Удельное сопротивление проводника как пишется

Для рассмотрения характеристик электрических параметров рассмотрим назначение приборов:

  1. сила тока в цепи определяется амперметров, который подключается последовательно с соблюдением полярности;
  2. напряжение на участке цепи измеряется вольтметром, который подключается параллельно к тому участку или прибору, на котором нужно узнать разность потенциалов или напряжения;
  3. на деревянной изолирующей подставке — устройство, имеющее провода с различными значениями сопротивления;
  4. значение тока можно регулировать реостатом.

сопротивление2.svg

Рис. (1). Цепь с возможностью выбора проводника

Определим физические параметры (величины), влияющие на значение сопротивления проводника.

Эксперимент (1). Физическая величина — длина (прямая пропорциональность).

Эксперимент (2). Физическая величина — площадь поперечного сечения (обратная пропорциональность).

Эксперимент (3). Материал проводника, физическая величина — удельное сопротивление проводника (прямая пропорциональность).

Примечание: «эксперимент» следует понимать как включение в электрическую цепь проводников с конкретными одинаковыми и различающимися физическими параметрами и сравнение значений сопротивлений данных проводников.

Впервые зависимость сопротивления проводника от вещества, из которого он изготовлен, и от длины проводника обнаружил немецкий физик Георг Ом. Он установил:

Сопротивление проводника напрямую зависит от его длины и материала,  но обратным образом зависит от площади поперечного сечения проводника.

Обрати внимание!

Из этого можно сделать вывод: чем длиннее проводник, тем больше его электрическое сопротивление.
Сопротивление проводника обратно пропорционально площади его поперечного сечения, т.е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причём у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход её в другой сосуд по толстой трубке произойдёт гораздо быстрее, чем по тонкой, т.е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т.е. первый оказывает ему меньшее сопротивление, чем второй.

Удельное сопротивление проводника зависит от строения вещества. Электроны при движении внутри металлов взаимодействуют с атомами (ионами), находящимися в узлах кристаллической решётки. Чем выше температура вещества, тем сильнее колеблются атомы и тем больше удельное сопротивление проводников.

Удельное электрическое сопротивление — физическая величина (rho), характеризующая свойство материала оказывать сопротивление прохождению электрического тока:

ρ=R⋅Sl

, где удельное сопротивление проводника обозначается греческой буквой (rho) (ро), (l) — длина проводника, (S) — площадь его поперечного сечения.

Определим единицу удельного сопротивления. Воспользуемся формулой

ρ=R⋅Sl

.

Как известно, единицей электрического сопротивления является (1) Ом, единицей площади поперечного сечения проводника — (1) м², а единицей длины проводника — (1) м. Подставляя в формулу, получаем:

1 Ом ⋅1м21 м=1 Ом ⋅1 м

, т.е. единицей удельного сопротивления будет 

Ом⋅м

.

На практике (например, в магазине при продаже проводов) площадь поперечного сечения проводника измеряют в квадратных миллиметрах, В этом случае единицей удельного сопротивления будет:

1 Ом ⋅1мм21 м

, т.е.

Ом⋅мм2м

.

В таблице приведены значения удельного сопротивления некоторых веществ при (20) °С.

Безымянный.png

Удельное сопротивление увеличивается пропорционально температуре.

При нагревании колебания ионов металлов в узлах металлической решётки увеличиваются, поэтому свободного пространства для передвижения электронов становится меньше. Электроны чаще отбрасываются назад, поэтому значение тока уменьшается, а значение сопротивления увеличивается.

Обрати внимание!

Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь. А это значит, что медь и серебро лучше остальных проводят электрический ток.

При проводке электрических цепей, например, в квартирах не используют серебро, т.к. это дорого. Зато используют медь и алюминий, так как эти вещества обладают малым удельным сопротивлением.
Порой необходимы приборы, сопротивление которых должно быть большим. В этом случаем необходимо использовать вещество или сплав с большим удельным сопротивлением. Например, нихром.

Полиэтилен, дерево, стекло и многие другие материалы отличаются очень большим удельным сопротивлением. Поэтому они не проводят электрический ток. Такие материалы называют диэлектриками или изоляторами.

Очень часто нам приходится изменять силу тока в цепи. Иногда мы ее увеличиваем, иногда уменьшаем. Водитель трамвая или троллейбуса изменяет силу тока в электродвигателе, тем самым увеличивая или уменьшая скорость транспорта. 

Реостат — это резистор, значение сопротивления которого можно менять.

Реостаты используют в цепи для изменения значений силы тока и напряжения.

Реостат на рисунке состоит из провода с большим удельным сопротивлением (никелин, нихром), по которому передвигается подвижный контакт (C) по длине провода, плавно изменяя сопротивление реостата. Сопротивление такого реостата пропорционально длине провода между подвижным контактом (C) и неподвижным (A). Чем длиннее провод, тем больше сопротивление участка цепи и меньше сила тока. С помощью вольтметра и амперметра можно проследить эту зависимость.

