Содержание:
- Формула теоремы Пифагора
- Доказательство теоремы Пифагора
- Геометрическая формулировка теоремы Пифагора
- Примеры решения задач
- Историческая справка
Формула теоремы Пифагора
Теорема
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов (рис. 1):
Доказательство теоремы Пифагора
Пусть треугольник $A B C$ — прямоугольный треугольник с
прямым углом $C$ (рис. 2).
Проведём высоту из вершины $C$ на гипотенузу $A B$, основание высоты обозначим как $H$ .
Прямоугольный треугольник $A C H$ подобен треугольнику $A B C$ по двум углам ( $angle A C B=angle C H A=90^{circ}$,
$angle A$ — общий). Аналогично, треугольник $C B H$ подобен $A B C$ .
Введя обозначения
$$B C=a, A C=b, A B=c$$
из подобия треугольников получаем, что
$$frac{a}{c}=frac{H B}{a}, frac{b}{c}=frac{A H}{b}$$
Отсюда имеем, что
$$a^{2}=c cdot H B, b^{2}=c cdot A H$$
Сложив полученные равенства, получаем
$$a^{2}+b^{2}=c cdot H B+c cdot A H$$
$$a^{2}+b^{2}=c cdot(H B+A H)$$
$$a^{2}+b^{2}=c cdot A B$$
$$a^{2}+b^{2}=c cdot c$$
$$a^{2}+b^{2}=c^{2}$$
Что и требовалось доказать.
Геометрическая формулировка теоремы Пифагора
Теорема
В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей
квадратов, построенных на катетах (рис. 2):
Примеры решения задач
Пример
Задание. Задан прямоугольный треугольник $A B C$, катеты которого равны 6 см и 8 см.
Найти гипотенузу этого треугольника.
Решение. Согласно условию катеты $a=6$ см, $b=8$ см. Тогда, согласно теореме
Пифагора, квадрат гипотенузы
$c^{2}=a^{2}+b^{2}=6^{2}+8^{2}=36+64=100$
Отсюда получаем, что искомая гипотенуза
$c=sqrt{100}=10$ (см)
Ответ. 10 см
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Найти
площадь прямоугольного треугольника, если известно, что один
из его катетов на 5 см больше другого, а гипотенуза равна 25 см.
Решение. Пусть
$x$ см — длина меньшего катета, тогда $(x+5)$ см — длина большего. Тогда согласно теореме Пифагора имеем:
$$x^{2}+(x+5)^{2}=25^{2}$$
Раскрываем скобки, сводим подобные и решаем полученное квадратное уравнение:
$x^{2}+5 x-300=0$
Согласно теореме Виета, получаем, что
$x_{1}=15$ (см) , $x_{2}=-20$ (см)
Значение $x_{2}$ не удовлетворяет условию задачи, а значит, меньший катет равен 15 см, а больший — 20 см.
Площадь прямоугольного треугольника равна полупроизведению длин его катетов, то есть
$$S=frac{15 cdot 20}{2}=15 cdot 10=150left(mathrm{см}^{2}right)$$
Ответ. $S=150left(mathrm{см}^{2}right)$
Историческая справка
Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая
соотношение между сторонами прямоугольного треугольника.
В древнекитайской книге «Чжоу би суань цзин» говорится о пифагоровом треугольнике со сторонами 3, 4 и 5. Крупнейший немецкий
историк математики Мориц Кантор (1829 — 1920) считает, что равенство $3^{2}+4^{2}=5^{2}$ было известно уже египтянам ещё около
2300 г. до н.э. По мнению ученого, строители строили тогда прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.
Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте приводится приближённое вычисление гипотенузы равнобедренного
прямоугольного треугольника.
На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является
единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным
значением теоремы для геометрии.
Остались вопросы?
Здесь вы найдете ответы.
Как выглядит формула, отражающая смысл теоремы Пифагора?
Согласно теореме Пифагора, значение длины гипотенузы (с) треугольника с
прямыми углами, возведенное в квадратную степень, является величиной,
равной сумме его катетов (а и b), каждый из которых также возведен в
квадрат. Наглядно и с применением условных обозначений это выглядит так:
a² + b² = c².
О чем гласит теорема Пифагора?
В теореме Пифагора говорится о том, что в треугольнике с прямыми углами
сумма длин катетов, каждая из которых возведена в квадрат, равна длине его
гипотенузы, также возведенной в квадратную степень.
При этом под гипотенузой понимается сторона, которая расположена
противоположно прямому углу. Катетом считается одна из сторон, участвующих
в образовании прямого угла.
Треугольник имеет прямой угол. Как доказать теорему Пифагора, которая
гласит, что сумма квадратов катетов прямоугольного труегольника равна длине
его гипотенузы, которая возведена в квадрат?
Основание прямоугольного треугольника обозначим как Н. Из его вершины С
проведем высоту на гипотенузу АВ. Получившийся в результате этого
треугольник АСН является подобным треугольнику АВС по двум углам, равным
90º (∠ACB =∠CHA).
В обоих треугольниках есть один общий угол — ∠A.
Подобными также являются треугольные фигуры АВС и СВН. Основанием их
подобия являются прямые углы (∠ACB =∠CHB). Оба эти треугольника имеют
общий угол, которым является ∠B.
Для продолжения доказательства теоремы Пифагора следует ввести
дополнительные обозначения: BC = a, AC = b, AB = c.
На основании полученной ранее информации о подобии треугольников можно
утверждать, что:
a/с = HB/a, b/с = AH/b.
Полученное равенство также позволяет сделать следующий вывод:
a2 = c * HB, b2 = c * AH.
На следующем этапе произведем сложение полученных ранее равенств:
a2 + b2 = c * HB + c * AH
Вынесем за скобки общий множитель во второй части равенства:
a2 + b2 = c * (HB + AH)
Теперь можно сократить Н в левой части равенства, в результате получим:
a2 + b2 = c * AB
В приведенных выше обозначениях указано, что АВ = с. Это позволяет
переписать равенство следующим образом:
a2 + b2 = c * c, или a2 + b2 = c2
Таким образом, теорема Пифагора доказана.
Длина катетов прямоугольного треугольника равна 5 см. Как вычислить длину
его гипотенузы?
