
  • 8-й разряд после запятой — разряд стомиллионных

В вычислениях чаще всего используются первые три разряда. Большая разрядность дробной части десятичных дробей используется только в специфических отраслях знаний, где вычисляются бесконечно малые величины.

Перевод десятичной дроби в смешанную дробь состоит н следующем: число, стоящее до запятой записать целой частью смешанной дроби; число, стоящее после запятой — числителем ее дробной части, а в знаменателе дробной части записать единицу со столькими нулями, сколько цифр стоит после запятой.

Например: перевод десятичной дроби в смешанную дробь

Перевод обыкновенной дроби в десятичную дробь — это вычисление частного отделения числителя дроби на знаменатель по правилам действий с десятичными дробями:

Перевод обыкновенной дроби в десятичную дробь

Но не все обыкновенные дроби можно перевести в десятичную дробь. Например: она третья — нет такого множителя, который с множителем 3 даст в произведении разрядную единицу.

Понравилась статья? Поделить с друзьями:
  • Ноты как пишутся для детей картинка
  • Ноль целых пять тысячных как пишется
  • Ноты доремифасольлясидо как пишется
  • Ноль целых пять сотых как пишется
  • Ноты для фортепиано как пишется