1.gif

Рис. (2). Реостат с подвижным контактом

На школьных лабораторных занятиях используют переменное сопротивление — ползунковый реостат.

2.gif

Рис. (3). Ползунковый реостат

Он состоит из изолирующего керамического цилиндра, на который намотан провод с большим удельным сопротивлением. Витки проволоки должны быть изолированы друг от друга, поэтому либо проволоку обрабатывают графитом, либо оставляют на проволоке слой окалины. Сверху над проволочной обмоткой закреплен металлический стержень, по которому  перемещается ползунок. Контакты ползунка плотно прижаты в виткам и при движении изолирующий слой графиты или окалины стирается, и тогда электрический ток может проходить от витков проволоки к ползунку, через него подводиться к стержню, имеющему на конце зажим (1).

Для соединения реостата в цепь используют зажим (1) и зажим (2). Ток, поступая через зажим (2), идёт по никелиновой проволоке и через ползунок подаётся на зажим (1). Перемещая ползунок от (2) к (1), можно увеличивать длину провода, в котором течёт ток, а значит, и сопротивление реостата.

В электрических схемах реостат изображается следующим образом:

Image399.jpg

Как и любой электрический прибор, реостат имеет допустимое значение силы тока, свыше которого прибор может перегореть. Маркировка реостата содержит диапазон его сопротивления и максимальное допустимое значение силы тока.

Обрати внимание!

Сопротивление реостата нужно учитывать в параметрах электрической цепи. При минимальных значениях сопротивления ток в цепи может вывести из строя амперметр.

Существуют реостаты, в которых переключатель подключается на проводники заданной длины и сопротивления: каждая спираль реостата имеет определённое сопротивление. Поэтому плавно изменять силу тока с помощью такого прибора не получится.

Rheostat_hg.jpg

Рис. (4). Реостат с переключением

Сопротивление проводника:

R=ρ⋅lS

Из этой формулы можно выразить и другие величины:

Источники:

Рис. 1. Цепь с возможностью выбора проводника. © ЯКласс.
Рис. 4. «File:Rheostat hg.jpg» by Hannes Grobe (talk) is licensed under CC BY 3.0

Удельное электрическое сопротивление, или просто удельное сопротивление вещества характеризует его способность препятствовать прохождению электрического тока.

Единица измерения удельного сопротивления в Международной системе единиц (СИ) — Ом·м; также измеряется в Ом·см и Ом·мм²/м. Физический смысл удельного сопротивления в СИ: сопротивление однородного куска проводника длиной 1 м и площадью токоведущего сечения 1 м².

В технике часто применяется в миллион раз меньшая производная единица: Ом·мм²/м, равная 10−6 от 1 Ом·м: 1 Ом·м = 1·106 Ом·мм²/м. Физический смысл удельного сопротивления в технике: сопротивление однородного куска проводника длиной 1 м и площадью токоведущего сечения 1 кв.мм.

Величина удельного сопротивления обозначается греческой буквой rho.

Сопротивление проводника с удельным сопротивлением rho, длиной l и площадью сечения S может быть рассчитано по формуле

Содержание

  • 1 Обобщение понятия удельного сопротивления
  • 2 Удельное электрическое сопротивление металлов и сплавов, применяемых в электротехнике
  • 3 Тонкие плёнки
  • 4 См. также
  • 5 Ссылки

Обобщение понятия удельного сопротивления

Удельное сопротивление можно определить также для неоднородного материала, свойства которого меняются от точки к точке. В этом случае оно является не константой, а скалярной функцией — коэффициентом, связывающим напряжённость электрического поля vec{E}(vec{r}) и плотность тока vec{J}(vec{r}) в данной точке vec{r}:

vec{E}(vec{r}) = rho(vec{r})vec{J}(vec{r}).

Эта формула справедлива для неоднородного, но изотропного вещества. Вещество может быть и анизотропно (большинство кристаллов, намагниченная плазма и т. д.), то есть его свойства зависят от направления (вообще говоря, в нём векторы тока и напряжённости электрического поля в данной точке не сонаправлены). В этом случае удельное сопротивление является зависящим от координат тензором второго ранга:

E_j(vec{r}) = sum_{i=1}^3rho_{ij}(vec{r})J_i(vec{r}).

Удельное электрическое сопротивление металлов и сплавов, применяемых в электротехнике

Металл ρ, Ом·мм2
Серебро 0,016
Медь 0,0175
Золото 0,023
Алюминий 0,0271
Иридий 0,0474
Молибден 0,054
Вольфрам 0,055
Цинк 0,059
Никель 0,087
Железо 0,098
Платина 0,107
Олово 0,12
Свинец 0,205
Титан 0,5562 — 0,7837
Висмут 1,2
Сплав ρ, Ом·мм2
Сталь 0,1400
Никелин 0,42
Константан 0,5
Манганин 0,43…0,51
Нихром 1,05…1,4
Фехраль 1,15…1,35
Хромаль 1,3…1,5
Латунь 0,07…0,08
Другие вещества ρ, Ом·мм2
Сжиженные углеводородные газы 0,84·1010

Значения даны при температуре t = 20° C. Сопротивления сплавов зависят от их точного состава и могут варьироваться.