Согласно теореме Пифагора, длина гипотенузы прямоугольного треугольника,
которая возведена в квадрат, равна сумме, полученной в результате сложения
квадратов длин его катетов. Из этого следует, что:
х² = 5^2 + 5^2
Извлечем квадрат из обеих частей равенства, в итоге получим:
x = √(5² + 5²)= √(25+25) = √50 = √25*2 = 5√2
Ответ: длина гипотенузы прямоугольного треугольника, катет которого равен
5 см, составляет 5√2, что равно примерно 7,07 см.
Применима ли теорема Пифагора к любому треугольнику?
Теорема Пифагора не может быть применима к треугольнику с тупыми или
острыми углами. Она выполняется только в случае прямоугольного
треугольника.
Для треугольника с углом 90º справедливо утверждение о том, что длина его
гипотенузы, возведенная во вторую степень, равна сумме длин его катетов,
взятых в квадрат.
Дан прямоугольный треугольник, длина гипотенузы которого равна 7 см, а
одного катета – 6 см. Как вычислить длину второго катета, используя теорему
Пифагора?
В теореме Пифагора говорится о том, что сумма длин катетов прямоугольного
треугольника, возведенных во вторую степень, равна квадрату длины его
гипотенузы. В случае с треугольником, некоторые параметры которого
приведены в задании, это утверждение выглядит следующим образом:
х² = 7²-6² = 49-36 = 13.
Для того чтобы найти значение х, нужно извлечь квадратный корень из числа
13:
х =√13.
Ответ: Длина второго катета прямоугольного треугольника равна корню
квадратному из 13.
Длина одного из стоящих рядом домов равна 24 м, высота второго из них
составляет 16 м. Как вычислить расстояние между крышами обоих домов, зная,
что квадрат гипотенузы равен сумме квадратов катетов?
Для решения поставленной задачи следует воспользоваться теоремой Пифагора,
которая говорит о том, что сумма длин катетов треугольника с прямым углом,
возведенных в квадрат, равна длине его гипотенузы, также возведенной во
вторую степень:
a² + b² = c².
Теорема Пифагора может быть применима в данном случае по причине того, что
образованная между двумя домами конструкция является прямоугольным
треугольником. Зная о том, что сумма квадратов катетов в прямоугольном
треугольнике равна длине его катета, возведенной в квадрат, можно
вычислить длину неизвестного катета:
24 м – 16 м = 8 м.
Длина одного катета треугольника равна 16 м, второго – 8 м. Зная это,
можно применить теорему Пифагора для вычисления длины гипотенузы:
(16*16) + (8*8) = 256 + 64 = 320 м.
Осталось только извлечь квадратный корень из 320, для того чтобы узнать
длину расстояния между крышами двух домов.
Ответ: Расстояние между крышами домов равно корню квадратному из 320.
Длина гипотенузы треугольника с прямым углом равна 13 см. Один из его
катетов равен 12 см. Как найти длину его второго катета по теореме Пифагора?
Обозначим длину неизвестного катета как х. Зная то, что по теореме
Пифагора длина гипотенузы прямоугольного треугольника, возведенная во
вторую степень, равна сумме длин его катетов, которые также возведены в
квадрат, можно выразить длину неизвестного катета следующим образом:
х² = 132 – 122 = 169 – 144 = 25
Теперь, для того чтобы узнать длину второго катета, необходимо извлечь
квадратный корень из числа 25:
х = √25 = 5
Ответ: длина второго катета прямоугольного треугольника равна 5 см.
Дан треугольник с прямым углом, к гипотенузе которого проведена медиана
длиной 6,5 м. Длина одного из катетов данного треугольника составляет 5 см.
Как вычислить длину второго катета треугольника по теореме Пифагора?
Известно, что длина медианы (m), которая проведена к гипотенузе
прямоугольного треугольника, равна ½ ее длины. Используя это, можно
высчитать длину гипотенузы прямоугольного треугольника:
с = 2*m = 2*6,5 = 13 см.
Высчитав длину гипотенузы и зная длину одного из катетов прямоугольного
треугольника, можно вычислить, чему равен его второй катет. Для этого
можно использовать теорему Пифагора, согласно которой:
a²+b²=c²
В нашем случае:
5²+b²=13²
Выражаем из записанного выше равенства длину неизвестного катета:
b²=13²-5²= 144
Из полученного числа нужно извлечь квадратный корень, для того чтобы
узнать длину второго катета прямоугольного треугольника:
b = √144 = 12 см.
Ответ: Длина второго катета прямоугольного треугольника равна 12 см.
Как можно вычислить треугольник, для которого по теореме Пифагора,
соблюдается равенство f2=a2+ b2?
Равенство, указанное в задании, применимо к треугольнику с прямым углом,
как гласит теорема Пифагора.
Каждая из сторон треугольника может быть обозначена прописной буквой,
которая соответствует строчной букве, обозначающей угол треугольника,
расположенный противоположно этой стороне. На основании этого можно
сделать вывод о том, что искомый треугольник является прямоугольным и
имеет гипотенузу f и катеты a и b:
∆АDF c ∠F= 90°
Ответ: имеется треугольник АDF с прямым углом F.
Существует ли теорема, которая обратна теореме Пифагора, и что она гласит?
Теорема, которая является обратной теореме Пифагора, существует. Согласно
этой теореме, треугольник считается прямоугольным в том случае, если длина
его большей стороны, возведенная в квадратную степень, равна сумме длин
двух других его сторон, которые также возведены в квадратную степень.
Имеется равнобедренный треугольник, длина двух сторон которого равна 48 см,
а третьей – 51 см. Как можно высчитать площадь данного треугольника по
теореме Пифагора?
Для начала следует провести высоту (h) к основанию равнобедренного
треугольника. Данная высота, проведенная к основанию, в случае с
равнобедренным треугольником является медианой.
Теперь можно высчитать длину высоты, используя теорему Пифагора. Она будет
равна:
h = √((48 см)² — (25,5 см)²) = 10,5√15 см.
Площадь (S) треугольника рассчитывается путем деления на число, полученное
в результате умножения длины высоты на длину основания треугольника:
S = ½*10,5√15 см*51 см = 267,75√15 см².
Ответ: Площадь треугольника равна 267,75√15 см².
Каким образом можно вычислить высоту равностороннего треугольника со
стороной а по теореме Пифагора?
В равностороннем треугольнике высота (h), проведенная к его основанию,
является также его биссектрисой и медианой. Она делит равносторонний
треугольник на две части, которые являются равными треугольниками с прямым
углом. Их гипотенуза равна а, а катеты – а/2. Для ответа на поставленный
вопрос следует применить теорему Пифагора:
h²=a²-(a/2)²=a²-(a²/4)=3a²/4
h=a√3/2.
Дан треугольник с прямым углом, длина одного из катетов которого вдвое
меньше длины его второго катета. Гипотенуза данного треугольника равна корню
квадратному из 15. Как по теореме Пифагора вычислить длину меньшего из
катетов треугольника?
Обозначим меньший из катетов как х. Тогда другой катет, длина которого в
два раза больше, будет обозначен как 2х. Если в случае с прямоугольным
треугольником, длина гипотенузы которого равна √15, применить теорему
Пифагора, то она будет выглядеть следующим образом:
(2х)²+(x)²=√15
После раскрытия скобок в уравнении получаем следующее равенство:
4х²+x²=15
Складываем слагаемые в первой части и получаем:
5x²=15
Сокращаем обе части уравнения на 5, и в итоге получается, что:
x²=3
Это значит, что:
x=√3
Ответ: Длина меньшего из катетов треугольника равна √3, а большего – 2√3.
Известно, что длина одного из катетов прямоугольного треугольника составляет
60 см, а длина его гипотенузы и второго катета в сумме дают 180 см. Можно ли
по теореме Пифагора высчитать длину гипотенузы данного треугольника?
Если обозначить длину неизвестного катета через х, то гипотенуза будет
равна 180-х. Используя введенные обозначения, запишем теорему Пифагора для
данного треугольника:
x²+60²=(180-x)² = x²+3600=32400-360x+x²
После сокращений получается следующее равенство:
360х=32400-3600=28800
Теперь можно найти значение х:
х=28800/360=80
Длина второго катета равна 80 см.
Зная, что катет в 80 см и неизвестная длина гипотенузы в сумме дают 180
см, можно вычислить длину гипотенузы:
180-80=100 см.
Ответ: Длина гипотенузы равна 100 см.
Дана прямоугольная трапеция ABCD. Ее углы А и В равны по 90°. Длины боковых
сторон данной трапеции составляют 9 см и 18 см. Диагональ АС составляет 15
см. Как можно вычислить длину основания трапеции по теореме Пифагора?
АВСD является прямоугольной трапецией, у которой AB=9 см и CD=18 см.
Диагональ АС данной трапеции составляет 15 см. При этом ВС и AD остаются
неизвестными величинами. Длину ВС можно вычислить по следующей формуле:
√15²-9²=√144=12 см.
Произведем перенос высоты:
СС1=АВ=9 см.
Тогда получаем, что:
C1D=√18²-9²=9√3
BC=AC1=12
AD=12+9√3 см.
Ответ: Длина основания AD прямоугольной трапеции равна 12+9√3 см.
Теорема Пифагора
Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².
Доказательство
Доказательство теоремы Пифагора, используя алгебру
Нужно доказать, что c² = a² + b²:
Это квадрат, в котором есть 4 одинаковых треугольника abc:
- Каждая сторона этого квадрата имеет длину a + b, значит его общая площадь: A = (a + b) (a + b);
- Площадь наименьшего квадрата (который находится внутри, под наклоном): c²;
- Площадь каждого из треугольников: ab/2. Значит площадь всех четырёх вместе: 4ab/2 = 2ab;
- Сумма наименьшего квадрата и треугольников: A = c² + 2ab;
- Площадь большого квадрата (A = (a + b) (a + b)) равна сумме наименьшего квадрата со всеми треугольниками. Значит:
(a + b) (a + b) = c² + 2ab
a² + 2ab + b² = c² + 2ab
a² + b² = c²
Что и требовалось доказать.
«Пифагоровы штаны на все стороны равны»
Это шуточная фраза, которая именует ещё одно доказательство теоремы Пифагора
На этой фигуре c — гипотенуза, a и b — катеты.
Проведём перпендикулярную линию к гипотенузе (c):
Таким образом появились два новых прямоугольных треугольника (A и B) внутри большого (исходный треугольник С).
- Общая площадь исходного треугольника (С) равна сумме двух новых, маленьких (A и B): С = А + B;
- Делим «Пифагоровы штаны» на 3 похожие фигуры:
- Все 3 треугольника подобны друг другу (A, B, C) и из-за этого «фигуры-домики» также являются подобными.
- Значит соотношение площади A и a² будет одинаковым с площадью B и b², но и с площадью C и c². Т. е.: A/a² = B/b² = C/c² = β (назовём это соотношение греческой буквой бета);
- Площадь каждого треугольника, через площадь каждого из квадратов, равна: A = βa², B = βb², C = βc²;
- Вспомним, что С = А + B, т. е. βc² = βa² + βb², это равно c² = a² + b².
Что и требовалось доказать.
Примеры
Задача 1
На рисунке видно, что длина одной стороны прямоугольного треугольника составляет 3 см, длина другой — 4 см. Найдите длину гипотенузы.
Решение:
Записать формулу
c² = a² + b²
Подставить известные значения
x² = 3² + 4²
x² = 9 + 16
x² = 25
x = √25
x = 5
Ответ: длина гипотенузы равна 5.
Задача 2
Длина одной стороны прямоугольного треугольника составляет 12 см, длина гипотенузы 13 см. Найдите длину другой стороны треугольника.
Решение:
Записать формулу
c² = a² + b²
Подставить известные значения
13² = 12² + b²
169 = 144 + b²
169 – 144 = b²
25 = b²
√25 = b
5 = b
Ответ: длина другой стороны треугольника равна 5.
Следствия из теоремы Пифагора
Это основные следствия теоремы:
- В прямоугольном треугольнике гипотенуза всегда больше любого из двух катетов.
- Если применить формулу теоремы Пифагора (c² = a² + b²) и равенство будет верным, (т.е. если квадрат одной стороны равен сумме квадратов двух других сторон), то треугольник прямоугольный.
- Из формулы теоремы Пифагора также можно посчитать любой из катетов: a² = c² − b² либо b² = c² − a².
- Любой косинус (cos) острого угла будет меньше 1.
Кто придумал теорему Пифагора
Концепция теоремы Пифагора была известна ещё в древнем Египте и Вавилоне (около 1900 г. до н. э.). Связь между катетами и гипотенузой в прямоугольном треугольнике была изображена на вавилонской глиняной табличке (которой около 4000 лет). Однако это знание стало широко использоваться лишь после того, как сам Пифагор заявил о нём (он жил в 6 веке до н. э.).