Тонкие плёнки

Удельное сопротивление в тонких плёнках (когда толщина образца много меньше расстояния между контактами) характеризуется «удельным сопротивлением на квадрат», R_{Sq}. В этом случае удельное сопротивление не зависит от линейных размеров образца если он имеет форму прямоугольника, а только от отношения (длины к ширине) L/W: R_{Sq}=R W/L, где R — измеренное сопротивление. В случае если форма образца отличается от прямоугольной используют метод ван дер Пау.

См. также

  • Электрическое сопротивление
  • Сверхпроводимость
  • Закон Ома
  • Удельная проводимость
  • Отрицательное сопротивление
  • Импеданс

Ссылки

Удельное сопротивление проводника


Удельное сопротивление проводника

4.7

Средняя оценка: 4.7

Всего получено оценок: 118.

4.7

Средняя оценка: 4.7

Всего получено оценок: 118.

Проводниками в физике называют материалы, общим свойством которых является способность хорошо проводить электрический ток. Большое количество свободных носителей электрического заряда (электронов и ионов), имеющееся в проводниках, при воздействии на них электрического поля, создает направленное, упорядоченное перемещение, то есть электрический ток. Величины токов для разных проводников с одинаковыми геометрическими размерами и одинаковой напряженностью электрического поля могут существенно отличаться. Физическая величина, характеризующая способность различных материалов по разному проводить электрический ток, называется удельным электрическим сопротивлением.

Вспомним закон Ома

Основным законом, устанавливающим связь между электрическим напряжением U, током I и сопротивлением R, является закон Ома:

$ I = {U over R} $ (1).

Закон был открыт немецким ученым Георгом Омом в 1826 г. экспериментальным путем. Ученый измерял величину тока при различных напряжениях, которое он варьировал с помощью гальванических батарей, меняя их количество.

От чего зависит величина сопротивления R ?

Дальнейшие эксперименты показали, что:

  • Величина R прямо пропорциональна длине проводника, то есть чем больше длина проводник L, тем больше тем больше его сопротивление, причем зависимость линейная, то есть R L;
  • Величина R , обратно пропорциональна поперечной площади проводника S, то есть $ R ∼ {1over S } $;
  • Поскольку у проводников из разных материалов с одинаковыми размерами S и L сопротивления отличались, то была введена физическая величина, названная удельным сопротивлением ρ.

Рис. 1. Проводник длиной L, поперечным сечением S и током I

Тогда выражение для величины сопротивления приобрело следующий вид:

$ R = ρ * {Lover S} $ (2).

Из уравнения (2) можно получить формулу удельного сопротивления проводника:

$ ρ = R * { S over L } $ (3).

Пользуясь формулой (3), можно дать следующее определение: удельное сопротивление — это величина, равная сопротивлению проводника длиной один метр с площадью поперечного сечения в один метр квадратный. Тогда в Международной системе СИ получаем для ρ размерность [Ом*м]:

$ [ρ] = {{[Oм]*[м^2]}over [м]} = [Oм]*[м] $ (4).

Оказалось, для практического применения величину ρ удобнее определить как сопротивление проводника длиной один метр с площадью поперечного сечения в один миллиметр квадратный.

$ [ρ] = {{[Oм]*[мм^2]}over [м]} $ (5).

Тогда числовые значения ρ, становятся более удобными для восприятия. Например, удельное сопротивление железа ρж = 130000 (Ом*м) = 0,13 (Ом*мм2)/м. В справочниках данные приводятся в этом в последнем, более компактном представлении.

Температурная зависимость ρ(Т)

Для большинства материалов проведены многочисленные эксперименты по измерению значений удельных сопротивлений. Данные по большинству проводников можно найти в справочных таблицах.

Удельное сопротивление металлов и сплавов, Ом*мм2

(при Т = 200С)

Серебро

0,016

Бронза (сплав)

0,1

Медь

0,017

Олово

0,12

Золото

0,024

Сталь (сплав)

0,12

Алюминий

0,028

Свинец

0,21

Иридий

0,047

Никелин (сплав)

0,42

Молибден

0,054

Манганин (сплав)

0,45

Вольфрам

0,055

Константан (сплав)

0,48

Цинк

0,06

Титан

0,58

Латунь (сплав)

0,071

Ртуть

0,958

Никель

0,087

Нихром (сплав)

1,1

Платина

0,1

Висмут

1,2

Чаще всего приводятся значения ρ при нормальной, то есть комнатной температуре 200С. Но оказалось, что при повышении температуры удельное сопротивление возрастает по линейному закону в соответствии с формулой:

$ ρ(Т) = ρ0 * (1 + α*T)$ (6),

где: ρ0 — удельное сопротивление проводника при температуре 00С, α температурный коэффициент удельного сопротивления, который тоже имеет для каждого вещества свое, индивидуальное, значение. Из формулы (6) следует, что коэффициент α имеет размерность [ 0C-1 ] или [ 10C ].

Рис. 2. Температурная зависимость удельного сопротивления проводника

В соответствии с законом Джоуля-Ленца при протекании электрического тока т выделяется тепло, а значит происходит рост температуры проводника. Кроме этого, в зависимости от области применения, электрические приборы могут работать как при пониженных (минусовых), так и при высоких температурах. Для точных расчетов электрических цепей необходимо учитывать зависимость ρ(Т). Величину α для конкретного материала можно узнать из справочной литературы.

Рис. 3. Справочные значения температурного коэффициента удельного сопротивления проводников

Заключение

Что мы узнали?

Итак, мы узнали, что величина, характеризующая способность различных материалов по разному проводить электрический ток, называется удельным электрическим сопротивлением. Приведена формула (3) для определения удельного сопротивления проводника ρ. Линейная температурная зависимость удельного сопротивления ρ(Т) описывается формулой (6).

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Максим Разуваев

    3/10

Оценка доклада

4.7

Средняя оценка: 4.7

Всего получено оценок: 118.


А какая ваша оценка?

Удельное сопротивление

Содержание:

  • Что такое удельное сопротивление
  • Как образуется в материале проводимость
  • Единицы измерения
  • Формула расчета удельного сопротивления
  • От чего зависит сопротивление

    • Связь с удельной проводимостью
  • Удельное сопротивление различных материалов

Что такое удельное сопротивление

Удельное сопротивление (УС) — это свойство вещества оказывать сопротивление электротоку в момент прохождения через него.

Все вещества по способности проводить электрический ток делятся на:

  1. Проводники. Проводниками называют вещества, в которых находится большое количество свободных заряженных частиц — электронов. Благодаря наличию таких заряженных частиц, свободно перемещающихся по всему металлическому проводнику, электрическое поле внутри таких веществ отсутствует. Отличными проводниками, например, являются металлы.
  2. Полупроводники. Полупроводниками называют такие вещества, которые способны изменять удельное сопротивление в широких пределах и быстро уменьшать его значение с повышением температуры. 

Как образуется в материале проводимость

Причина того, что вещества оказывают сопротивление электрическому току, кроется в том, что движению электрического тока, представляющему собой направленное движение электрических зарядов, мешают ионы кристаллической решетки вещества, движущиеся беспорядочно. Это препятствие или сопротивление электротоку влияет на его скорость — она уменьшается.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Единицы измерения

В физике символом р принято обозначать удельную проводимость вещества. Она характеризует то вещество, из которого выполнен проводник. Ее значение равняется сопротивлению проводника, длина которого составляет 1 метр, а площадь сечения — 1 (м^2.)

Единицами УС вещества в международной системе принято считать 10(м*1) (м^2 /1 м)

Так как площадь поперечного сечения часто измеряют в (мм^2), поэтому в учебниках по физике для удельного сопротивления можно встретить два варианта единиц измерения: (Ом*м) и (Ом*мм^2/м).

Формула расчета удельного сопротивления

Удельное сопротивление рассчитывается по формуле:

(p=frac{Rtimes S}l)

Где R — сопротивление проводника, S — площадь его поперечного сечения, l — его длина.

От чего зависит сопротивление

УС зависит от температуры в различных материалах. Но меняется оно по-разному: 

  1. В проводниках p с повышением температуры увеличивается.
  2. В полупроводниках и диэлектриках p с повышением температуры уменьшается. 

Температурный коэффициент электрического сопротивления — величина, которая учитывает изменение электрического сопротивления от температуры. 

Связь с удельной проводимостью

Удельной электропроводностью называют величину, обратную удельному сопротивлению. Она обозначается символом k и измеряется в сименс/м.

Взаимосвязь двух величин выражает формула:

(p=frac1k)

Электрическое сопротивление является свойством проводника и зависит от материала, размеров и формы вещества. 

Удельное электрическое сопротивление — это свойство только вещества.

Удельное сопротивление различных материалов

В таблице приведены значения УС некоторых веществ:

Удельное сопротивление

Опытным путём было установлено, что у металлов удельное сопротивление с повышением температуры увеличивается. Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь. Следовательно, серебро и медь — лучшие проводники электричества.

Стекло и дерево имеют такое большое удельное сопротивление, что почти совсем не проводят электрический ток и являются изоляторами.

Насколько полезной была для вас статья?