Узнайте также, что такое Теорема Виета и Аксиома.
План урока:
Теорема Пифагора
Задачи на применение теоремы Пифагора
Пифагоровы тройки
Обратная теорема Пифагора
Формула Герона
Теорема Пифагора
Попытаемся установить связь между гипотенузой и катетами прямоугольного треугольника. Пусть в некотором прямоугольном треуг-ке катеты имеют длины а и b, а гипотенуза равна с. Пусть один из острых углов треуг-ка составляет α, тогда другой острый угол должен равняться 90 – α:
Далее возьмем 4 таких треуг-ка и расположим их следующим образом:
Здесь мы прикладываем треуг-ки так, чтобы их разные катеты образовали одну сторону четырехугольника. В результате получается большой квадрат со стороной a + b. Квадратом он является по определению, ведь все его стороны одинаковы, а углы – прямые.
Изучим центральную фигуру, чью площадь мы обозначили как S2. Это четырехуг-к, причем все его стороны равны с, то есть длине гипотенузы треугольника. С другой стороны, каждый его угол можно найти, вычтя из 180° величины α и 90° – α:
Получается, что всего его углы прямые, то есть он является квадратом. Найдем его площадь:
Вернемся к большому квадрату. С одной стороны, его площадь можно записать как сумму площадей фигур, его составляющих:
Cдругой стороны, эту же площадь можно найти, просто возведя в квадрат его сторону:
Получили формулу, в которой и заключен смысл теоремы Пифагора:
Изучим несколько простейших примеров использования теоремы Пифагора.
Задание. Длины катетов прямоугольного треугольника составляют 5 и 12. Определите длину гипотенузы.
Решение. Запишем теорему Пифагора:
Задание. Длина катета треугольника составляет 3, а гипотенузы – 5. Какова длина другого катета?
Решение: На это раз нам известен один из катетов а = 3 и гипотенуза с = 5. Подставим в теорему Пифагора эти числа:
Теорема Пифагора имеет огромное значение для геометрии и смежных дисциплин. Приведенное здесь ее доказательство является одним из простейших, но отнюдь не единственным. Сегодня человечеству известно 367 различных доказательств теоремы Пифагора, что лишь показывает ее огромную значимость.
На самом деле Пифагор, известный древнегреческий математик, не был первым, кто обнаружил это равенство. Пифагор родился примерно в 570 г. до н. э., однако ещё египтяне знали про прямоугольный треуг-к со сторонами 3, 4 и 5. Поэтому его часто именуют египетским треугольником.
Также вычислять стороны прямоугольного треуг-ка умели и в Вавилоне уже за 1000 лет до рождения Пифагора. Вероятно, Пифагор узнал о формуле от вавилонян, а сам лишь вывел ее доказательство (вавилоняне не утруждали себя необходимостью доказывать теоремы геометрии). Утверждается, что Пифагор принес сделал жертвоприношение в размере 100 быков после того, как смог доказать теорему.
Задание. Вычислите гипотенузу равнобедренного прямоугольного треуг-ка, чьи катеты имеют единичную длину.
Решение. В теорему Пифагора вместо букв a и b подставим единицу:
Обратите внимание, что в данной задаче в качестве длины гипотенузы прямоугольного треугольника получилось иррациональное число. Исторически именно при решении подобной задачи люди (это были ученики Пифагора) впервые столкнулись с иррациональными числами. Перед дальнейшим изучением темы есть смысл вспомнить основные правила вычислений с квадратными корнями.
Задание. На рисунке построен произвольный квадрат. Предложите способ, как построить квадрат с вдвое большей площадью.
Решение. Проведем в исходном квадрате диагональ. Далее построим новый квадрат со стороной, равной этой гипотенузе:
Докажем, что получившийся квадрат (его стороны отмечены синим цветом) вдвое больше исходного квадрата. Пусть сторона изначального квадрата равна х.Тогда его площадь составляет х2. Диагональ разбивает квадрат на два прямоугольных треуг-ка, в которых она является гипотенузой.
Запишем для одного из них теорему Пифагора:
Но площадь квадрата равна его стороне, возведенной во вторую степень, поэтому величина с2– это площадь большого (на рисунке – синего)квадрата, а х2 – площадь маленького:
Подставим эти выражения в формулу, выведенную из теоремы Пифагора, и получим, что площадь большего квадрата ровно вдвое больше:
Задание. Найдите площадь равнобедренного прямоугольного треуг-ка, гипотенуза которого имеет длину 10.
Решение. Обозначим катеты переменной х, тогда теорема Пифагора будет выглядеть как уравнение:
Задание. Один из острых углов прямоугольного треугольника составляет 30°, а его гипотенуза равна 10. Найдите оба катета.
Решение. Мы знаем, что в прямоугольном треуг-ке с острым углом 30° гипотенуза вдвое длиннее меньшего катета (он как раз лежит против угла 30°), мы можем найти этот катет:
10:2 = 5
Другой катет находим с помощью теоремы Пифагора:
Задачи на применение теоремы Пифагора
Теорема Пифагора используется в огромном количестве геометрических задач. С ее помощью можно находить диагонали некоторых четырехуг-ков, длины высот, вычислять площади.
Задание. Стороны прямоуг-ка имеют длину 8 и 15 см. Найдите длину его диагонали.
Решение. Рассмотрим произвольный прямоугольник АВСD. Если в нем провести диагональ ВD, то получится прямоугольный треуг-к АВD. Пусть АВ = 15, АD = 8. Запишем теорему Пифагора для ∆АВD:
Задание. В равнобедренном треуг-ке основание имеет длину 16 см, а боковые стороны составляют 17 см. Найдите длину высоты, проведенной к основанию этого треуг-ка, а также площадь треуг-ка.
Решение. Напомним, что высота, опущенная к основанию равнобедренного треуг-ка, одновременно является и медианой, и биссектрисой. Это значит, что Н – середина АВ. Тогда можно найти длину отрезков АН и НВ:
Теперь можно рассмотреть ∆АСН. Он прямоугольный, и нам известно его гипотенуза (она является боковой стороной ∆АВС и по условию равна 17 см) и катет АН. Тогда можно найти и второй катет, то есть высоту СН:
Задание. Высота равностороннего треуг-ка составляет 4 см. Найдите его сторону.