Рейтинг: 2.00 (Голосов: 7)

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому

Уде́льное электри́ческое сопротивле́ние (удельное сопротивление) — физическая величина, характеризующая способность материала препятствовать прохождению электрического тока, выражается в Ом·метр. Удельное электрическое сопротивление принято обозначать греческой буквой ρ. Значение удельного сопротивления зависит от температуры в различных материалах по-разному: в проводниках, удельное электрическое сопротивление с повышением температуры возрастает, а в полупроводниках и диэлектриках — наоборот, уменьшается. Величина, учитывающая изменение электрического сопротивления от температуры называется температурный коэффициент удельного сопротивления. Величина, обратная удельному сопротивлению, называется удельной проводимостью (удельной электропроводностью). В отличие от электрического сопротивления, являющегося свойством проводника и зависящего от его материала, формы и размеров, удельное электрическое сопротивление является свойством только вещества.

Электрическое сопротивление однородного проводника с удельным сопротивлением ρ, длиной l и площадью поперечного сечения S может быть рассчитано по формуле R={frac  {rho cdot l}{S}} (при этом предполагается, что ни площадь, ни форма поперечного сечения не меняются вдоль проводника). Соответственно, для ρ выполняется rho ={frac  {Rcdot S}{l}}.

Из последней формулы следует: физический смысл удельного сопротивления вещества заключается в том, что оно представляет собой сопротивление изготовленного из этого вещества однородного проводника единичной длины и с единичной площадью поперечного сечения.

Единицы измерения

Единица измерения удельного сопротивления в Международной системе единиц (СИ) — Ом·м[1]. Из соотношения rho ={frac  {Rcdot S}{l}} следует, что единица измерения удельного сопротивления в системе СИ равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 м², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом[2]. Соответственно, удельное сопротивление произвольного вещества, выраженное в единицах СИ, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 м².

В технике также применяется устаревшая внесистемная единица Ом·мм²/м, равная 10−6 от 1 Ом·м[1]. Данная единица равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 мм², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом[2]. Соответственно, удельное сопротивление какого-либо вещества, выраженное в этих единицах, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 мм².

Зависимость от температуры

В проводниках удельное электрическое сопротивление увеличивается с увеличением температуры. Это объясняется тем, что с ростом температуры увеличивается интенсивность колебания атомов в узлах кристаллической решетки проводника, что препятствует движению свободных электронов[3].

В полупроводниках и диэлектриках удельное электрическое сопротивление уменьшается. Это объясняется тем, что с увеличением температуры увеличивается концентрация основных носителей заряда.

Величина, учитывающая изменение удельного электрического сопротивление от температуры называют температурным коэффициентом удельного сопротивления.

Обобщение понятия удельного сопротивления

Кусок резистивного материала с электрическими контактами на обоих концах

Кусок резистивного материала с электрическими контактами на обоих концах

Удельное сопротивление можно определить также для неоднородного материала, свойства которого меняются от точки к точке. В этом случае оно является не константой, а скалярной функцией координат — коэффициентом, связывающим напряжённость электрического поля {vec  {E}}({vec  {r}}) и плотность тока {vec  {J}}({vec  {r}}) в данной точке {vec {r}}. Указанная связь выражается законом Ома в дифференциальной форме:

{vec  {E}}({vec  {r}})=rho ({vec  {r}}){vec  {J}}({vec  {r}}).

Эта формула справедлива для неоднородного, но изотропного вещества. Вещество может быть и анизотропно (большинство кристаллов, намагниченная плазма и т. д.), то есть его свойства могут зависеть от направления. В этом случае удельное сопротивление является зависящим от координат тензором второго ранга, содержащим девять компонент rho _{{ij}}. В анизотропном веществе векторы плотности тока и напряжённости электрического поля в каждой данной точке вещества не сонаправлены; связь между ними выражается соотношением

E_{i}({vec  {r}})=sum _{{j=1}}^{3}rho _{{ij}}({vec  {r}})J_{j}({vec  {r}}).

В анизотропном, но однородном веществе тензор rho _{{ij}} от координат не зависит.

Тензор rho _{{ij}} симметричен, то есть для любых i и j выполняется rho _{{ij}}=rho _{{ji}}.

Как и для всякого симметричного тензора, для rho _{{ij}} можно выбрать
ортогональную систему декартовых координат, в которых матрица rho _{{ij}} становится диагональной, то есть приобретает вид, при котором из девяти компонент rho _{{ij}} отличными от нуля являются лишь три: rho _{{11}}, rho _{{22}} и rho _{{33}}. В этом случае, обозначив rho _{{ii}} как rho _{i}, вместо предыдущей формулы получаем более простую

E_{i}=rho _{i}J_{i}.

Величины rho _{i} называют главными значениями тензора удельного сопротивления.

Связь с удельной проводимостью

В изотропных материалах связь между удельным сопротивлением rho и удельной проводимостью sigma выражается равенством

rho ={frac  {1}{sigma }}.

В случае анизотропных материалов связь между компонентами тензора удельного сопротивления rho _{{ij}} и тензора удельной проводимости sigma_{ij} имеет более сложный характер. Действительно, закон Ома в дифференциальной форме для анизотропных материалов имеет вид:

J_{i}({vec  {r}})=sum _{{j=1}}^{3}sigma _{{ij}}({vec  {r}})E_{j}({vec  {r}}).