Решение. Напомним, что в равностороннем треуг-ке все углы равны 60°. Также учтем, что высота в равностороннем треуг-ке является также и биссектрисой и медианой:
Рассмотрим ∆АСН. Он прямоугольный, и один из его углов составляет 60°. Значит, другой угол составляет 30°. Но в таком треуг-ке гипотенуза вдвое больше катета, лежащего против ∠30°:
Обратите внимание, мы специально домножили дробь на корень из 3, чтобы корень оказался в числителе, а не знаменателе. Т.к. в таком виде проще работать с квадратными корнями.
Итак, мы нашли АН. Теперь можно найти сторону АС, которая вдвое длиннее:
Задание. Составьте формулу для нахождения площади равностороннего треуг-ка, если известна только его сторона.
Решение. Обозначим сторону треуг-ка буквой а. Для вычисления площади необходимо найти высоту:
Как и в предыдущей задаче, отрезок АС вдвое длиннее АН:
Высоту мы нашли. Осталось найти площадь:
Задание. В прямоугольном треуг-ке, катеты которого имеют длину 60 и 80, проведена высота к гипотенузе. Найдите высоту гипотенузы, а также длину отрезков, на которые эта высота разбивает гипотенузу.
Решение. Найдем длину гипотенузы ВС:
Осталось найти длины отрезков СН и НВ. Для этого необходимо записать теорему Пифагора для ∆АСН и ∆АНВ, которые являются прямоугольными. Начнем с ∆АСН:
Аналогично работаем и с ∆АНВ:
Можно проверить себя. Отрезки НВ и СН вместе составляют отрезок СВ, поэтому должно выполняться равенство:
Задание. Диагонали ромба равны 10 и 24 см. Чему равна его сторона?
Пусть в ромбе АВСD диагонали пересекаются в точке О, причем АС = 24 см, а ВD = 10 см.Напомним, что диагонали ромба пересекаются под углом 90° и делятся при этом на одинаковые отрезки. Следовательно, ∆АВО прямоугольный. Найдем его катеты:
Задание. Основания равнобедренной трапеции имеют длину 20 и 10, а боковая сторона имеет длину 13. Найдите площадь трапеции.
Решение. Опустим на большее основание две высоты:
В итоге получили прямоуг-к АВКН. Его противоположные стороны одинаковы, поэтому
∆АНD и ∆ВКС равны друг другу, ведь это прямоугольные треуг-ки с одинаковой гипотенузой (АD = ВС, ведь это равнобедренная трапеция) и равным катетом (АН = ВК как стороны прямоуг-ка). Это значит, что DH = КС. Но эти отрезки вместе с НК составляют CD. Это позволяет найти DH и KC:
Зная высоту трапеции и ее основания, легко найдем и ее площадь:
Пифагоровы тройки
Возможно, вы уже заметили, что в большинстве школьных задач на применение теоремы Пифагора используются треуг-ки с одними и теми же сторонами. Это треуг-к, чьи стороны имеют длины
Их использование обусловлено тем, что все их стороны выражаются целыми числами. В задачах же, например, с равнобедренным прямоугольным треуг-ком хотя бы одна из сторон обязательно оказывается иррациональным числом.
Прямоугольные треуг-ки, у которых все стороны являются целыми, называют пифагоровыми треугольниками, а длины их сторон именуются пифагоровыми тройками. Получается, что пифагоровыми называются такие тройки натуральных чисел а, b и с, которые при подстановке в уравнение
обращают его в справедливое равенство.
Для удобства такие тройки иногда записывают в скобках.
Например, тройка чисел (3; 4; 5)– пифагорова, так как
Задание. Определите, какие из следующих троек чисел являются пифагоровыми:
Несложно догадаться, что пифагоровых троек существует бесконечно много. Действительно, возьмем тройку (3; 4; 5). Далее умножим все числа, составляющие ее, на два, и получим новую тройку (6; 8; 10), которая также пифагорова. Умножив исходную тройку на 3, получим тройку (9; 12; 15), и она снова пифагорова. Вообще, умножая числа пифагоровой тройки на любое натуральное число, всегда будем получать новую пифагорову тройку. А так как натуральных чисел бесконечно много, то и троек Пифагора также бесконечное количество.
Отдельно выделяют понятие примитивной пифагоровой тройки. Эта такая тройка, числа которой являются взаимно простыми, то есть не имеют общих делителей. Другими словами, примитивная тройка НЕ может быть получена из другой тройки простым умножением ее чисел на натуральное число. В частности, тройка (3; 4; 5)является примитивной, а «производные» от нее тройки (6; 8; 10) и (9; 12; 15) уже не примитивные.
Интересно, что примитивных троек также бесконечно много. Ещё Евклид предложил алгоритм для их поиска, который, однако, не изучается в рамках школьного курса геометрии.
Задание. Докажите, что у любого прямоугольного треуг-ка с целыми длинами сторон все эти длины не могут быть нечетными числами.
Предположим, что такой треуг-к существует. Пусть его стороны равны a, b и c, и эти числа нечетны. Тогда должно выполняться уравнение:
Заметим, что квадрат нечетного числа также является нечетным числом. Поэтому числа а2, b2 и с2 – нечетные. Однако сумма нечетных чисел является уже четной. Поэтому выражение а2 + b2 четное. Таким образом, получается, что равенство
не может быть верным, ведь его левая часть четна, а правая – нечетна. Поэтому пифагоров треуг-к с тремя нечетными сторонами существовать не может.
Обратная теорема Пифагора
По теореме Пифагора из того факта, что в треуг-ке есть прямой угол, следует следующее соотношение между длинами его сторон:
Оказывается, верно и обратное: если в произвольном треуг-ке одна сторона (очевидно, большая из них) равна сумме квадратов двух других сторон, то из этого следует, что такой треуг-к является прямоугольным.
Это утверждение называют обратной теоремой Пифагора. Докажем её. Пусть есть некоторый ∆АВС, для сторон которого выполняется равенство
Так как ∆А1В1С1 прямоугольный, то для него справедлива теорема Пифагора. Найдем с ее помощью гипотенузу:
а именно это мы и доказываем.
Уточним разницу между собственно теоремой Пифагора и только что доказанной обратной ей теореме. В каждой теореме есть две ключевые части:
1) некоторое условие, которое описывает какое-то геометрическое построение;
2) вывод (или заключение), который делается для условия.