Из этого равенства и приведённого ранее соотношения для E_{i}({vec  {r}}) следует, что тензор удельного сопротивления является обратным тензору удельной проводимости. С учётом этого для компонент тензора удельного сопротивления выполняется:

rho _{{11}}={frac  {1}{det(sigma )}}[sigma _{{22}}sigma _{{33}}-sigma _{{23}}sigma _{{32}}],
rho _{{12}}={frac  {1}{det(sigma )}}[sigma _{{33}}sigma _{{12}}-sigma _{{13}}sigma _{{32}}],

где det(sigma ) — определитель матрицы, составленной из компонент тензора  sigma_{ij}. Остальные компоненты тензора удельного сопротивления получаются из приведённых уравнений в результате циклической перестановки индексов 1, 2 и 3[4].

Удельное электрическое сопротивление некоторых веществ

Металлические монокристаллы

В таблице приведены главные значения тензора удельного сопротивления монокристаллов при температуре 20 °C[5].

Кристалл ρ12, 10−8 Ом·м ρ3, 10−8 Ом·м
Олово 9,9 14,3
Висмут 109 138
Кадмий 6,8 8,3
Цинк 5,91 6,13
Теллур 2,90·109 5,9·109

Металлы и сплавы, применяемые в электротехнике

Разброс значений обусловлен разной химической чистотой металлов, способов изготовления образцов, изученных разными учеными и непостоянством состава сплавов.

Металл ρ, Ом·мм²/м
Серебро 0,015…0,0162
Медь 0,01724…0,018
Золото 0,023
Алюминий 0,0262…0,0295
Иридий 0,0474
Молибден 0,054
Вольфрам 0,053…0,055
Цинк 0,059
Никель 0,087
Железо 0,098
Платина 0,107
Олово 0,12
Свинец 0,217…0,227
Титан 0,5562…0,7837
Висмут 1,2
Сплав ρ, Ом·мм²/м
Сталь 0,103…0,137
Никелин 0,42
Константан 0,5
Манганин 0,43…0,51
Нихром 1,05…1,4
Фехраль 1,15…1,35
Хромаль 1,3…1,5
Латунь 0,025…0,108
Бронза 0,095…0,1

Значения даны при температуре t = 20 °C. Сопротивления сплавов зависят от их химического состава и могут варьироваться. Для чистых веществ колебания численных значений удельного сопротивления обусловлены различными методами механической и термической обработки, например, отжигом проволоки после волочения.

Другие вещества

Вещество ρ, Ом·мм²/м
Сжиженные углеводородные газы 0,84⋅1010

Тонкие плёнки

Сопротивление тонких плоских плёнок (когда её толщина много меньше расстояния между контактами) принято называть «удельным сопротивлением на квадрат», R_{{mathrm  {Sq}}}. Этот параметр удобен тем, что сопротивление квадратного куска проводящей плёнки не зависит от размеров этого квадрата, при приложении напряжения по противоположным сторонам квадрата. При этом сопротивление куска плёнки, если он имеет форму прямоугольника, не зависит от его линейных размеров, а только от отношения длины (измеренной вдоль линий тока) к его ширине L/W: R_{{mathrm  {Sq}}}=RW/L, где R — измеренное сопротивление. В общем случае, если форма образца отличается от прямоугольной, и поле в плёнке неоднородное, используют метод ван дер Пау.

См. также

  • Электрическое сопротивление
  • Сверхпроводимость
  • Закон Ома
  • Удельная проводимость
  • Отрицательное сопротивление
  • Импеданс
  • Температурный коэффициент электрического сопротивления

Примечания

  1. 1 2 Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 93. — 240 с. — ISBN 5-7050-0118-5.
  2. 1 2 Чертов А. Г. Единицы физических величин. — М.: «Высшая школа», 1977. — 287 с.
  3. Никулин Н. В., Назаров А. С. Радиоматериалы и радиокомпоненты. — 3-е изд. — М.: Высшая школа, 1986. — 208 с.
  4. Давыдов А. С. Теория твёрдого тела. — М.: «Наука», 1976. — С. 191—192. — 646 с.
  5. Шувалов Л. А. и др. Физические свойства кристаллов // Современная кристаллография / Гл. ред. Б. К. Вайнштейн. — М.: «Наука», 1981. — Т. 4. — С. 317.

Литература

  • Никулин Н. В., Назаров А. С. Радиоматериалы и радиокомпоненты. — 3-е изд., переработанное и дополненное. — М.: Высшая школа, 1986. — С. 6—7. — 208 с.


Эта страница в последний раз была отредактирована 15 января 2023 в 20:26.

Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.

Удельное сопротивление — характеристика материала, определяющая его способность проводить электрический ток. Определяется как отношение электрического поля к плотности тока. В общем случае является тензором, однако для большинства материалов, не проявляющих анизотропных свойств, принимается скалярной величиной.

Обозначение — ρ

{displaystyle {vec {E}}=rho {vec {j}},}

где

{displaystyle {vec {E}}}напряжённость электрического поля,
{displaystyle {vec {j}}}плотность тока.

Единица измерения СИ — ом-метр (ом·м, Ω·m).

Сопротивление цилиндра или призмы (между торцами) из материала длиной l, и сечением S по удельному сопротивлению определяется следующим образом:

{displaystyle R={frac {rho l}{S}}.}

В технике применяется определение удельного сопротивления, как сопротивление проводника единичного сечения и единичной длины.

Удельное сопротивление некоторых материалов, используемых в электротехнике

Материал ρ при 300 К, Ом·м ТКС, К⁻¹
серебро 1,59·10⁻⁸ 4,10·10⁻³
медь 1,67·10⁻⁸ 4,33·10⁻³
золото 2,35·10⁻⁸ 3,98·10⁻³
алюминий 2,65·10⁻⁸ 4,29·10⁻³
вольфрам 5,65·10⁻⁸ 4,83·10⁻³
латунь 6,5·10⁻⁸ 1,5·10⁻³
никель 6,84·10⁻⁸ 6,75·10⁻³
железо (α) 9,7·10⁻⁸ 6,57·10⁻³
олово серое 1,01·10⁻⁷ 4,63·10⁻³
платина 1,06·10⁻⁷ 6,75·10⁻³
олово белое 1,1·10⁻⁷ 4,63·10⁻³
сталь 1,6·10⁻⁷ 3,3·10⁻³
свинец 2,06·10⁻⁷ 4,22·10⁻³
дюралюминий 4,0·10⁻⁷ 2,8·10⁻³
манганин 4,3·10⁻⁷ ±2·10⁻⁵
константан 5,0·10⁻⁷ ±3·10⁻⁵
ртуть 9,84·10⁻⁷ 9,9·10⁻⁴
нихром 80/20 1,05·10⁻⁶ 1,8·10⁻⁴
канталь А1 1,45·10⁻⁶ 3·10⁻⁵
углерод (алмаз, графит) 1,3·10⁻⁵
германий 4,6·10⁻¹
кремний 6,4·10²
этанол 3·10³
вода, дистиллированная 5·10³
эбонит 10⁸
бумага твёрдая 10¹⁰
трансформаторное масло 10¹¹
стекло обычное 5·10¹¹
поливинил 10¹²
фарфор 10¹²
древесина 10¹²
ПТФЭ (тефлон) >10¹³
резина 5·10¹³
стекло кварцевое 10¹⁴
бумага вощёная 10¹⁴
полистирол >10¹⁴
слюда 5·10¹⁴
парафин 10¹⁵
полиэтилен 3·10¹⁵
акриловая смола 10¹⁹

В статье разберём, что такое электрическое сопротивление, его виды, как образуется проводимость в материале и в чём измеряется, от чего зависит. Научимся рассчитывать сопротивление по формулам и рассмотрим, какое сопротивление у разных металлов.

Содержание

  • 1 Что это такое удельное сопротивление
  • 2 Что такое электрическое сопротивление
  • 3 Понятие сопротивление доходчиво
  • 4 Как образуется в материале проводимость?
  • 5 В чём измеряется?
  • 6 От чего зависит?
    • 6.1 Зависимость от температуры
    • 6.2 Удельное сопротивление разных материалов
    • 6.3 Таблица для металлов
  • 7 Как просто вычислить сопротивление по закону Ома из электрических величин
  • 8 Формулировка закона Ома
    • 8.1 Закон Ома для участка цепи
    • 8.2 Закон Ома для полной цепи
    • 8.3 Закон Ома в дифференциальной и интегральной формах
  • 9 Формула расчета удельного сопротивления
  • 10 Формулы расчёта электрического сопротивления
    • 10.1 Формула активного сопротивления
    • 10.2 Формула индуктивного сопротивления
    • 10.3 Формула ёмкостного сопротивления
    • 10.4 Определение полного сопротивления
  • 11 Видео

Что это такое удельное сопротивление

Под определением понимается свойство вещества оказывать сопротивление электрическому потоку в тот момент, когда оно проходит через него. Выражается в значении Ом на метр. Показатель зависит от температуры.

Что такое электрическое сопротивление

Позиционируется как сопротивление некоторого элемента, служащего проводником. Он имеет единичную длину, показатель площади сечения. В этом заключается физический смысл. Электрическое сопротивление – это параметр проводника, опирающийся на зависимость от:

  • структуры материала;
  • параметра формы;
  • габаритов изделия.

Сопротивление проводника

Понятие сопротивление доходчиво

Это величина, определяющая способность полупроводникового элемента пропускать сквозь себя электрический ток. Дать общее понятие можно опираясь на основы строения металлов. Состоит металл из кристаллической решётки, между элементами которой путешествуют электроны. Внешнее поле заставит их при перемещении создавать электрический ток. Решётка позволяет им двигаться по заданному объёму, а электроны будут тереться о её узлы и не смогут протиснуться. Данное явление и называется сопротивлением, а именно: сила, которая будет мешать перемещению.