В самой теореме Пифагора в качестве условия описывается прямоугольный треугольник. Для него делается вывод – катеты, возведенные в квадрат, в сумме дадут квадрат гипотенузы.
В обратной же теореме условие и вывод меняются местами. В роли условия описывается треугольник, у которого большая сторона, возведенная во 2-ую степень, равна сумме двух других сторон, также возведенная в квадрат. Для этого описания делается вывод – такой треугольник обязательно должен быть прямоугольным.
Заметим, что не всякая обратная теорема является справедливой. Например, одна из простейших теорем гласит – если углы вертикальные, то они равны. Сформулируем обратную теорему – если углы равны, то они вертикальные. Понятно, что это неверное утверждение.
Задание. Выясните, является ли треуг-к прямоугольным, если его стороны имеют длины:
Решение. Здесь надо просто проверить, являются ли эти числа пифагоровыми тройками. Если являются, то соответствующий треуг-к окажется прямоугольным.
Задание. В ∆КМР проведена биссектриса МН. Её длина 12. КМ = 13 и КН = 5. Найдите МР.
Решение. Рассмотрим ∆МНК. Его стороны равны 5, 12 и 13. Но это одна из пифагоровых троек:
Отсюда следует, что треуг-к прямоугольный, причем МК – гипотенуза (гипотенуза – это длиннейшая сторона). Тогда ∠Н = 90°. Но это означает, что биссектриса МН ещё и высота. Но если в треугольнике одна линия одновременно и медиана, и высота, то это равнобедренный треуг-к, причем КР – его основание. Тогда
Формула Герона
Невозможно построить два треугольника с тремя одинаковыми сторонами. Это значит, что теоретически знания трех сторон треугольника достаточно, чтобы найти его площадь. Но как это сделать? Здесь может помочь формула Герона, которая выводится с помощью теоремы Пифагора.
Пусть стороны треуг-ка равны а, b и с, причем с не меньше, чем а и b. В любом треуг-ке есть хотя бы два острых угла, а тупой угол, если он есть, лежит против большей стороны. Это значит, что оба прилегающих кс угла – острые. Отсюда следует, что высота, опущенная нас, будет лежать внутри треуг-ка. Обозначим длину этой высоты как h. Пусть она разобьет сторону сна два отрезка длиной х и у:
По рисунку можно записать три уравнения:
Левая часть одинакова в обоих уравнениях, значит, равны и правые:
С учетом этого выразим h2:
Мы уже выразили высоту (точнее, ее квадрат) через длины сторон. Однако обычно в этой формуле производят замену и вводят число р, равное полупериметру треуг-ка, то есть
Площадь треуг-ка вычисляется по формуле:
Запоминать вывод формулы Герона не надо. Саму формулу всегда можно найти в любом справочнике по геометрии или в Интернете. Достаточно запомнить, что площадь любого треуг-ка можно вычислить, если известны все его стороны.
Задание. Стороны треуг-ка имеют длину 9, 7 и 8 см. Какова его площадь?
Решение. Пусть а = 9; b = 8; с = 7. Для использования формулы Герона сначала вычислим половину периметра треуг-ка:
Итак, сегодня мы узнали о теореме Пифагора. Она представляет собой соотношение, которое связывает катеты и гипотенузу в прямоугольном треуг-ке. Это соотношение помогает в исследованиях других фигур – квадратов, параллелограммов, трапеций. Также с его помощью выведена формула Герона, которая позволяет вычислять площадь треуг-ка, зная только длины его сторон.
Доказательства теоремы Пифагора
Содержание:
- Теорема Пифагора — краткая история
- Формулировка теоремы
- Уравнение
- Доказательство через подобные треугольники
-
Другие способы доказательства теоремы
- Методом площадей
- Методом бесконечных малых
- Следствие из теоремы Пифагора
-
Применение теоремы
- Расстояние между точками
- Евклидова метрика
- Теория чисел
- Примеры решения задач
Этот одна из базовых теорем евклидовой геометрии, определяющая соотношение между сторонами в прямоугольном треугольнике. Несложность доказательства и широкое применение обеспечили ей массовую известность.
Теорема Пифагора — краткая история
Соотношение между сторонами прямоугольного треугольника в том или ином виде было известно многим древним цивилизациям (египетской, шумерской и др.), но первая известная формулировка принадлежит греческому философу и математику Пифагору в V в. до н.э. Об этом известно из труда «Начала», который написал Евклид приблизительно в 300 г. до н. э.
Теорема Пифагора используется для доказательства многих других теорем геометрии. Математиками разработано несколько обобщений, например, для произвольных треугольников, для многомерных пространств. При этом, теорема Пифагора выполняется только в евклидовых геометриях, в иных случаях она не действует.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Формулировка теоремы
Изначальная (геометрическая) формулировка Пифагора гласила:
Теорема
В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.
Позднее появился алгебраический вариант:
Теорема
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
Оба этих определения эквивалентны. Алгебраическое более элементарно, так как оно не оперирует понятием площади, поэтому теорему в этом виде можно проверить просто – измерив длину гипотенузы и катетов, сделав затем необходимое вычисление.
Уравнение
В виде формулы теорема Пифагора записывается следующим образом:
a2+b2=c2, где:
- а и b – длины двух катетов,
- с – длина гипотенузы.
Доказательство через подобные треугольники
Это доказательство – одно из наиболее простых, так как является прямым следствием аксиом и не оперирует понятием площади.
Имеется прямоугольный треугольник ABC, где C = 90º. Высота, проведенная из прямого угла пересечет гипотенузу в точке H.
Полученные треугольники ACH и CHB подобны треугольнику АВС по двум углам. Отсюда получаем:
CB/AB=HB/CB, AC/AB=AH/AC
Это соответствует:
CB2=ABxHB, AC2=ABxAH
Сложив между собой квадраты катетов, получаем:
AC2+CB2=ABx(HB+AH)=AB2
Это и требовалось доказать.
Другие способы доказательства теоремы
Зафиксировано более 400 доказательств теоремы Пифагора. Это связано с простотой ее формулировки, популярностью и широким применением в геометрии. К числу распространенных доказательств относятся методы площадей и бесконечно малых.