Ещё проще можно представить на основе ситечка, на раковине. Вода будет проходить медленнее, чем если бы проходила без него.

Анимация сопротивления

@yaklass.ru

Как образуется в материале проводимость?

Причина образования сопротивления заключается в том, что протеканию тока мешают ионы кристаллической решётки. Они будут двигаться беспорядочно. Данное препятствие, а также сопротивление потоку будет влиять на его скорость, она уменьшается. Следовательно, изменяется и показатель проводимости.

Существуют виды сопротивлений:

  • активное;
  • индуктивное;
  • омическое;
  • ёмкостное.

В чём измеряется?

В СИ измеряется как Ом на метр. В данной системе единица измерения будет равна параметру проводника. При нём, проводник длиной 1 метр, площадь сечения которого составляет 1 кв. м, имеет значение равное 1 Ом.

В технике используется значение Ом на мм кв/м.

От чего зависит?

Зависит показатель от температуры и отличается в разных материалах.

Зависимость от температуры

В каждом наименовании материала он отличается, в частности:

  1. В проводниковых элементах при увеличении показателя температуры, возрастает.
  2. В то же время в полупроводниковых, а также диэлектриках на таких же условиях уменьшается.

Величину, которая учитывает параметр изменения, принято называть температурным коэффициентом.

Зависимость сопротивления от температуры

Удельное сопротивление разных материалов

Рассмотрим показатель монокристаллов, при параметре температуры, равном 20 градусов.

Олово 9,9–14,3
Висмут 109–138
Кадмий 6,8–8,3
Цинк 5,91–6,13
Теллур 2,90х109–5,9х109

Таблица для металлов

В таблице приводятся показатели для металлов, а также отдельных сплавов. Разница параметров связана непосредственно с химической чистотой, методами отливки, непостоянством самого сплава.

Серебро 0,015–0,0162
Медь 0,01707–0,018
Золото 0,023
Алюминий 0,0262–0,0295
Иридий 0,0474
Натрий 0,0485
Молибден 0,054
Вольфрам 0,053–0,055
Цинк 0,059
Индий 0,0837
Никель 0,087
Железо 0,099
Платина 0,107
Олово 0,12
Свинец 0,217–0,227
Титан 0,5562–0,7837
Ртуть 0,958
Висмут 1,2

Как просто вычислить сопротивление по закону Ома из электрических величин

Закон нужен, чтобы понять, как по цепи проходит ток, каким является его параметр сопротивления и напряжения, сформулирован закон Ома.

Выражается он формулой:

[ I=U/R ]

​Согласно утверждению, сопротивление будет зависеть от напряжения и мощности.

Формулировка закона Ома

Сила тока на конкретном участке цепи будет прямо пропорциональной напряжению и обратно пропорциональной сопротивлению.

Закон Ома для участка цепи

Приведён по классической формуле: ​( I=U/R )

Здесь не учитывается сопротивление всей цепи, но допускается возможность измерить показатель сопротивления на каждом отдельном участке.

Закон Ома для полной цепи

Определяется формулой:

[ I= E/R+r ]

Как определение, данная формулировка будет звучать как: сила тока прямо пропорциональна ЭДС и обратно пропорциональна общему сопротивлению. Под общим сопротивлением подразумевается сумма внешнего и внутреннего сопротивлений.

Закон Ома в дифференциальной и интегральной формах

  • В дифференциальной форме применяется при необходимости определить параметры ничтожно малого участка цепи.
  • В интегральной форме рассматривается цепь, с расчётом на наличие источника тока, а также без него.

Формула расчета удельного сопротивления

Данная величина характеризует некоторое свойство материала, которая препятствует прохождению тока.

Выглядит так:

[ ρ=R⋅Sl ]

Формулы расчёта электрического сопротивления

Рассмотрим формулы для разных видов сопротивлений.

Формула активного сопротивления

Выглядит следующим образом:

[ Im=Um/R ]

Формула индуктивного сопротивления

Индуктивное сопротивление

Выгляди как:

[ Xl=2пFL ]

L представляет собой показатель переменного тока.

F представляет собой частоту

Формула ёмкостного сопротивления

Проводник, подключённый непосредственно к электрической цепи, который не имеет сопротивление, но предусматривает наличие ёмкости.

Выглядит формула так:

[ Xc = 1/ωC ]

  • ω показатель циклической частоты.
  • C показатель ёмкости.

Определение полного сопротивления

Чтобы получить данное значение, потребуется учесть сопротивление всех участков.

Выглядит так:

[ R=R1+R2 ]

При этом участков может быть несколько.

Видео

Понравилась статья? Поделить с друзьями:
  • Удивительно оживленный как пишется
  • Удельная теплоемкость как пишется
  • Удивительно нежное как пишется
  • Уделить время как пишется правильно
  • Удивительно невкусный как пишется