Методом площадей
Первоначально требуется дополнительное построение – рисуется квадрат, каждая из сторон которого равна сумме длин катетов a и b. Отложив эти длины, проведем гипотенузы у прямоугольных треугольников:
Очевидно, что внутренний четырехугольник, образованный четырьмя гипотенузами, будет квадратом, так как все его стороны равны, а углы прямые. Последнее следует из того, что сумма двух углов треугольника, построенных на гипотенузе равна 90º. Вычитая это значение из развернутого угла в 180º получаем как раз прямой угол.
Площадь внешнего квадрата включает в себя:
- сумму площадей четырех прямоугольных треугольников;
- площадь внутреннего квадрата.
Изменив расположение отрезков на сторонах квадрата и проведя новое построение, можно получить два внутренних квадрата и два прямоугольника. При этом, прямоугольники всегда будут равны, а квадраты будут равными только в частном случае – при равенстве сторон a и b.
Значит:
4ab2=2ab ⇒ c2=a2+b2, что и нужно было доказать.
Методом бесконечных малых
Данное доказательство делается с помощью интегрального исчисления. Рассматривается ситуация для бесконечно малых приращений сторон треугольника, составляется дифференциальное уравнение и находится его производная.
В начале вводится величина d. На это значение увеличивается катет а и гипотенуза с, а катет b остается неизменным. Отсюда имеем
da/ca = c/a, b = const
Разделяя переменные составляется дифференциальное уравнение:
c x dc = a x da
Для его решения необходимо проинтегрировать обе части, при этом получается соотношение:
c2 = a2 + const
определяя из начальных условий константу интегрирования, получим:
a = 0 ⇒ c2 = b2 = const
Таким образом мы определяем, что
c2 = a2 + b2
Теорема доказана!
Следствие из теоремы Пифагора
Его так же называют обратной теоремой Пифагора:
Определение
Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то такой треугольник прямоугольный.
В алгебраическом виде это можно представить так:
c2=a2+b2, где:
- c – гипотенуза треугольника;
- a и b – его катеты.
Применение теоремы
Благодаря своей универсальности, теорема Пифагора находит себе применение в разных областях математики и других наук. К числу преимуществ ее применения относится прозрачность производимых вычислений.
Расстояние между точками
Одно из главных применений – это определение расстояния между двумя точками в прямоугольной системе координат:
( s=sqrt{(a-с)^{2} + (b-d)^{2}}), где:
- s – необходимое расстояние;
- (a; b) и (с; d) – координаты двух точек.
Евклидова метрика
В этом случае с помощью теоремы Пифагора находится расстояние в многомерном пространстве:
(d(p,;q)=sqrt{sum_{i=1}^n{(p_i-q_i)}^2}), где:
- n – число измерений данного пространства;
- d (p, q) – необходимое расстояние;
- p(p1,….,pn) и q(q1,….,qn) – две точки, расстояние между которыми нужно найти.
Теория чисел
Арифметическим аналогом теоремы Пифагора стали пифагоровы тройки чисел.
Определение
Пифагоровы тройки – группа из трех натуральных чисел x, y и z, удовлетворяющих равенству x2+y2=z2.
Например, к таким числам можно отнести группы (3, 4, 5), (6, 8, 10), (5, 12, 13) и другие. Пифагоровы тройки широко применяются в разных областях деятельности, например, в программировании и криптографии.
Примеры решения задач
Задача 1
В прямоугольном треугольнике АВС, катет ВС = 36 см, гипотенуза АВ = 85 см. Необходимо найти катет АС.
Решение
По теореме Пифагора ВС2+АС2=АВ2, значит
(АС;=;sqrt{АВ^2;-;АС^2})
Для нахождения ответа подставим в формулу исходные значения:
(АС;=;sqrt{85^2;-;36^2};=;sqrt{7225;-;1296;}={;sqrt{5929};=;77;})
Задача 2
Является ли прямоугольным треугольник со сторонами 46, 56 и 76 см.
Решение. Если указанный треугольник прямоугольный, то две меньшие стороны в 46 и 56 см – это катеты, а большая, в 76 см – гипотенуза. По теореме Пифагора сумма квадратов катетов должна быть равна квадрату гипотенузы. Проверим это:
- 46²+56²= 5252;
- 76²= 5776;
- 5252 ≠ 5776, значит, указанный треугольник не является прямоугольным.
Задача 3.
Диагонали ромба ABCD равны 24 и 18 см. Чему равна сторона ромба.
Решение
Диагонали ромба AC и BD пересекаются под прямым углом и точкой пересечения O делятся пополам. В этом виде задача сводится к поиску гипотенузы АВ в прямоугольном треугольнике ABO с катетами АО=24/2=12 см и ВО=18/2=9 см.
По теореме Пифагора:
АО2+BO2=AB2, значит
(АС;=;sqrt{85^2;-;36^2};=;sqrt{7225;-;1296;}={;sqrt{5929};=;77;})
Загрузить PDF
Загрузить PDF
Теорема Пифагора связывает три стороны прямоугольного треугольника одной формулой, которой пользуются до сих пор. Теорема гласит, что в прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы: a2 + b2 = c2, где a и b — катеты треугольника (стороны, пересекающиеся под прямым углом), с — гипотенуза треугольника. Теорема Пифагора применима во многих случаях, например, при помощи этой теоремы легко найти расстояние между двумя точками на координатной плоскости.
-
1
Убедитесь, что данный вам треугольник является прямоугольным, так как теорема Пифагора применима только к прямоугольным треугольникам. В прямоугольных треугольниках один из трех углов всегда равен 90 градусам.
- Прямой угол в прямоугольном треугольнике обозначается значком в виде квадрата, а не в виде кривой, которая обозначает непрямые углы.
-
2
Обозначьте стороны треугольника. Катеты обозначьте как «а» и «b» (катеты — стороны, пересекающиеся под прямым углом), а гипотенузу — как «с» (гипотенуза — самая большая сторона прямоугольного треугольника, лежащая напротив прямого угла).
-
3
Определите, какую сторону треугольника требуется найти. Теорема Пифагора позволяет найти любую сторону прямоугольного треугольника (если известны две другие стороны). Определите, какую сторону (a, b, c) необходимо найти.
- Например, дана гипотенуза, равная 5, и дан катет, равный 3. В этом случае необходимо найти второй катет. Мы вернемся к этому примеру позднее.
- Если две другие стороны неизвестны, необходимо найти длину одной из неизвестных сторон, чтобы иметь возможность применить теорему Пифагора. Для этого используйте основные тригонометрические функции (если вам дано значение одного из непрямых углов).
-
4
Подставьте в формулу a2 + b2 = c2 данные вам значения (или найденные вами значения). Помните, что a и b — это катеты, а с — гипотенуза.
- В нашем примере напишите: 3² + b² = 5².
-
5
Возведите в квадрат каждую известную сторону. Или же оставьте степени — вы можете возвести числа в квадрат позже.
- В нашем примере напишите: 9 + b² = 25.
-
6
Обособьте неизвестную сторону на одной стороне уравнения. Для этого перенесите известные значения на другую сторону уравнения. Если вы находите гипотенузу, то в теореме Пифагора она уже обособлена на одной стороне уравнения (поэтому делать ничего не нужно).
- В нашем примере перенесите 9 на правую сторону уравнения, чтобы обособить неизвестное b². Вы получите b² = 16.
-
7
Извлеките квадратный корень из обеих частей уравнения. На данном этапе на одной стороне уравнения присутствует неизвестное (в квадрате), а на другой стороне — свободный член (число).
- В нашем примере b² = 16. Извлеките квадратный корень из обеих частей уравнения и получите b = 4. Таким образом, второй катет равен 4.
-
8
Используйте теорему Пифагора в повседневной жизни, так как ее можно применять в большом числе практических ситуаций. Для этого научитесь распознавать прямоугольные треугольники в повседневной жизни — в любой ситуации, в которой два предмета (или линии) пересекаются под прямым углом, а третий предмет (или линия) соединяет (по диагонали) верхушки двух первых предметов (или линий), вы можете использовать теорему Пифагора, чтобы найти неизвестную сторону (если две другие стороны известны).
- Пример: дана лестница, прислоненная к зданию. Нижняя часть лестницы находится в 5 метрах от основания стены. Верхняя часть лестницы находится в 20 метрах от земли (вверх по стене). Какова длина лестницы?
- «в 5 метрах от основания стены» означает, что а = 5; «находится в 20 метрах от земли» означает, что b = 20 (то есть вам даны два катета прямоугольного треугольника, так как стена здания и поверхность Земли пересекаются под прямым углом). Длина лестницы есть длина гипотенузы, которая неизвестна.
- a² + b² = c²
- (5)² + (20)² = c²
- 25 + 400 = c²
- 425 = c²
- с = √425
- с = 20,6. Таким образом, приблизительная длина лестницы равна 20,6 метров.
- «в 5 метрах от основания стены» означает, что а = 5; «находится в 20 метрах от земли» означает, что b = 20 (то есть вам даны два катета прямоугольного треугольника, так как стена здания и поверхность Земли пересекаются под прямым углом). Длина лестницы есть длина гипотенузы, которая неизвестна.
Реклама
- Пример: дана лестница, прислоненная к зданию. Нижняя часть лестницы находится в 5 метрах от основания стены. Верхняя часть лестницы находится в 20 метрах от земли (вверх по стене). Какова длина лестницы?
-
1
Выберите две точки на координатной плоскости. По теореме Пифагора можно вычислить длину отрезка, соединяющего две точки на координатной прямой. Для этого необходимо знать координаты (х,у) каждой точки.
- Чтобы найти расстояние между двумя точками, вы будете рассматривать точки в качестве вершин треугольника, не прилежащих к прямому углу прямоугольного треугольника. Таким образом, вы сможете легко найти катеты треугольника, а затем вычислить гипотенузу, которая равна расстоянию между двумя точками.
-
2
Нанесите точки на координатную плоскость. Отложите координаты (х,у), где координата «х» откладывается по горизонтальной оси, а «у» — по вертикальной. Вы можете найти расстояние между точками без построения графика, но график позволяет визуально представить процесс ваших вычислений.
-
3
Найдите катеты треугольника. Вы можете сделать это, измерив длину катетов непосредственно на графике или с помощью формул: |x1 — x2| для вычисления длины горизонтального катета, и |y1 — y2| для вычисления длины вертикального катета, где (x1,y1) – координаты первой точки, а (x2,y2) – координаты второй точки.
- Пример: даны точки: А(6,1) и В(3,5). Длина горизонтального катета:
- |x1 — x2|
- |3 — 6|
- | -3 | = 3
- Длины вертикального катета:
- |y1 — y2|
- |1 — 5|
- | -4 | = 4
- Таким образом, в прямоугольном треугольнике а = 3 и b = 4.
- Пример: даны точки: А(6,1) и В(3,5). Длина горизонтального катета:
-
4
Используйте теорему Пифагора для нахождения гипотенузы. Расстояние между двумя точками равно гипотенузе треугольника, две стороны которого вы только что нашли. Используйте теорему Пифагора, чтобы найти гипотенузу, подставив в формулу найденные значения катетов (a и b).
- В нашем примере а = 3 и b = 4. Гипотенуза вычисляется следующим образом:
-
- (3)²+(4)²= c²
- c= √(9+16)
- c= √(25)
- c= 5. Расстояние между точками А(6,1) и В(3,5) равно 5.
-
Реклама
- В нашем примере а = 3 и b = 4. Гипотенуза вычисляется следующим образом:
Советы
- Гипотенуза всегда:
- лежит напротив прямого угла;
- является самой длинной стороной прямоугольного треугольника;
- обозначается как «с» в теореме Пифагора;
- √(х) означает «квадратный корень из х».
- Не забывайте проверять ответ. Если ответ кажется неправильным, проделайте вычисления снова.
- Еще один момент — самая длинная сторона лежит напротив наибольшего угла, а самая короткая сторона — напротив наименьшего угла.
- Выучите числа пифагоровой тройки, образующие стороны прямоугольного треугольника. Самая примитивная пифагорова тройка — это 3, 4, 5. Так, зная длину двух сторон, третью искать не придется.
- Помните, гипотенуза — всегда самая длинная сторона.
- Если дан обычный треугольник (а не прямоугольный), то требуется больше информации, чем просто длины двух сторон.
- Графики являются наглядным способом нанесения обозначений а, b и с. Если вы решаете задачу, то в первую очередь постройте график.
- Если дана длина только одной стороны, то теорему Пифагора применять нельзя. Попробуйте использовать тригонометрию (sin, cos, tan).
- Если речь идет о задаче из некого сюжета, можно смело предположить, что деревья, столбы, стены и так далее образуют прямой угол с землей, если не указано иное.
Реклама
Об этой статье
Эту страницу просматривали 136 956 раз.